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ABSTRACT

Osteosarcoma, a primary malignant tumor of the skeleton, has a morbidity of 2.5 per 1 million people. The epiphysis 
of extremities is typically affected. Osteosarcoma has a high likelihood of early metastasis, rapid progression, and 
poor prognosis. The survival rate of patients with metastatic or recurrent osteosarcoma remains low; therefore, novel 
diagnostic and therapeutic methods are urgently needed. Exosomes, extracellular vesicles 30–150 nm in diameter, 
are secreted by various cells and are widely present in various body fluids. Exosomes are abundant in biologically 
active components, such as proteins, nucleic acids, and lipids. Exosomes participate in numerous physiological and 
pathological processes via intercellular substance exchange and signaling. This review presents the novel findings 
regarding exosomes in osteosarcoma diagnosis, prognosis, and therapeutics.
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1. INTRODUCTION

Osteosarcoma (OS) is a primary malignant bone tumor 
originating from primitive osteogenic mesenchymal 
cells in adolescents and young adults under the age 
of 20 years [1]. Although the quality of life of patients 
with OS has significantly improved over the past few 
decades, its etiology remains unclear. Studies aimed at 
determining causes of OS have typically focused on mul-
tiple factors, including genetics, epidemiology, and the 
environment [2]. Research has identified associations 
with secondary OS in patients with Paget disease, elec-
trical burns, trauma, exposure to beryllium, exposure 
to alkylating agents, FBJ virus, osteochondromatosis, 
enchondromatosis, fibrous dysplasia, orthopedic pros-
thetics, or bone infarction and infection. Additionally, 
OS has been reported to correlate with exposure to 
ionizing radiation, radium, and archaic contrast agents, 
such as thorotrast [3]. Furthermore, several genetic 
aberrations have been identified in cases of primary 
OS, including hereditary retinoblastoma, Li-Fraumeni 
syndrome, Rothmund-Thompson syndrome, Bloom 

syndrome, and Werner syndrome [4]. Radiographs of OS 
present osteogenic, osteolytic, or mixed bone destruc-
tion at the lesion. “Codman’s triangle” and sun-exposed 
periosteal reaction [5] are typical radiographic features. 
MRI accurately depicts OS on the basis of tumor cell dif-
ferentiation and proliferation [6]. Radionuclide scans 
can determine whether bone metastases occur in OS [7]. 
Frozen biopsies are used for rapid intraoperative diag-
nosis, and paraffin sections are used for obtaining accu-
rate histological findings postoperatively [8]. High levels 
of serum alkaline phosphatase and lactate dehydroge-
nase are predictive of poor prognosis [9]. Treatments 
for OS include neoadjuvant chemotherapy, surgical 
resection, chemotherapy, and interventional therapy 
[10]. In addition, cellular immunotherapy, gene ther-
apy, and stem cell therapy have made some progress 
in recent years [11]. However, these methods remain 
in experimental stages. Approximately 18% of patients 
present micrometastases at the time of diagnosis, and 
the 5-year survival rate remains poor for patients with 
metastasis and recurrence [12]. Treatment outcomes 
remain suboptimal, owing to the tendency of OS to 
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remain asymptomatic, and to show early onset metas-
tasis, and high malignancy. The 5-year survival rate of 
patients with OS without chemotherapy is below 30%. 
The leading cause of death is lung metastasis [13]. The 
2-year survival rate of patients with OS with pulmonary 
metastasis is less than 25%, and the survival period after 
treatment shows a plateau, thus making breakthrough 
efficacy with traditional treatment regimens challeng-
ing [14]. Therefore, the underlying mechanisms of OS 
development and metastasis must be determined to 
enable the discovery of novel markers for clinical detec-
tion and effective therapeutic targets.

