Supplementary Information

Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways

Naoko Iwata-Yoshikawa^{1,7}, Masatoshi Kakizaki^{2,7}, Nozomi Shiwa-Sudo¹, Takashi Okura², Maino Tahara², Shuetsu Fukushi³, Ken Maeda⁴, Miyuki Kawase², Hideki Asanuma⁵, Yuriko Tomita⁵, Ikuyo Takayama⁵, Shutoku Matsuyama⁵, Kazuya Shirato², Tadaki Suzuki¹, Noriyo Nagata^{1*}, Makoto Takeda^{2, 6*}

¹Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.
 ²Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.
 ³Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
 ⁴Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan.
 ⁵Center for Influenza and Respiratory Virus Research
 ⁶Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Japan

⁷These authors contributed equally to this work: Naoko Iwata-Yoshikawa, Masatoshi Kakizaki
*Address correspondence to Noriyo Nagata, nnagata@niid.go.jp and Makoto Takeda, mtakeda@m.u-tokyo.ac.jp

> Supplementary Table S1 Supplementary Figures S1–S4

Supplementary Table 1

Name	Simplified	WHO label	Panglin	GISAID accession no.
	name		lineage	
hCoV-19/Japan/TY-WK-521/2020	WK-521	none	А	EPI_ISL_408667
hCoV-19/Japan/QHN001/2020	QHN001	Alpha	B.1.1.7	EPI_ISL_804007
hCoV-19/Japan/QK002/2020	QK002	Alpha	B.1.1.7	EPI_ISL_768526
hCoV-19/Japan/QHN002/2020	QHN002	Alpha	B.1.1.7	EPI_ISL_804008
hCoV-19/Japan/TY8-612-P1/2021	TY8-612	Beta	B.1.351	EPI_ISL_1123289
hCoV-19/Japan/TY8-689-P0/2021	TY8-689	Beta	B.1.351	EPI_ISL_2158605
hCoV-19/Japan/TY7-501/2021	TY7-501	Gamma	P.1	EPI_ISL_833366
hCoV-19/Japan/TY7-503/2021	TY7-503	Gamma	P.1	EPI_ISL_877769
hCoV-19/Japan/TY8-886-P1/2021	TY8-886	Gamma	P.1	EPI_ISL_1358216
hCoV-19/Japan/TY11-927-P1/2021	TY11-927	Delta	AY.122	EPI_ISL_2158617
hCoV-19/Japan/TY11-330-P1/2021	TY11-330	Kappa	B.1.617.1	EPI_ISL_2158613
hCoV-19/Japan/TY38-873P0/2021	TY38-873	Omicron	BA.1	EPI_ISL_7418017
hCoV-19/Japan/NC928-2N/2021	NC928	Omicron	BA.1	EPI_ISL_7507055
hCoV-19/Japan/TY40-730-P0/2022	TY40-730	Omicron	BA.1	EPI_ISL_9595827
hCoV-19/Japan/TY40-733-P0/2022	TY40-733	Omicron	BA.1.1	EPI_ISL_9595828
hCoV-19/Japan/TY40-737-P0/2022	TY40-737	Omicron	BA.1.1	EPI_ISL_9595829
hCoV-19/Japan/TY40-779-P0/2022	TY40-779	Omicron	BA.1	EPI_ISL_9595836
hCoV-19/Japan/TY40-395-P0/2022	TY40-395	Omicron	BA.1.1	EPI_ISL_9596136
hCoV-19/Japan/TY40-412-P0/2022	TY40-412	Omicron	BA.1	EPI_ISL_9595821
hCoV-19/Japan/TY40-449-P0/2022	TY40-449	Omicron	BA.1	EPI_ISL_9595824
hCoV-19/Japan/TY40-467	TY40-467	Omicron	BA.1.1	Not registered
QHmusX (mouse passaged hCoV-	QHmusX	none	B.1	None (GenBank
19/Japan/QH-329-037/2020)				accession LC605054)

Supplementary Fig. 1. Spike protein cleavage and entry phenotype of SARS-CoV-2 in VeroE6/TMPRSS2 and Vero cells. (a, b) S proteins detected in the culture supernatant of infected VeroE6/TMPRSS2 cells. SDS-PAGE and western blot analysis. Data are representative of two independent experiments. (c) S proteins detected in the culture supernatant of infected Vero cells. SDS-PAGE and western blot analysis. Data are representative of two independent experiments. (d) S proteins detected in the infected VeroE6/TMPRSS2 cells. SDS-PAGE and western blot analysis. Data are representative of two independent experiments. (d) S proteins detected in the infected VeroE6/TMPRSS2 cells. SDS-PAGE and western blot analysis. Data are representative of two independent experiments. (e) Plaque formation on VeroE6/TMPRSS2 cells in the absence (not treated: NT) or in the presence of EST. The bar graph shows the ratio of plaque number in EST-treated cells to that in untreated cells (NT). Error bars indicate the standard deviations (SD) of triplicate wells. Mean values \pm SD are shown. (f) Plaque

