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ABSTRACT

Model predictive control (MPC) has emerged as a predominant method in the realm of control systems; yet, it faces distinct challenges. First, MPC 
often hinges on the availability of a precise and accurate system model, where even minor deviations can drastically affect the control performance. 
Second, it entails a high computational load due to the need to solve complex optimization problems in real time. This study introduces an innovative 
method that harnesses the probabilistic nature of Gaussian processes (GPs), offering a solution that is robust, adaptive, and computationally efficient 
for optimal control. Our methodology commences with the collection of data to learn optimal control policies. We then proceed with offline training 
of GPs on these data, which enables these processes to accurately grasp system dynamics, establish input–output relationships, and, crucially, identify 
uncertainties, thereby informing the MPC framework. Utilizing the mean and uncertainty estimates derived from GPs, we have crafted a controller 
that is capable of adapting to system deviations and maintaining consistent performance, even in the face of unforeseen disturbances or model inaccu-
racies. The convergence of the closed-loop system is assured through the application of the Lyapunov stability theorem. In our numerical experiments, 
the exemplary performance of our approach is demonstrated, notably in its capacity to adeptly handle the complexities of dynamic systems, even with 
limited training data, underlining a significant leap forward in MPC strategies.
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INTRODUCTION

Rehabilitation robots represent a significant advancement 
in medical technology, offering novel solutions in physical 
therapy and patient care (Tejima, 2001; Qian and Bi, 2015; 
Alotaibi and Alsubaie, 2023; Alsubaie and Alotaibi, 2023; 
Luo et al., 2023). These sophisticated machines are designed 
to assist patients in recovering motor functions lost due to 
injuries, strokes, or chronic illnesses. Their significance lies 
in their ability to provide consistent, precise, and person-
alized therapy sessions, which can lead to better recovery 
outcomes compared to traditional therapy methods (Yakub 
et al., 2014; Yu et al., 2015; Gassert and Dietz, 2018). The 
adaptive nature of these robots allows them to cater to the 
unique needs and progress of each patient, making them an 
invaluable tool in rehabilitative medicine. Moreover, they 
offer the advantage of data collection and analysis, enabling 
therapists to make informed decisions about the course of 
treatment. The psychological benefits, such as increased 
patient engagement and motivation, are also notewor-
thy. Rehabilitation robots can make therapy sessions more 

engaging and enjoyable, leading to improved adherence to 
therapy regimens and better outcomes (Moulaei et al., 2023; 
Su et al., 2023). In essence, rehabilitation robots are trans-
forming the landscape of physical therapy by offering a pre-
cise, patient-centric approach to rehabilitation (Han et  al., 
2023; Su et al., 2023).

Controlling rehabilitation robots effectively is crucial for 
their success in patient therapy (Ahmed et al., 2019; Li et al., 
2023). Model predictive control (MPC) emerges as a prom-
ising candidate due to its forward-looking nature and abil-
ity to handle multivariable systems with constraints (Drgoňa 
et al., 2020; Jahanshahi et al., 2021; Wang et al., 2022). MPC 
works by continuously solving an optimization problem that 
predicts future outputs and optimizes control inputs based on 
a model of the system. This predictive capability allows MPC 
to make informed decisions about the optimal control actions 
required to achieve desired outcomes (Karamanakos and 
Geyer, 2019). The precision and adaptability of MPC are par-
ticularly beneficial in scenarios where the robot must respond 
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to varying degrees of patient effort, resistance, or fatigue. 
Moreover, MPC’s capability to handle constraints is crucial 
in ensuring that the robot operates within safety limits while 
achieving therapeutic objectives (Rosolia and Ames, 2020; 
Mariano-Hernández et  al., 2021). Thus, MPC’s predictive 
capabilities, combined with its ability to handle multivaria-
ble systems and constraints, make it an ideal control strategy 
for rehabilitation robots, offering a sophisticated and nuanced 
approach to robotic control (Holkar and Waghmare, 2010).