Exosomes have been reported to be involved in reg-
ulating cellular behavior by transferring cargoes (pro-
teins, DNA, RNA, and lipids) intercellularly. Increasing 
evidence indicates that exosomes have high potential to 
promote OS progression and development; moreover, 
the therapeutic potential of exosomes in OS is receiv-
ing increasing attention. Exosomes are membranous 
vesicles 30–100 nm in diameter originating from late 
endosomes, which are formed by inward budding of 
the limited multivesicular body (MVB) membrane [15]. 
Exosomes were first identified as double-layered lipid 
structures containing no organelles in blood erythro-
cytes [16]. Exosomes contain various nucleic acids and 
evolutionarily conserved proteins [17], which transmit 
biological information through cellular communication 
for biological processes and disease progression [18]. In 
lung adenocarcinoma (LUAD), LINC00273 is induced by 
M2 macrophages and exosomal LINC00273 was trans-
ferred into LUAD cells to recruit NEDD4, thereby promot-
ing LATS2 ubiquitination, inhibiting the Hippo pathway 
and YAP-induced RBMX transcription, and ultimately 
resulting in LUAD malignancy [19]. Anlotinib-resistant 
non-small-cell lung cancer (NSCLC) cells promote the 
proliferation of parental NSCLC cells by transferring 
functional miR-136-5p from anlotinib-resistant NSCLC 
cells to parental NSCLC cells via exosomes. Exosomal 
miR-136-5p can lead to anlotinib resistance in NSCLC 
cells by targeting PPP2R2A and promoting activation 
of the AKT pathway [20]. Exosomes secreted by various 
cells in OS enable  intercellular communication of ncR-
NAs and protein components, thus effectively regulat-
ing the tumor microenvironment, and promoting prolif-
eration and metastasis. In addition, exosomes’ stability 
in the circulatory system supports their diagnostic and 
therapeutic potential. This article reviews the biological 
properties of exosomes and their roles in the diagnosis 
and treatment of OS.

2. EXOSOME FORMATION AND BIOLOGICAL 
CHARACTERISTICS

Extracellular vesicles (EVs) are universally found in cells, 
and carry proteins, genetic material, and metabolites 
[21]. On the basis of their size and release mechanism, 
EVs are classified into exosomes (30–150 nm in diame-
ter), microvesicles/extranuclear granulosomes (100–1000 

nm in diameter), and apoptotic vesicles (50–1500 nm in 
diameter) [22]. Exosome formation involves dual invag-
ination of the protoplasmic membrane and the forma-
tion of intracellular multivesicular bodies (MVBs), which 
contain intraluminal vesicles (ILVs) [23]. The endoplasmic 
reticulum also contributes to early endonucleosome for-
mation [24]. Invagination of late endosomal membranes 
results in the formation of ILVs within large MVBs, which 
fuse with lysosomes or autophagosomes, thereby lead-
ing to cargo degradation, or fuse with the plasma mem-
brane and release the contained ILVs as exosomes [25]. 
Exosomes are present in almost all body fluids, including 
plasma, urine, ascites, and breast milk [26].

2.1 Exosome formation
Exosome formation is activated by endosomal endo-
cytosis, wherein the endosomal limiting membrane 
 undergoes multiple deformations and invaginates, thus 
generating ILVs. The ILVs transform into MVBs with 
dynamic subcellular structures. MVBs are generated 
at the endosomal limiting membrane through either 
an endosomal sorting complex required for transport 
(ESCRT) mechanism or a non-ESCRT mechanism [27]. The 
ESCRT mechanism involves recognition of cytoplasmic 
protein complexes with ubiquitinated modified mem-
brane proteins. The ESCRT-0 complex plays a vital role 
in the generation of multivesicular bodies by binding 
and clustering ubiquitinated proteins. The ESCRT-I com-
plex recognizes and passes ESCRT-0 to ESCRT II. TSG101 
in ESCRT I identifies disulfide bonds and consequently 
induces endosomal membrane invagination; shearing of 
the bud neck via ESCRT III then leads to the formation 
of MVBs [28]. In the absence of ESCRT, MVB formation 
is initiated by the accessory protein ALG-2 interacting 
protein X (AIix), which directly binds the intracellular 
bridging protein syntenin and participates in exosome 
formation [29]. The abundant tetratransmembrane 
protein can facilitate the production of these ESCRT-
nondependent MVBs [30]. MVB fusion with lysosomes 
induces the degradation and recirculation of their 
cargo. Cholesterol abundance in MVBs plays an essen-
tial role in regulating their sorting: cholesterol-rich 
MVBs are targeted to the cell membrane for release as 
exosomes, whereas low-cholesterol MVBs are targeted 
for transport to lysosomes [31].

