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A heterogeneous wireless network (HWN) contains many kinds of wireless networks with overlapping areas of signal coverage.
One of the research topics on HWNs is how to make users choose the most suitable network. (is paper designs a user-oriented
intelligent access selection algorithm in HWNs with five modules (input, user preference calculation, candidate network score
calculation, output, and learning). Essentially, the input module uses a utility function to calculate the utility value of the judgment
parameter; the user preference calculation module calculates the weight of the judgment parameter using the fuzzy analysis
hierarchy process (FAHP) approach; the candidate network score calculationmodule calculates the network score through a fuzzy
neural network; the output module calculates the error between the actual output value and the expected output value; and the
learning module corrects the parameter of the membership function in the fuzzy neural network structure according to the error.
Simulation results show that the algorithm proposed in this paper can enable users to select themost suitable network according to
service characteristics and can enable users to obtain higher gains.

1. Introduction

In recent years, the continuous development of different
wireless network technologies has led to the emergence of
various wireless networks, such as the cellular network, the
wireless local area network (WLAN), and the wireless
metropolitan area network (WMAN). (ese networks differ
in terms of signal coverage, bandwidth, time delay, fre-
quency, etc. [1]. Cellular networks, for example, provide a
wide signal coverage and offer excellent mobility support.
Meanwhile, WLANs based on the IEEE802.11 standard use
2.4 GHz or 5 GHz frequency bands to communicate, pro-
viding users with high-speed data transmission within a
limited area. In addition, World Interoperability for Mi-
crowave Access (WiMAX) based on the IEEE802.16 stan-
dard adopts such technologies as multi-input multi-output
(MIMO) and orthogonal frequency division multiplexing
(OFDM) and can provide a wide signal coverage and high-
speed data transmission rate.

By deploying access points of other types of wireless
networks, namely, WLAN and WiMAX, heterogeneous

systems with multiple networks, as well as overlapping areas
of signal coverage, are gradually established. (ese systems
are called heterogeneous wireless networks (HWNs) [2]. In
the development process of HWNs, wireless networks have
their own architectures and communication protocols. After
the access points of these wireless networks are converged,
they are connected to a common core network based on IP
protocol [3], enabling users connected to these wireless
networks to communicate with each other and access the
Internet (Figure 1).

In a HWN, mobile user clients are often in the area with
overlapping areas of signal coverage as formed by various
wireless networks. (is requires users to select the optimal
network among different candidate networks based on the
quality of the wireless channel transmission, the difference in
the processing performance of the wireless network and user
service requirements, and other reasons. (erefore, access
selection is one of the key technologies for HWNs [4, 5].

Traditional HWN access selection algorithms take the
received signal strength (RSS) as the judgment parameter for
network selection. Mobile users will then select the network

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8828355, 20 pages
https://doi.org/10.1155/2020/8828355

mailto:l_gen@126.com
https://orcid.org/0000-0001-6547-415X
https://orcid.org/0000-0002-3287-2714
https://orcid.org/0000-0003-4045-6515
https://orcid.org/0000-0003-2410-6662
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8828355


with the highest RSS. Although the RSS-based access se-
lection algorithm is low in complexity and easy to imple-
ment, it often causes a serious ping-pong effect. To reduce
the ping-pong effect, Hanjin et al. [6, 7] propose an im-
proved method to increase lag time based on the highest RSS
algorithm; however, this also causes an increase in access
delay. In addition, some access selection algorithms use
network load as the judgment basis for network selection
and connect users to a network with the lowest load in order
to achieve load balancing. While these algorithms improve
the resource utilization rate of HWNs, they do not consider
the quality of service (QoS) requirements of users and
potentially connect them to a poor-quality network, thus
failing to guarantee the QoS and the experience (QoE) [8, 9].

In a HWN environment, network access selection
cannot be only based on one judgment parameter, but re-
quires a comprehensive consideration of multiple judgment
parameters (e.g., RSS, bandwidth, network load, delay, jitter,
packet loss rate, movement speed, service price, and energy
consumption). Due to the difference in network transmis-
sion performance and user service types, these multiple
parameters enable users to access the most appropriate
network [10].

As multiple decision parameters are needed in access
selection, some literature uses the theory of multiple attri-
bute decision making (MADM) for designing access se-
lection algorithms [11]. MADM first collects the data of
decision parameters to form amultiattribute decision matrix
that can be analyzed in a standardized way. Next, it de-
termines the decision weights of decision parameters by an
objective or subjective weighting method. Finally, it obtains
the ranking of candidate networks. (e MADM algorithm
includes many branches, such as simple additive weighting
(SAW), weighted product method (WPM), analytic hier-
archy process (AHP), gray relation analysis (GRA), and

technique for order preference by similarity to ideal solution
(TOPSIS) [12, 13].

In access selection, different users have different levels of
satisfaction with the same parameter value due to their
preferences and the diversity of user services. (erefore,
some literature uses the utility theory to design network
access selection algorithms. (e main idea of the access
selection algorithms based on the utility theory is to design
different utility functions to convert each decision parameter
into a utility value [14]. (e utility value is a relative index
value. Generally speaking, the utility value of a user’s most
satisfied parameter value is equal to 1, while the utility value
of the least satisfied parameter value is equal to 0. (e
comprehensive utility value of each network is calculated
after the utility value of each decision parameter has been
obtained, the comprehensive utility values are ranked, and
the network with the highest comprehensive utility value is
connected. Commonly used utility function types are as
follows: linear function, exponential function, logarithmic
function, and sigmoid function [15].