Despite its advantages, MPC faces significant challenges 
in the context of rehabilitation robots. The primary issue is 
the computational intensity of MPC, especially when solving 
complex optimization problems in real time (Karamanakos 
et al., 2020; Garcia-Torres et al., 2021). Additionally, MPC 
requires an accurate model of the system it controls. In reha-
bilitation robotics, where the robot interacts with humans 
whose intentions and responses can be unpredictable, cre-
ating an accurate model is exceptionally challenging (Zhan 
and Chong, 2021). This unpredictability often leads to sub-
optimal control performance, as MPC struggles to adapt to 
the variability and complexity inherent in human–robot inter-
actions. The need for real-time responses and the difficulty 
in accurately modeling human behavior are major obstacles 
in effectively implementing MPC in rehabilitation robotics, 
underscoring the need for innovative solutions to enhance its 
adaptability and efficiency (Xi et  al., 2013; Hewing et  al., 
2020; Schwenzer et al., 2021).

To address these challenges, recent advancements in 
machine learning offer promising solutions. Gaussian pro-
cesses (GPs) stand out as a potential game-changer. GPs are 
capable of providing reliable predictions of uncertainties and 
require fewer training samples, making them well-suited for 
dynamic and uncertain environments like those encountered 
in rehabilitation robotics (Wang et al., 2005; Zhao et al., 2022; 
Sauer et al., 2023). Despite their potential, the integration of 
GPs with MPC in rehabilitation robotics remains underex-
plored in the literature. This presents a unique opportunity 
to enhance the performance of MPC, making it more adapt-
able, efficient, and effective in managing the complexities 
of human–robot interactions in rehabilitation settings. The 
application of GPs in this context could lead to significant 
improvements in the control and effectiveness of rehabilita-
tion robots, offering a more responsive and patient-tailored 
approach to therapy.

Motivated by the limitations inherent in traditional MPC 
for rehabilitation robotics, our study introduces a novel krig-
ing-based MPC approach. Utilizing GPs—a core element of 
kriging—this methodology proficiently models the uncertain 
dynamics of rehabilitation robots. It adeptly captures their 
stochastic nature, enabling more precise predictions of future 
states, which are vital for the exacting control requirements 
of rehabilitation scenarios. By integrating this predictive 
model within the MPC framework, our approach addresses 
the inherent uncertainties and nonlinearities in rehabili-
tation robotics, surpassing conventional MPC methods. 
Additionally, it significantly reduces the computational load, 
a common challenge in traditional MPC. This is achieved by 
leveraging GPs to efficiently approximate complex dynam-
ics without necessitating intensive real-time computations. 
This computational efficiency is particularly beneficial in the 

context of rehabilitation, where rapid response and adapt-
ability are essential. Overall, our method not only improves 
control precision but also offers a more computationally via-
ble solution, rendering it highly suitable for real-world reha-
bilitation robotics applications.

The study is organized as follows: the Dynamic of 2-DOF 
Knee Rehabilitation Robot section provides a detailed 
description of the dynamical model for a two degrees of 
freedom (2-DOF) knee rehabilitation robot, laying the foun-
dational understanding of the system. The nonlinear model 
predictive control (NMPC) section covers the NMPC tai-
lored for rehabilitation. The heart of the study, the Proposed 
Learning-based Control Technique section, introduces our 
proposed learning-based control technique, detailing its 
guaranteed convergence and advantages. The Simulation 
Results section presents the results of testing the proposed 
algorithm. Finally, the Conclusion section concludes the 
study, summarizing the key findings and suggesting direc-
tions for future research.

DYNAMIC OF 2-DOF KNEE 
REHABILITATION ROBOT

We focus on a knee rehabilitation robotic system with 2-DOF, 
as depicted in Figure 1. This configuration effectively mod-
els the biomechanical dynamics crucial for knee rehabili-
tation exercises. The system is constructed with two main 
links, each exhibiting its own degree of freedom, identified 
as q

1
 for the upper link and q

2
 for the lower link. Associated 

with these links are distinct masses and lengths, marked as 
m

1
, l

1
 for the first link and m

2
, l

2
 for the second. Springs are 

integrated at the joints, introducing an aspect of flexibility, 
likely intended to mimic the natural elasticity inherent in a 
human knee. The coordinate points x

1
, y

1
 and x

2
, y

2
 serve to 

pinpoint specific locations or reference points on each link.
The kinetic energy of the 2-DOF knee rehabilitation robot 

can be mathematically expressed using the principles of 
classical mechanics. This formulation takes into account the 
movement and dynamics of both links in the robot. Each link 
contributes to the overall kinetic energy of the system based 