2.2 Exosome mechanisms in biological function
Exosome-mediated intercellular transmission relies 
on membrane receptors. Exosomes activate receptors 
on recipient cells, thereby activating the uptake of 
exosomes through cytokinesis [32]. Studies have focused 
on exploring the functions of cell-derived exosomes and 
the use of exosomes for disease treatment [33]. Target 
cell specificity may be determined by specific interactions 
between proteins enriched on the surfaces of exosomes 
and receptors on the membranes of recipient cells [34]. 
Known mediators include transmembrane tetraspanins, 
integrins, and extracellular matrix components [35].
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2.3 Exosomes’ potential in tumor diagnosis and 
treatment
Exosomes primarily regulate the exclusion of redundant 
and nonfunctional cellular components [36]. Exosomes 
are intercellular linkers that transport proteins, lipids, 
and nucleic acids to target cells in various biological 
processes, such as angiogenesis, antigen presentation, 
apoptosis, and inflammation [37]. The specific cell com-
ponents in the exosomes reflect cellular origin and 
physiological state, and show significant disease spec-
ificity, thus making them ideal biomarkers. Exosomes 
are involved in various cancer-associated processes, 
including proliferation, apoptosis, angiogenesis, and 
metastasis; consequently, they may serve as noninvasive 
biomarkers for cancer diagnosis [38, 39]. For example, 
miR-21, miR-222, and miR-124-3p in serum exosomes 
are detectable in early tumor progression after surgi-
cal treatment of patients with high-grade glioma [40]. 
Moreover, miR-21, miR-451, and miR-636 in urinary 
exosomes of patients with prostate cancer closely corre-
late with preoperative prostate-specific antigen levels; 
thus, urinary exosomal microRNAs (miRNAs) may poten-
tially serve as noninvasive markers to predict prostate 
cancer metastasis and prognosis [41]. Plasma exosomal 
miR-363-5p has shown high diagnostic performance in 
discriminating patients with LN (+) versus LN (-) breast 
cancer. Elevated miR-363-5p expression levels have been 
found to indicate lower overall survival [42]. The ther-
apeutic potential of exosomes is associated primarily 
with targeted drug delivery and biomedical regenera-
tion. Exosomes have great potential in treating diseases, 
owing to their nontumorigenic, bactericidal, and low 
immunogenicity characteristics [43]. Ligand enrichment 
on engineered exosomes can induce or inhibit signaling 
in receptor cells, or can target exosomes to specific cells 
[44]. Exosomes loaded with chemotherapeutic agents 
have shown promise for antineoplastic drugs delivery 
with low toxicity and high tolerance [45].

3. EXOSOMES IN OS PROGRESSION

Exosomes can transmit intercellular signals that 
regulate proliferation and metastasis. Exosomes 
promote tumor proliferation and metastasis by 
inducing  epithelial-mesenchymal transition, and accel-
erating tumor neovascularization and immunosuppres-
sion through regulating the microenvironment and 
transformation of cancer-associated fibroblasts [46, 47]. 
Exosomes have major roles in regulating proliferation, 
invasion metastasis, and OS angiogenesis, by partici-
pating in intercellular contacts and modulating cellular 
signaling.

3.1 Exosomes in OS proliferation
The potential to proliferate indefinitely is the fun-
damental feature of cancer cells [48]. OS cells express 
growth factor receptors and rarely show negative feed-
back regulation, thus resulting in continuous activation 

of signal stimulation, and unlimited cell division and 
proliferation [49]. Exosomes participate in various pro-
cesses in the proliferation of OS (Table 1). For example, 
miR-208a from bone marrow-derived mesenchymal 
stem cell (BMSC)-derived exosomes has been found 
to promote OS cell proliferation and inhibit apoptosis 
by suppressing PDCD4 expression, and activating the 
ERK1/2 and Hippo pathways. BMSC-derived exosomal 
miR-206 inhibits cell proliferation by targeting TRA2B 
[50]. In addition, BMSC-derived exosomes encapsulate 
PVT1 and translocate it to OS cells. PVT1 promotes 
tumor growth and metastasis by binding miR-183-5p, 
thus increasing ERG expression [51]. The MALAT1/miR-
143/NRSN2/Wnt/β-catenin axis is another crucial target 
through which BMSE-EVs promote proliferation [52]. 
ADSC exosomes deliver COLGALT2 to OS cells, thus 
leading to OS malignancy [53]. BMSC-derived exosomes 
promote OS proliferation and metastasis via the LCP1/
JAK2/STAT3 pathway. Moreover, targeting the miR-
135a-5p/LCP1 axis inhibits OS progression [54]. MG-63-
cell-derived exosomes promote the proliferation of OS 
and inhibit apoptosis. Hic-5 from MG-63-cell-derived 
exosomes interacts with Smad4 and regulates Wnt/β-
catenin signaling by decreasing TCF/LEF activity [55]. 
OS-cell-derived exosomal miR-1307 promotes OS cell 
proliferation by inhibiting AGAP1 expression; conse-
quently, the miR-1307-AGAP1 axis may serve as a poten-
tial therapeutic target for OS [56]. In patients with OS, 
exosomal miR-15a expression is diminished in plasma 
exosomes. Moreover, exosomal miR-15a has been found 
to inhibit the GATA2/MDM2 axis via the p53 signaling 
pathway, thereby inhibiting the proliferation and inva-
sion of OS cells in vitro [57].