As the fuzzy logic theory is suitable for dealing with
uncertain and nonlinear problems, expressing knowledge of
fuzzy or qualitative analysis and processing natural language
with reasoning closely resembling that of a human being,
some literature designs access selection algorithms based on
the fuzzy logic theory [16, 17]. (e main idea of this kind of
algorithm is to first fuzzify each decision parameter and
generate an input fuzzy set. (is then generates an output
fuzzy set through fuzzy rules and fuzzy reasoning and finally
obtains the accurate scores of candidate networks by
defuzzification. (e key to the method based on the fuzzy
logic theory is to reasonably define fuzzy sets and fuzzy
reasoning rules [18].

In addition, some literature uses game theory [19–21],
neural networks, the Markov chain [22, 23], and the
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Figure 1: Architecture of HWNs.
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optimization method [24–26] to design access selection
algorithms.

For the access selection issue in a HWN, although many
scholars have proposed solutions, most existing access se-
lection algorithms are designed to select a network with the
best comprehensive performance for users, ignoring the
user’s service characteristics and preferences [27, 28].
(erefore, how to design a user-oriented intelligent access
selection algorithm from the user’s perspective and
according to the user’s service characteristics and prefer-
ences becomes the motivation of this paper.

At present, although other literature designs access se-
lection algorithms by using MADM, utility theory, fuzzy
logic, neural networks, and other methods, respectively, no
other literature has been found that designs an access se-
lection algorithm combining utility theory, FAHP, fuzzy
logic, and neural networks simultaneously. Furthermore,
when designing an access selection algorithm, utility value
calculation, weight value calculation, and candidate network
score calculation of decision parameters under different
services are considered at the same time. (erefore, the
algorithm proposed in this paper gives a user-oriented in-
telligent access selection scheme, which can select the most
suitable network for users according to their service char-
acteristics and preferences.(is is themain contribution and
focus of this paper.

(e rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 provides a detailed
description and calculation step of the algorithm framework.
In addition, Section 4 configures simulation environment
parameters and discusses the experimental results. Fur-
thermore, Section 5 summarizes the article and introduces
further research.

2. Related Work

At present, some literature uses mathematical models, such
as utility theory, fuzzy logic, and neural networks, to design
access selection algorithms. Each mathematical model has
certain advantages and disadvantages in the design of access
selection algorithms [29, 30]. (is paper combines the above
methods to design the access selection algorithm and mainly
analyzes the related literature that combines multiple
methods for access selection.

Considering the characteristics of voice application,
video application, and best-effort application, Goyal et al.
[31] proposed a nonlinear fuzzy optimization model, in
which the fuzzy analytic hierarchy process (FAHP) is used to
calculate the weight of a decision parameter. Moreover,
utility functions are used to calculate the utility values of
decision parameters, such as bandwidth, delay, jitter, bit
error rate (BER), and cost. Finally, SAW, TOPSIS, and
multiplicative exponential weighting (MEW) are used to
calculate the scores of candidate networks. While the al-
gorithm proposed in the literature takes into account the
service characteristics, it does not consider user preferences
for different candidate networks.

Liang and Yu [32] divided user services into different
types and calculated the utility value of each network

attribute by using utility functions according to the char-
acteristics of different services. (en, the entropy method
and the FAHP are used to calculate the objective and
subjective weight of network attributes, respectively. In
addition, the FAHP is used to calculate the preference value
of users to candidate networks. Finally, the multiple attribute
decision making method is used to calculate each candidate
network score. While this algorithm can reduce the number
of handovers between networks, it cannot adjust the scores
of candidate networks based on user satisfaction.

Ahuja et al. [17] designed an access selection algorithm
by using the RSS, available bit rate, signal-to-noise ratio,
throughput, and BER as decision parameters. (e algorithm
uses utility functions and particle swarm optimization (PSO)
to calculate utility values and weights of the decision pa-
rameters, respectively, and then uses a fuzzy logic system to
calculate the candidate network score. While the algorithm
reduces the number of user handovers between networks, it
does not take into account the characteristics of different
services.

Habbal et al. [33] combined the context-aware concept
with the MADM theory and proposed a context-aware
multiattribute access selection approach. First, AHP is used
to calculate the weight of each decision parameter and then
the TOPSIS method is used to select the best network. While
the algorithm can solve the problem of abnormal ranking of
candidate networks, it does not consider the service char-
acteristics of different users.

Khan et al. [34] designed an access selection algorithm by
using decision parameters, such as delay, jitter, BER, packet
loss, communication cost, response time, and network load.
(e algorithm combines fuzzy logic and MADM. First, the
algorithm studies the appropriate place where handover is
initiated in the wireless signal coverage area, uses a fuzzy
system to eliminate the inappropriate candidate networks,
and finally selects the optimal network based on the TOPSIS
method. While this algorithm reduces the handover delay, it
does not consider the characteristics of different services.

In HWNs where WiMAX, LTE, and WLAN coexist,
Liang et al. [35] used the RSS, network load, and user rate
demand as decision parameters and calculated the score and
bandwidth allocation value of each candidate network
through a five-layer fuzzy neural network structure. While
the algorithm can modify fuzzy rules according to users’
preferences and adjust the resource utilization rate of dif-
ferent networks, the increase in the number of candidate
networks and decision parameters may lead to a sharp in-
crease in the fuzzy rule base and increase the time delay in
access selection.

Calhan and Ceken [36] proposed a handoff decision
algorithm based on an artificial neural network, which uses
data rate, cost, and RSS as decision parameters. (e algo-
rithm first calculates whether it is necessary to hand off to
other networks and then selects the best network among all
candidate networks. While the algorithm effectively reduces
handoff latency, it does not take into account the user’s
service characteristics and preferences.

At present, although other literature uses MADM, utility
theory, fuzzy logic, neural networks, and other methods to
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design access selection algorithms for HWNs, such literature
only selects a network with the best comprehensive per-
formance for users among all candidate networks and does
not fully consider various factors, such as network perfor-
mance, user service requirements, and user preferences;
therefore, it is unable to connect users to the most suitable
network [4].