Figure 1:  Illustration of a 2-DOF knee rehabilitation robot. 
Springs are modeled at each joint, with q1 and q2 indicating 
the reference coordinates for kinematic analysis purposes. 
Abbreviation: 2-DOF, two degrees of freedom.
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on its mass, length, and velocity. The kinetic energy equation 
would typically incorporate terms representing the rotational 
and translational kinetic energies of each link, factoring in 
their respective degrees of freedom, masses, and velocities 
which is given as follows:
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2 2 2 ,
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where in our mathematical representation, we define q
c
 as 

the sum of these coordinates, specifically, q
c
 = q

1
 +q

2
. The 

term lc
i
 denotes the distance from joint i − 1 to the center of 

mass of the ith link, where i can be either 1 or 2. I
i
 represents 

the moment of inertia for the ith link, calculated about an 
axis that is orthogonal to the plane of the diagram and passes 
through the link’s center of mass. The potential energy of 
this system is formulated based on these parameters and is 
expressed as follows:

	
1 c2 1 2 1 1 c2 sin ( [  sin ( )   ( )].)p cV m gL q m g L q L sin q� � � 	 (2)

By employing Lagrange’s equation, we can derive the 
dynamic equations that govern the system as follows:

	     ( ).TI q C q G J f t�� � � �

	 (3)

In this context, the inertia matrix, represented by I (), 
is a symmetric and positive definite matrix with dimensions 
n × n. Additionally, ),(dC ψ ψ  captures the combined effects 
of Coriolis and Centripetal forces acting on the system. The 
gravitational forces exerted on the system are represented by 
G (). The Jacobian matrix, denoted as JT (), is assumed 
to be nonsingular. The force vector, which is subject to con-
straints, is indicated by f(t), and the input torque applied to 
the system is denoted by (t). By applying Lagrange’s equa-
tion, the individual components that make up this motion 
equation [as outlined in Equation (3)] are obtained as follows:
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The force vector and Jacobian matrix within the system 
are characterized in the following manner:
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In order to transform the motion equation of the 2-DOF 
multi-input multi-output rehabilitation robot into a state 

space representation, we define z
1
 as the vector [q

1
, q

2
]T and 

z
2
 as [q

1
, q

2
]T. With these definitions, the dynamic behavior 

of the robot can be expressed as follows:
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Based on Equations (3)–(5), the subsequent derivations 
can be made:

	 1
2 ( ) .T

dp I C z G J f�� � � � 	 (7)

The equation outlined above represents the state space of 
the system, a model where each component might encounter 
uncertainties. This aspect is particularly pertinent given the 
robot’s interaction with patients, where the forces and uncer-
tainties involved can vary significantly from one individual 
to another. Relying exclusively on these dynamic motion 
equations for designing controllers in rehabilitation robots 
might prove impractical in real-world scenarios. At best, 
the outcomes could be less than ideal, owing to the inherent 
uncertainties of the system.

NONLINEAR MODEL PREDICTIVE 
CONTROL

NMPC is particularly adept at handling the complex and 
dynamic environments in which modern robots operate, 
offering an efficient control strategy compared to linear 
MPC. The cost function for the MPC, related to the state 
space model outlined in Equation (6), is established in the 
following manner:

	
1

0

( ( ), ( )) ( ( )).
N

N
k
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The cost function includes the stage cost, symbolized 
by Q (z(k), (k), and a terminal cost component, T (z(N)), 
which is concerned with the cost related to the final state. 
The cost function spans a prediction horizon N, covering the 
control inputs  (0, 1, …, N–1), and state variables z (0, 1, 
…, N). While Equation (8) presents the system in a general 
format, the controller in this study is tailored specifically for 
affine systems. This method is focused on minimizing the 
cost function [Equation (8)] in accordance with the baseline 
model [Equation (6)] as follows:

	

,

0

,

(

(

( )

.

, ) argmin ,

( 1) ( ( )) ( )) ( )

Z(0) .