3.2 Exosomes in OS metastasis
Epithelial-mesenchymal transition is a biological phe-
nomenon in which epithelial cells lose their epithelial 
properties and acquire a mesenchymal phenotype. 
In this process, epithelial features are diminished. 
Cells change from polygonal to spindle-shaped fibro-
blast-like morphology; show loss of cell polarity and 
decreased adhesion; and acquire invasion and metas-
tasis ability [58]. Exosomes are essential in the inva-
sive metastasis of OS (Table 1). For example, miR-143 
is transferred to OS cells via exosomes and signifi-
cantly inhibits tumor invasiveness [59]. Highly invasive 
OS cells secrete exosomal miR-675, which suppresses 
CALN1 expression in recipient cells. The expression of 
exosomal miR-675 in the serum in patients with OS 
is strongly correlated with prognosis [60]. Mazumdar 
et al. have found that both highly metastatic 143-B 
cells and weakly metastatic SAOS-2-cell-derived EVs 
induce the recruitment of bone marrow cells to the 
lungs, and that components in exosomes may inhibit 
remote metastasis of OS [61]. In OS, the Rab22a-NeoF1 
fusion protein is assimilated into exosomes. The exo-
somal Rab22a-NeoF1 fusion protein promotes for-
mation of the premetastatic lung niche by recruiting 
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Table 1 | Biological functions of exosomes in the proliferation and metastasis of osteosarcoma.

Exosomal 
target

 Parent cell  Target cell  Mechanism  Biological function  Ref.

Proliferation and metastasis

 miR-208  BMSCs  Osteosarcoma cells  PDCD4/ERK1/2  Increase the viability, migration, and 
clonogenicity of OS

 [95]

 miR-206  BMSCs  Osteosarcoma cells  TRA2B  Promote OS cell proliferation, migration, 
and invasion, and induce apoptosis

 [50]

 MALAT1  BMSCs  Osteosarcoma cells  MALAT1/miR-143/
NRSN2/Wnt/β-catenin

 Promote OS cell proliferation, migration, 
and invasion

 [52]

 PVT1  BMSCs  Osteosarcoma cells  PVT1/miR-183-5p/ERG Promote OS growth and metastasis  [51]

 ATG5  BMSCs  Osteosarcoma cells  /  Promote OS cell proliferation, migration, 
and invasion

 [96]

 COLGALT2  ADSCs  Osteosarcoma cells  /  Promote OS cell proliferation, migration, 
and invasion

 [97]

 Linc00852  Osteosarcoma 
cells with high 
AXL expression

 Osteosarcoma 
cells with low AXL 
expression

 Linc00852/miR-7-5p/
AXL

 Promote cell proliferation, migration, and 
invasion

 [98]

 LCP1  BMSCs  Osteosarcoma cells  miR-135a-5p/LCP1/
JAK2/STAT3

 Induce the proliferation and metastasis 
of OS cells

 [54]

 Hic-5  MG-63  MG-63 and HOS 
cells

 Hic-5/smad4-TCF/LEF 
-Wnt/β-catenin

 Promote cell proliferation and inhibit cell 
apoptosis

 [55]

 miR-1307  Osteosarcoma 
cells

 Osteosarcoma cells  AGAP1  Promote OS cell proliferation, migration, 
and invasion