(is paper designs a network access selection algorithm
by combining utility theory, fuzzy hierarchy analysis, fuzzy
logic, and neural networks in a HWN, which includes
UMTS, LTE, WLAN, and WiMAX, as well as several
modules (input, user preference calculation, candidate
network score calculation, output, and learning). (e main
steps of this algorithm are as follows:

First, user services are divided into three types: voice
service, video service, and data service. In the input module,
bandwidth, delay, jitter, packet loss rate, and price are used
as the decision parameters for access selection, and a utility
function is designed for each decision parameter according
to the characteristics of different types of services, and the
utility value of each judgment parameter for different ser-
vices is calculated by using the utility function.

Second, in the user preference calculation module,
FAHP is used to calculate the weight of each decision pa-
rameter for different services. Based on this, fuzzy inference
rules for different services are generated.

(ird, in the candidate network score calculation
module, each candidate network is scored by the following
three steps: fuzzification, fuzzy reasoning, and
defuzzification.

Fourth, the output module calculates the error between
the actual output score of a candidate network and the
expected score of a user for the network.

Fifth, the learning module corrects the fuzzy and
defuzzified membership function parameters in the candi-
date network score calculation module.(is is accomplished
according to the error and through supervised learning in
order to obtain the final score of a candidate network. (en,
the user selects the network with the highest score.

3. System Model

3.1. AlgorithmFrameworkDesign. (is paper assumes that a
HWN is composed of UMTS, LTE, WLAN, and WiMAX,
and mobile user terminals wander randomly within the
overlapping areas of signal coverage of these four network
signals. In addition, the performance values of all networks
can be obtained periodically and any one network can be
accessed through the multimode interface using the access
selection algorithm. In addition, it is assumed that the user’s
service types are voice application, video application, and
data application, and the user runs any one of the three
services.

(e access selection algorithm framework designed in
this paper mainly includes five modules: input, user pref-
erence calculation, candidate network score calculation,
output, and learning (Figure 2). (e main functions of each
module are described below:

(1) (e key role of the input module is to convert the
network performance parameter values periodically
acquired by users into normalized utility values
according to the characteristics of user services and
input these values to the candidate network score
calculation. In this paper, bandwidth, delay, jitter,
packet loss rate, and price are the decision param-
eters used.

(2) (e main function of the user preference calculation
module is to determine the weight of each decision
parameter according to the user service character-
istics and then input these weights to the candidate
network score calculation. (is generates fuzzy in-
ference rules according to the weights.

(3) (e main function of the candidate network score
calculation module is to obtain the score of a can-
didate network evaluated through three steps,
namely, fuzzification, fuzzy reasoning, and defuz-
zification, according to the bandwidth, time delay,
jitter, and other parameters of each candidate net-
work and weight of each parameter and send the
score to the output module. (is paper uses SCORE
to represent the scores of candidate networks and the
range of the scores is [0, 1].

(4) (e main function of the output module is to rank
the candidate network scores and select the network
with the highest score as the final access network. In
addition, the module also compares the actual output
score of the candidate network with the expected
score of the user for the network, calculates the error
between them, and transmits the error to the
learning module.

(5) (emain function of the learning module is to adjust
the fuzzification and defuzzification parameters in
the candidate network score calculation module
based on the error between the actual output score of
the candidate network and the user’s expected net-
work score as to minimize the error.

3.2. Input. In access selection, different services have dif-
ferent levels of satisfaction with the same decision parameter
value due to different service requirements of users, so the
utility function can be used to quantify the satisfaction of
users with parameters. (e utility function value is a relative
index value. Generally speaking, the utility value of a user’s
most satisfied parameter value is equal to 1, while the utility
value of the least satisfied parameter value is equal to 0. (e
utility function types used in this paper are sigmoid function,
exponential function, logarithmic function, linear function,
and linear piecewise function, which are defined, respec-
tively, as follows:

Sigmoid function:

u(x) �
(x/a)

b

1 +(x/a)
b
. (1)

Exponential function:
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u(x) �
e

cx
− 1

e
cx . (2)

Logarithm function:

u(x) � d + e
∗ ln(x + f). (3)

Linear function:

u(x) � gx + h. (4)

Linear piecewise function:

u(x) �

1, x< i,

j − x

j − i
, i≤ x< j,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

(e x in equations (1)–(5) above is the actual input value
of a decision parameter, and a, b, c, d, e,f, g, h, i, and j are the
curve adjustment parameter values of utility functions. For a
beneficial parameter (i.e., bandwidth), the higher the pa-
rameter value, the higher the degree of satisfaction, and the
utility value is u(x). For nonbeneficial parameters (e.g., delay,
jitter, packet loss ratio, and price), the larger the parameter
value, the lower the degree of satisfaction, and the utility value
is 1 − u(x). (e actual values of the five decision parameters
are inputted into the input module to obtain five utility values
between 0 and 1, and these five utility values are transmitted
to the candidate network score calculation module.

3.3. User Preference Calculation. (e analytic hierarchy
process (AHP) is one of the commonly used methods for
calculating weights, which establishes a comparison matrix
by comparing elements in pairs. When the degree of in-
consistency of the comparison matrix is not within the al-
lowable range, the comparison matrix needs to be
reconstructed.