.

o o
N

z

o o

z J z

t Z ks h Z k w Z k k

z

�
� �

�

�

� � �
�

	 (9)

where Z(0) = z
0
 denotes the initial state, vector Z = [z

1
, 

z
2
]T represents the state space of the system, and h and w 

denote the discretized vectors corresponding to the state 
space model of the system. The augmented cost function, 
represented by J

N
, extends the original cost function outlined 

in Equation (8) to encompass both the constraints and the 
associated Lagrange multipliers. This expanded cost func-
tion is derived by integrating the Hamiltonian function over 



4� A. Alotaibi and H. Alsubaie: Kriging-based MPC for Lower-limb Rehabilitation Robots

Journal of Disability Research  2024

the prediction horizon, denoted as N. Consequently, the aug-
mented cost function is articulated as follows:

	
]

( 1)( ) [( ( ),  ( )) ( ( ))

 ( ( )) ( )

TC k Q Z k k h Z k

w Z

k

k k

� �
�

�
�

��
� (10)

	
1

0

( 1) ( 1)) ( ( ) ,( ( ) )
N

T
N

k

J ZC k k Z k T N�
�

�

� �� �� � �

In this setting,  (k + 1) signifies the Lagrange multiplier 
corresponding to the dynamics in the baseline model detailed 
in Equation (6). When the NMPC problem, as outlined in 
Equation (9), is resolved, it yields the optimal trajectories 
for the baseline, indicated as Zo (k) and  (k). The process of 
optimization involves the application of the Karush–Kuhn–
Tucker (KKT) conditions, which are crucial for determin-
ing the necessary conditions for optimality. This application 
ensures the effective minimization of the augmented cost 
function shown in Equation (10). The expressions defining 
these conditions of optimality are as follows:

	 0, 0, 1, , 1,( )kC k N� � � � � � (11a)
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By employing the KKT conditions and using the Lagrange 
multipliers  (k + 1), the optimal baseline solutions Z (k) and 
 (k) can be calculated in real time. Considering the KKT 
conditions, the relevant expressions are as follows:
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Taking into account Equations (11) and (12), the calcu-
lation of the Lagrange multipliers (k + 1) can be accom-
plished as follows:

	 ( ) ( ) (( 1) ).1T
Z Zk Q k k h k� �� � � � � (13)

Furthermore, the Lagrange multipliers, as outlined in 
Equation (13), are regarded as the baseline optimal Lagrange 
multipliers, represented by (k).

Our control strategy focuses on the stage cost function Q 
(z(k), (k)). We use a kriging-based MPC and GP model for 
accuracy. This setup guides the system toward its goals, mak-
ing a separate terminal cost T(z(N)) less critical. In the fol-
lowing section, details of the proposed scheme are provided.

PROPOSED LEARNING-BASED 
CONTROL TECHNIQUE

In this section, we first outline our tailored GP for the control 
strategy, followed by a detailed presentation of our proposed 

control law, including its design and convergence properties. 
Additionally, we discuss the advantages of our approach 
over existing methods, highlighting its unique benefits and 
potential impact in complex control systems.

Formulation of GPs

Data gathered from laboratory experiments or computer sim-
ulations are often susceptible to noise and disturbances. This 
noise can lead to variations in the input–output relationship 
of the system, which can be conceptualized as a single reali-
zation of a random process, denoted by GP(Z):

	 ( ) ( )   ( ),Z m Z n Z� �� � � (14)

where the unknown mean function is denoted as m(Z). This 
function can be constructed using a predetermined collection 
of basis functions: m(Z) = [m

1
(Z), …, m

m
(Z)], and we need 

to estimate the unknown coefficients μ = [μ
1
, …, μ

h
]T for the 

mean function. Additionally, there is a zero-mean GP with a 
parametric covariance function defined as c

n
(Z).
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The process’s variance is symbolized as 2, and the corre-
lation function is denoted by k (·), where k (Z*, Z′) measures 
the similarity between Z* and Z′. Several correlation func-
tions have been proposed in the literature, but the Gaussian 
correlation function is the most commonly employed one. It 
can be represented as follows:
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The hyperparameters are represented as 2 and Ω, where 
Ω is a diagonal matrix. To perform GP modeling, it is cru-
cial to estimate the parameters , Ω, and 2. This estimation 
can be achieved through maximum likelihood estimation. 
Maximum likelihood is a statistical technique employed to 
estimate model parameters by maximizing the likelihood 
function. In the context of GP modeling, the multivari-
ate Gaussian likelihood function is used. This function is 
defined as the probability density function of a multivariate 
Gaussian distribution, determined using the mean vector and 
the covariance matrix. To estimate the unknown parameters 
in the parametric mean and covariance function within GP 
formulation, several approaches have been investigated in 
the literature. While some studies opt for maximum like-
lihood estimation, others integrate prior information and 
employ maximum a posteriori estimation. For comprehen-
sive insights into these methods, we suggest referring to 
seminal papers in this field, including Daemi et al. (2019). 
The likelihood function is expressed as follows:
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Where log(·) denotes natural logarithm, and the correla-
tion matrix is represented by K, with elements K

ij
 = k (Z

i
, Z

j
) 

for i, j = 1, …, n, and 
n
 = [

1
,..