 [56]

 miR-15a  Serum-derived 
exosomes

 Osteosarcoma cells  miR-15a/p5/GATA2/
MDM2

 Promote OS cell proliferation and 
invasion

 [99]

 miR-769-5p  BMSCs  Clinical specimens  DUSP16/JNK/p38 
MAPK

 Promote OS proliferation and metastasis  [100]

 SHNG17  CAFs\NFs  HOS cells  miR-2861  Promote OS proliferation and metastasis  [101]

 miR-143  /  Osteosarcoma cells  /  Inhibit cell invasion  [59]

 miR-675  Osteosarcoma 
cells

 hFOB1.19  CALN1  Promote cell migration and invasion  [25]

 Rab22a-NeoF1 
/PYK2

 PYK2-positive 
osteosarcoma 
cells

 Macrophages  RhoA  Facilitate pre-metastatic niche formation  [62]

 miR-1307  Osteosarcoma 
cells

 Osteosarcoma cells  AGAP1  Promote cell proliferation, migration, and 
invasion

 [62]

 LCP1  BMSCs  Osteosarcoma cells  miR-135a-5p/Nrdp1/
JAK2/STAT3

 Promote OS proliferation and metastasis  [54]

 LIFR-AS1  Macrophages  Osteosarcoma cells  miR-29a/NFIA  Promote cell proliferation and invasion, 
and restrain cell apoptosis

 [102]

Angiogenesis

 miR-25-3p  /  Osteosarcoma cells  DKK3  Promote capillary formation and the 
invasion of vascular endothelial cells

 [42]

 EWSAT1  /  Osteosarcoma cells  /  Increase sensitivity/reactivity of vascular 
endothelial cells

 [103]

 OIP5-AS1  Osteosarcoma 
cells

 Osteosarcoma cells  miR-153/ATG5  Increase angiogenesis  [66]
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bone-marrow-derived macrophages [62]. OS-cell-
derived exosomal miR-1307 promotes proliferation, 
migration, and invasion by regulating AGAP1 expres-
sion, thus indicating the inhibitory roles of miR-1307 in 
the malignant progression of OS [56].

3.3 Exosomes in OS angiogenesis
Proangiogenic and antiangiogenic factors have major 
roles in the formation of blood vessels [63]. Tumor 
cells require nutrient supply and metabolite excre-
tion for survival and development [64]. Tumor-derived 
exosomes are critical mechanisms that promote angio-
genesis (Table 1). In OS tissues, an increase in miR-25-3p 
promotes tumor proliferation, metastasis, and drug 
resistance by inhibiting DKK3. EWSAT1 promotes OS 
angiogenesis by transfering it into the exosome-driven 
vascular endothelial cell, thus increasing the secretion 
and the sensitivity/responsiveness to angiogenic factors 
[65]. OS cells with high exosome abundance regulate OS 
tumor angiogenesis and autophagy through miR-153 
and ATG5, by secreting exosomal lnc-OIP5-AS1, which is 
taken up by adjacent OS cells [66].

3.4 Exosomes in OS the immune response
Exosomes participate in the immune response and 
regulate immunocompetence [67]. Tumor-cell-derived 
exosomes carry tumor-associated antigens and stim-
ulate immune cells to generate antitumor immune 
responses. However, they can interfere with immune 
recognition, and inhibit T cells and immune-associated 
cells, thereby accelerating tumor cell immune escape 
and metastasis [17]. Immune cells derived from the 
tumor microenvironment regulate proliferation and 
metastasis through exosomes [68]. Exosomes also have 
critical roles in the tumor immune microenvironment 
of OS (Table 1). Exosomal miR-1228 secreted by can-
cer-associated fibroblasts (CAFs) promotes OS invasion 
and migration by targeting SCAI. This miRNA may 
serve as a potential therapeutic target for OS [42]. 
Exosomes enhance tube formation in endothelial cells 