(e FAHP is improved on the basis of the analytic hi-
erarchy process. It establishes a consistent pairwise com-
parisonmatrix, which has already ensured the consistency of
the matrix when it is established [37]. In this paper, the
FAHP is used based on the fuzzy consistent matrix to
calculate the weights of decision parameters. (e main steps
are as follows:

Step 1. Analyze the relationship among decision pa-
rameters, candidate network, and target network and
construct them into a relationship of three levels
(Figure 3). (e structure includes a target layer rep-
resenting the most suitable network, a criterion layer
representing decision parameters, and a scheme layer
representing each candidate network.
Step 2. As different decision parameters have different
importance to voice service, video service, and data
service, according to the FAHP theory, any decision
parameter xi and xj is compared with each other in
terms of degree of their importance and their impor-
tance degree ratio rij is obtained (Table 1).(en, a fuzzy
consistent matrix is constructed using these ratios.
According to literature [32], the fuzzy consistent ma-
trices for voice service, video service, and data service
are, respectively, shown (Tables 2–4), and the consis-
tency of these matrices is checked according to equa-
tion (6). Finally, the weight of each judgment parameter
is calculated according to equation (7).

0≤ rij ≤ 1,

rii � 0.5,

rij � 1 − rji,

rij � rik − rjk + 0.5, i, j, k � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

w
sb
i �

2
n(n − 1)

× 􏽘
n

j�1
rij −

1
n(n − 1)

. (7)

Step 3. After the weights of each decision parameter for
different services are obtained, the fuzzy inference rules
in the candidate network score calculation module are
determined according to these weights. In this paper,
the number of fuzzy sets is determined for each input
decision parameter to 3 (i.e., low, medium, and high),
represented by low (L), medium (M), and high (H),
respectively.(e fuzzy set of the decision parameter i in
the precondition of fuzzy rules is assumed to be FSi and
when the fuzzy set FSi is L, M, and H respectively, the
values of FSi are equal to 1, 2, and 3, respectively.
Additionally, the fuzzy sets (i.e., low, medium, and
high) to which the fuzzy rule conclusion (i.e., score)
belongs are determined according to equation (8).
Examples of fuzzy inference rules for voice service,
video service, and data service are, respectively, shown
(Tables 5–7).

Bandwidth Delay Jitter Loss Price

Fuzzification

Fuzzy inference

Defuzzification

Candidate network score

Learning
User

preference 
calculation 

Output

Input

Candidate network score calculation

Figure 2: Access selection algorithm framework.
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Score �

L, 1≤ 􏽘
5

i�1
Weighti

∗FSi < 1.67,

M, 1.67≤ 􏽘
5

i�1
Weighti

∗FSi < 2.33,

H, 2.33≤ 􏽘

5

i�1
Weighti

∗FSi < 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

3.4. CandidateNetwork ScoreCalculation. In Section 3.1, the
framework of the access selection algorithm is introduced. In
this section, it is designed as a five-layer neural network.
Each layer in this network consists of a series of neuron
nodes according to the function of each module (Figure 4).
(e first layer is the input layer. (e main function of this
layer is to calculate the utility value of the input judgment
parameters. (e main function of the second layer is for
fuzzy processing. (e third layer is the fuzzy rules layer, and

Table 1: Meaning of importance scale [38].

Scale Meaning
0.5 Both are equally important
0.6 (e former is slightly more important than the latter
0.7 (e former is obviously more important than the latter
0.8 (e former is strongly more important than the latter
0.9 (e former is extremely more important than the latter

0.1, 0.2, 0.3, 0.4 If xi is compared with xj,rij is obtained, and xj is compared with xi with results in rji � 1 − rij

0.55, 0.65, and 0.75 represent the median value of adjacent grades

�e best network

JitterDelayBandwidth Loss Price

UMTS LTE WLAN WiMAX

Target layer

Criterion layer

Scheme layer

Figure 3: FAHP’s hierarchy.

Table 2: Fuzzy consistent matrix and weights for voice application [32].

Voice Bandwidth Delay Jitter Loss Price Weight
Bandwidth 0.5 0.45 0.15 0.4 0.1 0.1100
Delay 0.55 0.5 0.2 0.45 0.15 0.1350
Jitter 0.85 0.8 0.5 0.75 0.45 0.2850
Loss 0.6 0.55 0.25 0.5 0.2 0.1600
Price 0.9 0.85 0.55 0.8 0.5 0.3100

Table 3: Fuzzy consistent matrix and weights for video application [32].

Video Bandwidth Delay Jitter Loss Price Weight
Bandwidth 0.5 0.15 0.4 0.55 0.6 0.1700
Delay 0.85 0.5 0.75 0.9 0.95 0.3450
Jitter 0.6 0.25 0.5 0.65 0.7 0.2200
Loss 0.45 0.1 0.35 0.5 0.55 0.1450
Price 0.4 0.05 0.3 0.45 0.5 0.1200

Table 4: Fuzzy consistent matrix and weights for data application [32].

Data Bandwidth Delay Jitter Loss Price Weight
Bandwidth 0.5 0.85 0.95 0.55 0.75 0.3100
Delay 0.15 0.5 0.6 0.2 0.4 0.1350
Jitter 0.05 0.4 0.5 0.1 0.3 0.0850
Loss 0.45 0.8 0.9 0.5 0.7 0.2850
Price 0.25 0.6 0.7 0.3 0.5 0.1850
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each node in this layer represents a fuzzy inference rule. (e
main function of the fourth layer is to perform fuzzy rule
inference. (e main function of the fifth layer is to perform
defuzzification operations to obtain the score of the can-
didate network.

(e specific structure of each neuron node (Figure 4) is
shown (Figure 5). According to the basic theory of neural
networks, each node contains at least one input data and one
output data. Assuming that in Layer k, the node i contains j

input data, and all input data are processed by the input data
processing function f

(k)
i , it can be expressed as

I
(k)
i � f

(k)
i (x

(k)
i,1 , x

(k)
i,2 , . . . , x

(k)
i,j ), and after the input data is

processed, it is outputted by an activation function g
(k)
i , and

the output value is expressed as O
(k)
i � g

(k)
i (I

(k)
i ).