n
]. Additionally, M is an n × 

m matrix with the (p, q)th element M
pq

 = m
p
 (Z

q
), where p = 

1, …, n, and q = 1, …, m.
To derive estimations for the hyperparameters 2ˆ ,  ˆ� �  and  

Ω̂ numerical optimization techniques are judiciously 
employed to minimize Equation (17). In the context of engi-
neering journal publications, a diverse array of global optimi-
zation methodologies has been applied for this specific task. 
These encompass techniques such as particle swarm optimi-
zation (PSO), genetic algorithms (GAs), pattern searches, 
and gradient-based optimization, as described in previous 
studies (Arı et al., 2012; Filippov et al., 2020; Jakubik et al., 
2021; Paulson and Lu, 2022; Rajwar et al., 2023). It is essen-
tial to underscore that, particularly within the engineering 
domain, gradient-based optimization methods are frequently 
favored for the purpose of maximizing likelihood in GP 
models. This preference is primarily rooted in their compu-
tational efficiency and their capacity to adeptly navigate the 
intricate landscape of optimization problems posed by the 
multifaceted engineering models under consideration.

Utilizing GP modeling empowers us to derive the mean 
and variance of the predicted probability distribution at any 
input point Z*. To be precise, the mean prediction is calcu-
lated using the posterior mean function, which is a linear 
combination of the training data, with weights determined by 
the covariance between the training data and the test point. 
Conversely, the variance of the prediction is ascertained by 
the posterior covariance function. This covariance function 
quantifies the uncertainty in the prediction arising from both 
the noise in the data and the selection of the kernel function. 
The expressions for the mean and variance of the prediction 
are as follows:

	 * * * 1( )   ( )    ( ,ˆˆ ˆ ) ( ) T
n nE m Z c Z V M� � � ��� � � � (18a)
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where we have a set of functions denoted as M (Z*) = [m
1
 

(Z*), …, m
h
 (Z*)]. For each training data point Z

i
, we can 

compute the value * 2 *( ,   )   ( ,  ˆ ),c Z Z k Z Z� ���  and by collect-
ing these values for all n training data points, we obtain a 
column vector c

n
 (Z*) [where c

n
 (Z*) quantifies the similarity 

of Z* with respect to all training data points]. By utilizing 
these similarity values among the training data points, we 
can construct a covariance matrix V, where the (i, j)th ele-
ment is given by 2 .ˆ ( ,   )i jk Z Zσ

Robust learning-based technique with 
guaranteed convergence

The system error is defined as e = Z − Z
d
, with Z

d
 repre-

senting the desired reference trajectory. The control law for 
robust tracking is proposed as follows:

	 ( ( ,   )  ( , ) ( )),GP n nI Z Z e Z Z sign e� � �� ��� � � � (19)

where 
GP

 represents the optimal control term as estimated 
by a trained GP. The term  (Z, Z

n
) e+ μ (Z, Z

n
) sign (e) 

is a correction term introduced to address uncertainties and 
errors in the GP, where  and μ are user-defined parameters 
constrained to positive values. Z

n
 represents the training data 

utilized in the GP. This approach allows for the integration of 
predicted uncertainties, deviating from the optimal control 
law only when necessary, thus ensuring consistent operation 
amidst unpredicted disturbances or model inaccuracies. The 
control law accounts for the discrepancies between the train-
ing data and the current state of the system, effectively lever-
aging the inherent benefits of GPs.

Theorem 1

The proposed intelligent control law [Equation (19)], uti-
lizing a GP trained to generate optimal control signals and 
augmented with a correction term, ensures the convergence 
of the closed-loop system even when operating conditions 
deviate significantly from its trained state.

Proof

When the system operates outside of ideal conditions, apply-
ing the proposed control signal to the system’s dynamics 
allows for the deliberate management of the time-dependent 
error, N (t), within the system.
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where 
n
 represents the ideal control action for the system. 

However, due to uncertainties, errors in the GP model, inad-
equate training data, and external disturbances, applying 


n
 precisely as intended is often not feasible. This leads to 

an error dynamic, N(t), highlighting the deviation from the 
desired behavior. The control action applied, denoted as , is 
adjusted to  =  − 

n
 + 

n
, accounting for these deviations. 