and increase the expression of angiogenic markers. 
Next-generation sequencing has revealed that specific 
miRNAs, such as miR-148a and miR-21-5p, have essen-
tial roles in the tumor microenvironment [69]. The 
exosomes of metastatic OS cells secrete TGFβ2, which 
is taken up by tumor-associated macrophages, thus 
promoting the M2 phenotype and contributing to 
immunosuppression and tumorigenesis [70]. OS-cell-
derived EVs promote myofibroblast/cancer- associated 
fibroblast differentiation, smooth muscle actin expres-
sion, and fibronectin production. In addition, they 
significantly promote the invasiveness of human 
lung fibroblasts [71]. OS-derived exosomes induce 
M2 polarization of macrophages via Tim-3, thereby 
promoting OS invasion and metastasis [72]. Exosomal 
Col6a1 converts normal fibroblasts into CAFs through 
the secretion of proinflammatory cytokines. Activated 
CAFs promote OS cell invasion and migration by medi-
ating the TGF-β/COL6A1 signaling pathway [73]. The 
macrophage-derived exosomal long noncoding RNA 
LIFR-AS1 promotes the malignant progression of OS 
by binding miR-29a and consequently increasing NFIA 
expression [74].

4. APPLICATION POTENTIAL OF EXOSOMES IN OS

Exosomes contain various biologically active molecules 
in circulation and mediate remote intercellular inter-
action [75]. Tumor-derived exosomes contain multiple 
proteins, genetic material, lipids, and other molecules 
that reflect tumor physiological and pathological status 
[76]. The specific lipid bilayer structure of exosomes pro-
tects RNA molecules from degradation [77]. Therefore, 
detecting tumor exosomes provides major advantages 
in liquid biopsy. Exosomes have good application poten-
tial for early diagnosis, assessment of treatment efficacy, 
and monitoring of prognosis in various diseases. They 
have become new and ideal biomarkers, and may pos-
sibly serve as targeted drug carriers in clinical diagnosis 
and treatment.

Exosomal 
target

 Parent cell  Target cell  Mechanism  Biological function  Ref.

 miR-199a-5p  Osteosarcoma 
cells

 HUVECs  VEGFA  Inhibit the growth and angiogenesis of 
osteosarcoma

 [104]

 miR-148a-3p 
and miR-21-5p

 Osteosarcoma 
cells

 Raw264.7 and 
HUVECs

 /  Influence osteoclastogenesis, bone 
resorption, and tumor angiogenesis

 [69]

Immunosuppressive

 miR-148a-3p 
and miR-21-5p

 Osteosarcoma 
cells

 Raw264.7 and 
HUVECs

 /  Influence osteoclastogenesis, bone 
resorption, and tumor angiogenesis

 [69]

 Tim-3  MG63  Macrophages  /  Induce M2 type differentiation of 
macrophages

 [72]

Table 1 | Continued
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4.1 Potential of exosomes in OS diagnosis
Exosomes are essential in the early diagnosis and 
prognostic assessment of OS. Eight novel miRNAs 
have been identified by next-generation sequencing 
in three distinct OS cell lines, five of which are present 
in the circulating exosomes of patients with OS [57]. 
EV-miR-101 expression levels are significantly lower in 
OS patients. In plasma from patients with OS metasta-
sis, EV-miR-101 is lower than that in patients without 
metastasis and thus may serve as a potential diagnos-
tic marker for OS [78]. Ye et al. have revealed that 
the expression levels of miR-92a-3p, miR-130a-3p, 
miR-195-3p, miR-335-5p, and let-7i-3p are signifi-
cantly upregulated in the exosomes of patients with 
OS and therefore may serve as potential diagnostic 
markers [79]. HSATI, HSATII, LINE1-P1, and Charlie 3 
are overexpressed at the RNA level in serum exosomes 
from patients with OS and thus may be potential OS 
biomarkers [80]. Exosome-derived SENP1 in patients 
with OS is closely correlated with tumor size, location, 
necrosis rate, lung metastasis, and surgical staging. 
Higher plasma exosome-derived SENP1 levels indi-
cate poorer disease-free survival and overall survival 
[81]. Seven exosomal proteins have been  identified 
as potential biomarkers of OS lung metastasis [82]. 
In addition, SERS and MALDI-TOF MS exosomes have 

shown great potential in the rapid diagnosis of 
OS [83].