(e calculation method of each layer (Figure 4) will be
described in detail below.

(e first layer is the input layer, the main function of
which is to calculate the utility values of the input decision
parameters according to the service characteristics. Since the
proposed algorithm contains five decision parameters (i.e.,
bandwidth, delay, jitter, packet loss rate, and price), there are
five nodes in this layer. (e input of nodes is the actual value
of each decision parameter. As described in Section 3.2
above, the output of each node in this layer is the utility
value, and the value range is [0, 1].

(erefore, the input and output of node i in this layer can
be expressed as

I
(1)
i � f

(1)
i x

(1)
i,j􏼐 􏼑 � x

(1)
i,j , i � 1, 2, . . . , 5, j � 1,

O
(1)
i � g

(1)
i I

(1)
i􏼐 􏼑 � x

(1)
i,j , i � 1, 2, . . . , 5, j � 1.

(9)

Table 5: Example of fuzzy rules for voice application.

IF THEN
Bandwidth Delay Jitter Loss Price Score
L L M L H M
L L M H H M
L M L H L L
L H H L L M
M L M L M M
M L H L L M
M M L L H M
H L L L L L
H L M L L L
H H L H H H

Table 6: Example of fuzzy rules for video application.

IF THEN
Bandwidth Delay Jitter Loss Price Score
L L M L H L
L L M H H M
L M L H L L
L H H L L M
M L M L M L
M L H L L L
M M L L H M
H L L L L L
H L M L L L
H H L H H H

Table 7: Example of fuzzy rules for data application.

IF THEN
Bandwidth Delay Jitter Loss Price Score
L L M L H L
L L M H H M
L M L H L M
L H H L L L
M L M L M L
M L H L L L
M M L L H M
H L L L L L
H L M L L M
H H L H H H

Computational Intelligence and Neuroscience 7



(emain function of Layer 2 is for fuzzy processing. (e
role of fuzzification is to convert the precise quantities of
these inputs into fuzzy quantities and map them into the
fuzzy set on the universe of discourse. Since there are five
types of data transferred from Layer 1 to Layer 2, three fuzzy
sets (i.e., low, medium, and high) are used for each data, so
there are 15 nodes in Layer 2. Each node has only one input,
which is used to calculate the membership function of each
input value belonging to the corresponding fuzzy set. (e
common membership functions include triangle-shaped
membership function, bell-shaped membership function,
trapezoidal membership function, and Gaussian member-
ship function. Since Gaussian membership function is easy
to derivate and has high efficiency in the learning stage, the
Gaussian membership function is adopted as the mem-
bership function of this algorithm in this paper, so the input
and output of node i in Layer 2 can be expressed as follows:

I
(2)
i � f

(2)
i ( x

(2)
i,j ) � −

x
(2)
i,j − c

(2)
i􏼐 􏼑

2

σ(2)
i􏼐 􏼑

2 , i � 1, 2, . . . , 15, j � 1,

O
(2)
i � g

(2)
i I

(2)
i􏼐 􏼑 � e

I
(2)

i � e
− x

(2)

i,j
− c

(2)

i􏼐 􏼑
2
/ σ(2)

i( )
2

, i � 1, 2, . . . , 15, j � 1.

(10)

c
(2)
i and σ(2)

i in the above equation are the mean and the
variance of the Gaussian membership function of Layer 2
node i, respectively.

Layer 3 is a fuzzy rule layer, and each node in this layer
represents a fuzzy inference rule. Since Layer 1 has five input
linguistic variables, each input linguistic variable contains
three fuzzy sets. In addition, each node in Layer 3 is
composed of combinations of fuzzy sets for different input
linguistic variables, with a total of 35 � 243 nodes, and each
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node corresponds to the precondition of a fuzzy rule.
According to the fuzzy logic theory, for all the input data of
the same fuzzy rule, the fuzzy AND operation is adopted,
and the commonly used fuzzy AND operation is a minimum
operation or an algebraic product. (is paper uses a min-
imum operation. Finally, the activation function of each
node in this layer only transfers the input function value
equivalently, so the input and output of node i in Layer 3 can
be expressed as

I
(3)
i � f

(3)
i x

(3)
i,j􏼐 􏼑 � min x

(3)
i,j􏼐 􏼑, i � 1, 2, . . . , 243, j � 1, 2, . . . , 5,

O
(3)
i � g

(3)
i I

(3)
i􏼐 􏼑 � min x

(3)
i,j􏼐 􏼑, i � 1, 2, . . . , 243, j � 1, 2, . . . , 5.

(11)

x
(3)
i,j in the above equation represents the j input data of

node i in Layer 3, which is equal to the output data of node j

in Layer 2 to which node i is connected.
(e main function of Layer 4 is fuzzy rule reasoning.

Among the 243 rules in Layer 3, rules with the same con-
clusion point to the same node in Layer 4 and perform the
fuzzy OR operation on input data pointing to the same node.
(e most common fuzzy OR operation is the bounded sum
or union. (is paper uses bounded sum operation. Since

there is only one output linguistic variable (i.e., score) in
Layer 5, and the linguistic variable contains three fuzzy sets
(i.e., low, medium, and high), there are three nodes in Layer
4.(e input and output of node i in Layer 4 can be expressed
as

I
(4)
i � f

(4)
i x

(4)
i,j􏼐 􏼑 � 􏽘

j∈Ci

x
(4)
i,j , i � 1, 2, 3,

O
(4)
i � g

(4)
i I

(4)
i􏼐 􏼑 � min 1, I

(4)
i􏼐 􏼑, i � 1, 2, 3.

(12)

Ci in the above formula represents the set of nodes in
Layer 3 connected with node i in Layer 4.