formation on Vero cells. For infection, the same infectious titre of virus was used in the experiment with VeroE6/TMPRSS2 cells in Fig. 1d. The bar graph shows the ratio of plaque number in Vero cells to that in VeroE6/TMPRSS2 cells. Error bars indicate the standard deviations of quadruplicate wells. Mean values ± SD are shown, and significant differences were determined with Kruskal-Wallis test. Multiple comparisons between WK521 and other variants were adjusted with uncorrected Dunn's multiple comparison test, *P=0.0143 (vs Alpha), **P=0.0099 (vs Beta), **P=0.0052 (vs Delta), and ***P=0.0003 (vs Kappa). Alpha (QHN001), Alpha2 (QK002), Alpha3 (QHN002), Beta (TY8-612), Beta2 (TY8-689), Gamma (TY7-501), Gamma2 (TY7-503), Gamma3 (TY8-886), Delta (TY11-927), Kappa (TY11-330), Omicron (TY38-873), Omicron2 (TY40-412), Omicron3 (TY40-395), Omicron4 (TY40-449), Omicon5 (TY40-467), Omicron7 (TY40-733), Omicron8 (TY40-737), Omicron9 (TY40-779).

Supplementary Fig. 2. Experimental infection of TMPRSS2-knockout (KO) mice with influenza virus H5N1 and H7N9 subtype strains. C57BL/6 (WT) and TMPRSS2-KO mice were intranasally inoculated with 10⁴ PFU of H7N9 (Anhui1) or H5N1 (VN1194). (a) The body weights were measured daily (n = 6 per group, 3 males and 3 females). ****P < 0.0001 by two-way ANOVA followed by Bonferroni's multiple comparison test. Data are mean \pm SEM. (b) Bronchoalveolar lavage fluid at 4 dpi was used for viral titration (n = 6 per group, 3 males and 3 females). The detection limit was 10² PFU/mL of bronchoalveolar lavage fluid. **P = 0.0022 by two-tailed Mann–Whitney U test. Data are mean \pm SD.

AI

ð

Br

ν

Br

Br

R

Supplementary Fig. 3. Experimental infection of TMPRSS2-knockout (KO) mice with a mouse-adapted SARS-CoV-2 strain. C57BL/6 (WT) and TMPRSS2-KO mice were inoculated intranasally with 1.9×10^4 TCID₅₀ of strain QHmusX. (a left panel) Body weight curve during the observation period. Asterisks indicate statistically significant differences between mice (n = 8 (KO, 4 males and 4 females), n = 10 (WT, 5 males and 5 females); **P = 0.0069 and ***P = 0.0001 by two-way ANOVA followed by Bonferroni's multiple comparison test). Data are mean \pm SEM. (a middle panel) Serum neutralization titres (NT) against strain QHmusX at 9 days post-infection (p.i.). The dashed line indicates the limit of detection (< 2) (n = 8 (KO, 4 males and 4 females), n = 10 (WT, 5 males and 5 females); **P = 0.0053 by two-tailed Mann–Whitney U test). Data with a geometric mean (GMT) + 95% confidence interval, CI. (a right panel) Viral titres in lung homogenates at 6 h and 1 to 4 days p.i. (n = 4 per group, 2 males and 2 females). The detection limit was $10^{1.5}$ TCID₅₀/g of tissue. *P = 0.0203 and **P = 0.0072 by two-way ANOVA followed by Bonferroni's multiple comparison test. Data are mean \pm SD. (b) Histopathology of the lungs from WT and TMPRSS2-KO mice at 1, 3, 5, and 9 days p.i. (n = 4 per group, 2 males and 2 females). Immunohistochemical analysis using an anti-SARS-CoV-2 NP antibody (at 1 and 3 days p.i.). Red arrows indicate representative viral antigen-positive cells in alveoli. Haematoxylin and eosin staining at 5 and 9 days p.i. Br, bronchi; V, vein. Bars, 100 µm. (c) Cytokine and chemokine levels in the lungs of mice at different time points after inoculation (n = 4 per group, 2 males and 2 females). Samples were from the same experiment as those in C. *P = 0.0386 (TNF- α), 0.0176 (IP-10/CXCL10), 0.0174 (MCP-1/CCL2), 0.0283 (MIP-1 $\alpha/CCL3$), and 0.0494 (IL-12 (p40)), **P = 0.0076 (IP-10/CXCL10), 0.0061 (MIG/CXCL9, 2 dpi), 0.0051 (MIG/CXCL9, 3 dpi), 0.0035 (MCP-1/CCL2), 0.0019 (MIP-1a/CCL3), 0.0014 (IL-6), 0.0017 (KC/CXCL1), and 0.0011 (GM-CSF) by two-way ANOVA followed by Bonferroni's multiple comparison test. Data are mean \pm SEM. (c): Each dot represents data from an individual animal (n = 4).

Supplementary Fig. 4. Syncytium formation induced by TMPRSS2 expression.

Syncytium formation in HeLa cells expressing mouse and human TMPRSS2 (HeLa/mTMPRSS2 and HeLa/hTMPRSS2, respectively) and the parental HeLa cells. Cells were transfected with the Omicron S protein expression plasmid together with human ACE2-expression plasmid. At 2 days post-transfection, S protein was detected by an indirect immunofluorescent assay (red) and nuclei were detected by DAPI staining (blue). Scale bars indicate 100µm.