4.2 Potential of exosomes in OS treatment
Exosomes have great potential in the treatment of 
OS. Multidrug-resistant OS cells secrete exosomes con-
taining MDR-1 messenger RNA and P-glycoprotein, 
thus promoting doxorubicin resistance in sensitive 
cells. Exosomes targeting drug-resistant OS cells may 
inhibit the malignant progression of OS [84]. Compared 
with exosomes from normal osteoblasts, OS-derived 
exosomes contain immunomodulatory substances that 
significantly decrease T cell proliferation rates and 
promote T regulatory phenotypes, thereby facilitating 
OS progression [10, 85]. The miRNAs miR-135b, miR-
148a, miR-27a, and miR-9 are highly expressed in the 
serum exosomes in patients with OS and may poten-
tially be reliable biomarkers of chemotherapy sensi-
tivity [16, 86]. Exosome-loaded doxorubicin has been 
found to enhance cellular uptake efficiency and anti-
tumor effects in the OS MG63 cell line, while showing 
low cytotoxicity, thus potentially providing a good tar-
geting regimen for OS [87]. OS cells promote OS lung 
metastasis by releasing exosomes containing PD-L1 and 
N-calcineurin. In addition, the expression levels of exo-
somal PD-L1 and N-calcineurin in the serum in patients 

Figure 1 | The interaction of OS and related cells through exosomes.
Mesenchymal stem cells, CAFs, and CSCs secrete exosomes containing specific proteins and genetic material, which promote the prolifer-
ation, metastasis, and invasion of OS. OS cells generate exosomes targeting specific cells that promote angiogenesis, osteoclastogenesis, 
and immunomodulation of the target cells. OS promotes drug resistance, proliferation, and metastasis through exosome secretion. (Created  
in Biorender.com.)
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with OS have been found to predict pulmonary metas-
tasis progression [88]. Exosomes from cisplatin- resistant 
OS cells decrease the expression of multidrug resistance- 
associated protein 1 and P-glycoprotein in MG63 and 
U2OS cells; increase chemosensitivity to cisplatin; and 
inhibit apoptosis through exosomal-hsa_circ_103801 
[89]. Moreover, exosomes from drug- resistant HMPOS-
2.5R cell lines have been found to transfer drug resist-
ance to drug-sensitive HMPOS cells, thereby decreasing 
the therapeutic sensitivity of OS [90].

5. CONCLUSIONS

Early diagnosis is critical for promoting good progno-
sis and survival in tumor patients [91]. Exosomes are 
stable and widespread in all tissues, organs, and body 
fluids, and are released by all types of cells (Figure 1) 
[92]. Tumor exosomes regulate tumor progression, 
angiogenesis, metastasis, and immune escape by inter-
acting with other cells in the tumor microenvironment 
[93]. Standard methods for liquid biopsy are needed 
to isolate exosomes quickly, easily, and specifically. 
Exosomes are a promising biomarker for the diagnosis 
of OS, predicting prognosis, and monitoring treatment 
response in real time. Therefore, large multicenter 
studies are needed to develop the validity of liquid 
biopsies. For study of biological functions, whether 
exosomes have similar regulatory functions in vivo 
and in vitro is impossible to determine. For therapeu-
tic purposes, exosome-derived cells should be care-
fully selected to ensure the safety of the treatment. 
Erythrocytes are the most promising exosome-produc-
ing cells, because they are readily available in blood 
banks, do not contain nuclei, and lack genetic mate-
rial. Beyond their potential as biomarkers, exosomes 
may support new research directions in the precision 
treatment of tumors [87]. To improve the effectiveness 
of antitumor drug therapy, development of drug-load-
ing systems remains a key challenges. As natural ther-
apeutic carriers, exosomes contain bioactive molecules 
and can avoid immune rejection [94]; in addition they 
enable exogenous drugs to maintain stability in vivo. 
These advantages make exosomes an ideal loading sys-
tem providing a new paradigm for drug delivery, and 
are expected to be an important tool for the devel-
opment of precision medicine for tumors. Han et al. 
have constructed fusion gene iRGD-Lamp2b-modified 
mesenchymal stem cells to isolate and purify exosomes 
and loaded anti-miRNA-221 oligonucleotides into 
exosomes. AMO-loaded exosomes have been found to 
effectively inhibit the proliferation and clonal forma-
tion of colon cancer cells in vitro [51].

This review discussed the biological functions of 
exosomes in the progression of OS and clinical appli-
cations. Exosomes from OS promote malignant pro-
gression by regulating tumor metastasis, angiogenesis, 
tumor immunity, and drug resistance. Exosomes there-
fore provide new potential therapeutic targets.
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