(ere is only one node in Layer 5, and its main function
is to perform the defuzzification operation to obtain the
scores of candidate networks. (e common defuzzification
calculation methods include the mean of maximum method
(MOM) and the center of area method (COA). (e
defuzzification method used in this paper is the COA, so the
input and output of the Layer 5 node can be, respectively,
expressed as

I
(5)
i � f

(5)
i x

(5)
i,j􏼐 􏼑 � 􏽘

j∈Ti

c
(5)
j σ(5)

j x
(5)
i,j , i � 1, O

(5)
i � g

(5)
i I

(5)
i􏼐 􏼑 �

I
(5)
i

􏽐j∈Ti
σ(5)

j x
(5)
i,j

�
􏽐j∈Ti

c
(5)
j σ(5)

j x
(5)
i,j

􏽐j∈Ti
σ(5)

j x
(5)
i,j

, i � 1. (13)

c
(5)
j and σ(5)

j in the above equation represent the mean
and the variance of the Gaussian membership function of
node j in Layer 5, respectively, and Ti in the above equation
represents the set of nodes in Layer 4 connected with node i

in Layer 5.

3.5. Output. In Section 3.4, the actual output score of each
network is obtained through calculation of the candidate
network score. In the output module, the actual output score
of the candidate network will be compared with the user’s
expected score of the network. (en, the errors will be
calculated between them and transmitted to the learning
module.

Assuming that the actual output score of a candidate
network i is yi and the user expected score for the network i

is ti, then the error between them is defined as

ei � ti − yi. (14)

(e main function of the learning module in Section 3.6
is to make the actual output score of a network closer to the
expected output score and to minimize the error function
based on ei by adjusting the parameters of the membership
function of the fuzzification and defuzzification steps in the
candidate network score calculationmodule. Common error
functions include the mean-square error (MSE) and the

cross entropy error (CEE). (e error function used in this
paper is the MSE; namely,

E �
1
2

􏽘

r

i�1
ti − yi( 􏼁

2
, (15)

in which r is the number of outputs, expressed as r � 1 in this
paper. After calculating the error value, the output module
transmits it to the learning module to adjust the parameters
in the calculation process of candidate networks.

3.6. Learning. (e main function of the learning module is
to minimize the value of equation (15) by adjusting the
values of c

(2)
i , σ(2)

i , c
(5)
j , and σ(5)

j of membership functions in
the fuzzification and defuzzification steps. In this paper, the
gradient descent method is used to solve the adjusted values
of c

(5)
i , σ(5)

i , c
(2)
i , and σ(2)

i . According to the gradient descent
method, assuming the parameter to be adjusted is ω, then it
is as follows:

Δω � −η
zE

zω
. (16)

η in equation (16) represents the learning rate. In order
to accelerate the convergence rate, this paper adopts a
variable step learning method based on the mixed mo-
mentum term with reference to literature [39] and changes
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the step size of the learning rate according to the increase of
iteration times as shown in the following equations:

ω(k + 1) � ω(k) + η[(1 − α)D(k) + αD(k − 1)], (17)

η � lg 1 +
1

β∗epoch
􏼠 􏼡. (18)

In the above equations, α is the momentum factor, and
0≤ α< 1. In this paper, the value of α is 0.5,
D(k) � −zE/zω(k) is the negative gradient at time k, and
D(k − 1) is the negative gradient at time k − 1. η is a function
of training times epoch, and the value of β in this paper is 3.

According to literature [35], the learning rules of the
parameters c

(5)
j and σ(5)

j of the Layer 5 membership function,
respectively, are

Δc(5)
j � η ti − yi( 􏼁

σ(5)
j x

(5)
i,j

􏽐j∈Ti
σ(5)

j x
(5)
i,j

,

Δσ(5)
j � η ti − yi( 􏼁

c
(5)
j x

(5)
i,j 􏽐j∈Ti

σ(5)
j x

(5)
i,j􏼐 􏼑 − 􏽐j∈Ti

c
(5)
j σ(5)

j x
(5)
i,j􏼐 􏼑x

(5)
i,j

􏽐j∈Ti
σ(5)

j x
(5)
i,j􏼐 􏼑

2 .

(19)

In addition, the learning rules of the parameters c
(2)
i and

σ(2)
i of the Layer 2 membership function, respectively, are

Δc(2)
i � −η

zE

zO
(2)
i

e
I

(2)

i

2 x
(2)
i,j − c

(2)
i􏼐 􏼑

σ(2)
i􏼐 􏼑

2 ,

Δσ(2)
i � −η

zE

zO
(2)
i

e
I

(2)

i

2 x
(2)
i,j − c

(2)
i􏼐 􏼑

2

σ(2)
i􏼐 􏼑

3 .

(20)

4. Simulation and Result Analysis

4.1. Setting of Experimental Parameters. (is paper uses
MATLAB as the simulation platform. (e attribute value
settings of candidate networks (Table 8) includes two parts:
the first part is the default value (i.e., the value before the
parentheses) and the second part is the dynamic value (i.e.,
the value range within the parentheses, which indicates the
lowest value and the highest value of an attribute when it
changes dynamically).

As described in Section 3.2 above, equations (1)–(5)
are used to calculate the utility values of decision pa-
rameters in the input module. In the simulation described
herein, the utility functions and parameter values of the
functions of decision parameters for different services are
set (Table 9).

In Section 3.3, the FAHP is used to calculate the weights
of the decision parameters. According to Tables 2–4, in the
simulation experiment described in this section, the weight
setting of each decision parameter in different services is
shown (Table 10). According to these weight values, equa-
tion (8) is used to generate fuzzy inference rules.

(e experiment in this paper is divided into three parts.
(e first part is to adjust the parameters of each membership
function according to the training data under the static
network attribute default value and compare the changes of
the membership functions of Layer 2 and Layer 5 before and
after learning and the changes of the candidate network
scores before and after learning. (e second part of the
experiment is conducted under dynamic network attribute
values (i.e., the numerical range in parentheses in Table 8). In
this part of the experiment, the network attribute values will
change 1,000 times within the range between their lowest
and highest values. (rough this experiment, the number of
times each candidate network is selected and the number of
network handover under different services by the algorithm
are evaluated.(e third part of the experiment is to compare
the proposed algorithm with other algorithms.

4.2. Analysis on Experiment Results

4.2.1. Adjustment of Membership Function Parameters.
(e main purpose of the experiment in this section is to
adjust the membership function parameters according to the
training samples, so that the candidate network scores
calculated after parameter adjustment are closer to the
candidate network scores in the training samples. In the
experiment described in this section, 5,000 sets of training
samples are inputted into the neural network structure
shown (Figure 4) under voice service, video service, and data
service, and obtain the changes of membership functions
under voice service, video service, and data service as shown
in Figures 6(a)–6(f), 7(a)–7(f ), and 8(a)–8(f) (the black solid
lines and red dashed lines in the figures, respectively, rep-
resent the curves before and after the adjustment of
membership functions).

As can be seen from Figures 6–8, the mean and the
variance of membership functions of each input item (i.e.,
bandwidth, delay, jitter, packet loss rate, and price) and
output item (i.e., candidate network scores) have changed.
In the learning process, if the mean value becomes greater, it
will shift the membership function curve to the right; on the
contrary, a lower mean value will shift the membership
function curve to the left. (e larger the variance, the larger
the width of the membership function curve. Conversely, the
smaller the variance, the smaller the width of the mem-
bership function curve. (e changes of the mean and var-
iance parameters change the position and shape of the
membership function curve, and the corresponding mem-
bership values of low, medium, and high fuzzy sets will also
change, thus affecting the score of each candidate network.
Taking Figure 6(a) as an example (i.e., the change in
bandwidth membership function under voice service), after
learning 5,000 sets of training samples, the membership
function curve of the decision parameter bandwidth shifts to
the right. Under the condition of inputting the same
bandwidth value, the membership value of the fuzzy set of
low will become larger, so the score of the output candidate
network will decrease.
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Table 8: Candidate network attribute value settings.

Bandwidth (kbps) Delay (ms) Jitter (ms) Loss (%) Price
UMTS 1100 (700–2000) 60 (30–200) 15 (10–30) 4 (2–10) 20 (5–40)
LTE 2500 (800–4000) 45 (20–150) 20 (15–40) 10 (6–20) 30 (10–45)
WLAN 7200 (1000–8000) 120 (80–300) 60 (30–80) 6 (4–15) 10 (0–35)
WiMAX 4300 (900–6000) 80 (50–250) 30 (20–50) 15 (8–20) 40 (15–50)

Table 9: Type of utility function and parameter value setting of function.

Bandwidth Delay Jitter Loss Price

Voice

Sigmoid function Sigmoid function Logarithm function Linear function Linear piecewise function
a � 1000 a � 50 d � −2.67 g � 1/30 i � 10

b � 10 b � 4 e � 0.75
h � 0 j � 70

f � 35

Video

Sigmoid function Sigmoid function Logarithm function Linear function Linear piecewise function
a � 2500 a � 100 d � −1.35 g � 1/30, i � 15

b � 5 b � 3.5 e � 0.5
h � 0 j � 80

f � 15

Data
Exponential function Sigmoid function Linear function Linear function Linear piecewise function

c � 0.0003 a � 150 g � 1/100 g � 1/30 i � 20
b � 2 h � 0 h � 0 j � 90

Table 10: Weight setting of decision parameters in different applications.

Bandwidth Delay Jitter Loss Price
Voice 0.1100 0.1350 0.2850 0.1600 0.3100
Video 0.1700 0.3450 0.2200 0.1450 0.1200
Data 0.3100 0.1350 0.0850 0.2850 0.1850
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Figure 6: Continued.
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4.2.2. Network Selection under Dynamic Attribute Value.
In the previous section, the membership function param-
eters are adjusted according to the training samples, so that
the calculated candidate network scores are closer to the
candidate network scores in the training samples. After
completing the training, this section will evaluate the average
network attribute values of the selected networks under
different services, the number of selections of each candidate
network, and the number of network handover under 1,000
dynamically changing network attribute values.

After dynamically changing network attribute values
1,000 times (Figures 9–13), the average network attribute

values of the optimal network are selected by voice service,
video service, and data service. As can be seen (Figure 9), the
average bandwidth value of the data service is the highest
due to its higher bandwidth demand, whereas the average
bandwidth value of the voice service is the lowest due to its
ability to meet its service requirements with a lower
bandwidth. As can be seen (Figures 10 and 11), the video
service is sensitive to delay, and its average delay value is
lower than that of voice service and data service. Meanwhile,
the voice service has higher requirements on jitter, and the
average packet loss value of the network selected by the voice
service is low (Figure 12). In addition, as can be seen
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Figure 6: Membership function changes of decision parameters before and after learning under voice service. (a) Change in bandwidth
membership function under voice service. (b) Change in delay membership function under voice service. (c) Change in jitter membership
function under voice service. (d) Change in loss membership function under voice service. (e) Change in price membership function under
voice service. (f ) Change in score membership function under voice service.
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Figure 7: Membership function changes of decision parameters before and after learning under video service. (a) Change in bandwidth
membership function under video service. (b) Change in delay membership function under video service. (c) Change in jitter membership
function under video service. (d) Change in loss membership function under video service. (e) Change in price membership function under
video service. (f ) Change in score membership function under video service.
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Figure 8: Membership function changes of decision parameters before and after learning under data service. (a) Change in bandwidth
membership function under data service. (b) Change in delay membership function under data service. (c) Change in jitter membership
function under data service. (d) Change in loss membership function under data service. (e) Change in price membership function under
data service. (f ) Change in score membership function under data service.
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(Figure 13 and Table 10), the average price of the network
selected by voice service is the lowest because the voice
service is heavily weighted by price. Clearly, the algorithm
proposed herein can select the most suitable network for
users according to the characteristics of each service
(Figures 9–13).

As can be seen (Figure 14), for the voice service, UMTS
and LTE are the networks most selected while WLAN and
WiMAX are selected less frequently. LTE is the network
most selected for the video service, and UMTS and WiMAX
are also selected quite a few times. For the data service,

WLAN is the networkmost selected, while LTE andWiMAX
are selected less frequently.

(e number of network handovers under different
services after 1,000 dynamic changes of network attributes is
shown (Figure 15). In this paper, the statistical method of
handover times is that if different networks are selected in
two consecutive changes of network attribute values, the
total number of handovers will increase by 1. As can be seen
(Figure 15), since the network most selected by the voice
service is UMTS, andWLAN, LTE, andWiMAX are selected
less often, the total number of voice service handovers is less
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than that of video service and data service. For the video
service, LTE is the most selected, but other three networks
(namely, UMTS, WLAN, and WiMAX) are also averagely
selected, resulting in a higher number of handovers. For the
data service, WLAN is the most selected; LTE and WiMAX
are selected less frequently, so there are a certain number of
handovers.

4.2.3. Comparison of Algorithms. To prove the superiority of
the algorithm proposed in this paper, this algorithm is
compared with three algorithms proposed in other papers

(namely, the utility and FAHP algorithm proposed in lit-
erature [31], the AHP and TOPSIS algorithm proposed in
literature [33], and the fuzzy logic and neural network al-
gorithm proposed in literature [35]). (ese three algorithms
are, respectively, called Algorithm 1, Algorithm 2, and Al-
gorithm 3. For the sake of fairness, the algorithm proposed
in this paper and the other three algorithms are all set to be
the same for the weights of decision parameters under each
service. In addition, in order to compare the influence of the
four algorithms on users in access selection, the word “gain”
is defined according to literature [11] as shown in the fol-
lowing equation:

G
s
ij � λij 􏽙

n

k�1
r
ωs

k

ik . (21)

Here, Gs
ij represents the gain obtained for a user whose

service type is swhen accessing network i through network j.
n is the number of decision parameters, for n � 5 in this
paper. rik is the utility value of the decision parameter k in
network i. ωs

k represents the weight of the decision pa-
rameter k when the service type is s (i.e., Table 10). In
addition, s in equation (21) is defined as follows:

λij �
α, i � j,

β, i≠ j.
􏼨 (22)

In equation (22), when a user selects the same network
twice consecutively, let α � 1, and when the user does not
select different networks consecutively, let β � 0.8.

For the voice service (Figure 16), the average user gain of
the algorithm in this paper is better than Algorithm 1 and
Algorithm 3, and all are better than Algorithm 2. For the
video service (Figure 17), the results of the proposed al-
gorithm and Algorithm 1 and Algorithm 3 are relatively
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Figure 14: Number of selections of candidate networks under
voice, video, and data services.
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close, and the performance is between Algorithm 1 and
Algorithm 3. (e results of these three algorithms, however,
are not much different. In addition, for the data service
(Figure 18), the proposed algorithm has the best average
gain, followed by Algorithm 1, Algorithm 3, and Algorithm
2. As can be seen (Figures 16–18), the average gain of the
algorithm proposed in this paper is better than that of the
other three algorithms due to its dynamically changing
network, which enables the algorithm in this paper to select
the most suitable network according to the characteristics of
user services and preferences.

According to the definition of “unnecessary handover”
given in literature [4], the total numbers of handovers and
unnecessary handovers of each algorithm are counted under
different services. For the voice service (Figure 19), the numbers

of handovers and unnecessary handovers of the algorithm in
this paper are less than those of Algorithm 1, Algorithm 2, and
Algorithm 3. For the video service (Figure 20), the numbers of
handovers and unnecessary handovers of Algorithm 3 are the
least, but the performances of the proposed algorithm and
Algorithm 1 and Algorithm 3 are not much different. In ad-
dition, for data services (Figure 21), the algorithm in this paper
has the least number of handovers and unnecessary handovers.
Followed by Algorithm 1, Algorithm 3, and Algorithm 2, it can
be seen that other algorithms cannot effectively control the
potential ping-pong effect under various services, which causes
user terminals to switch frequently between different networks.
(e algorithm proposed in this paper, however, can reduce the
number of user handovers between different networks and
ensure the QoS and better QoE.
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Figure 16: Average user gains under voice service.
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Figure 17: Average user gains under video service.
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Figure 18: Average user gains under data service.
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Figure 19: Number of handovers and unnecessary handovers under voice service.
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Figure 20: Number of handovers and unnecessary handovers under video service.
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5. Conclusions and Outlook

(is paper proposes a user-oriented intelligent access selec-
tion algorithm in HWNs. (e algorithm combines utility
theory, fuzzy logic, neural networks, and FAHP; designs
modules (input, user preference calculation, candidate net-
work score calculation, output, and learning); and introduces
the main functions and calculation steps of each module in
detail. (e simulation results show that the proposed algo-
rithm enables users to select the most suitable network
according to the service characteristics. (e next step of this
paper is to further consider factors such as handover
threshold between networks and user satisfaction, as well as
the application of the algorithm in the Internet of things [40],
in order to obtain better QoS support and QoE.
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