Theoretically, 
n
 would eliminate the error dynamic, but due 

to inaccuracies in the proposed controller signal with GP and 
the expected optimal controller, some errors are inevitable. 
These practical limitations necessitate adjustments to the 
actual control action , thus influencing the error dynamic 
as follows:

	

1( ) ( ,   )  

( ,   )   ( ).

( )n n

n

e N t I Z Z

e Z Z sign e

� � ��
��

�� � � �

�



�
(21)

Now, we should show that the correction term is able to 
suppress this error. We define 1( );nN I � ��� �  consequently, 
the error dynamic will be as follows:

	 ( ) ( ,   )  ( ,   )   ( ).n ne N t N Z Z e Z Z sign e�� ��� � � ��� 	 (22)

Now, consider a Lyapunov function candidate denoted as 
V, which is expressed as follows:

	 21
0.

2
V e� � 	 (23)

The time derivative of the Lyapunov function V is 
expressed as follows:
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= = + +

≤ − + −

 





2

( ( ,  ) ( ,  )  ( ) )

( ,  ) ( ,  ) .

n n

n n

V ee e Z Z e Z Z sign e N

Z Z e Ne Z Z e

 

 
�(24)

The parameter μ should be chosen such that 
> ( ,  ) | | .nZ Z N  Consequently, we have

	
= = + −

≤ −

 



2

2.

( ,  ) ( ,  )

( ,  )

n n

n

V ee Z Z e Ne Z Z e

Z Z e

 


	 (25)

Given that both  and  (Z, Zy) are positive, we can use 
Equation (19) to confirm that the convergence of the states 
in the closed-loop system toward the equilibrium point is 
assured. This conclusion aligns with the principles outlined 
in the Lyapunov stability theorem, thereby solidifying the 
proof of our system’s stability.

Remark 1

The user-defined parameters  and μ must comply with pre-
determined constraints to ensure the reliability of the results 
and the stability of the model. Specifically,  should remain 
positive. Moreover μ, apart from being positive, must meet 
an additional requirement: μ (Z, Zy) should be greater than 
| | .N  This condition holds significant importance in uphold-
ing Lyapunov stability.

Remark 2

In the realm of MPC, accurate system equations are crucial 
for ensuring convergence. Traditionally, this implies a need 
for precise knowledge of all parameters and functions, as 
indicated in Equation (9) of this paper. However, our pro-
posed algorithm leverages kriging metamodeling to address 
the inherent uncertainties in system dynamics, enabling the 
proof of system convergence even in their presence. This 
approach not only acknowledges the limitations of relying 
on exact equations but also illustrates the robustness of our 
methodology in accommodating and adapting to uncertain-
ties, as initially outlined in the Remark 1 section.

Comparison with other techniques

GPs hold a distinct place in algorithmic techniques, espe-
cially when compared to methods like neural networks, 
deep learning, PSO, and GAs. Unlike these techniques, 
GPs are unique in their innovative approach and funda-
mental methodologies, offering adaptability across various 
application areas. While deep learning is adept at handling 
high-dimensional data, revolutionizing fields such as image 
processing, and GPs provide a valuable probabilistic per-
spective for both supervised and unsupervised learning due 
to their nonparametric nature. In complex and noncontin-
uous search spaces, PSO and GAs may excel where tradi-
tional gradient-based methods falter; yet, they lack the prob-
abilistic depth of GPs.

A crucial advantage of GPs is their ability to estimate 
uncertainty. This characteristic is vital for our novel control 

approach, where it is leveraged for intelligent, efficient, 
and optimally converged control. The strengths of GPs are 
multifaceted: they inherently offer a framework for inter-
pretability, crucial for understanding uncertainties in predic-
tions; they are efficient with limited data, making credible 
predictions in contrast to the extensive data requirements of 
deep learning models; in contexts like Bayesian optimiza-
tion, their intrinsic capacity for uncertainty quantification is 
exceptionally valuable; and with careful kernel and hyperpa-
rameter selection, GPs are less prone to overfitting, benefi-
cial in sparse data scenarios.

The efficiency of kriging in sparse data environments 
allows for the generation of reliable models without the 
need for extensive data collection, presenting a significant 
advantage over neural networks, which typically require 
large volumes of training data to achieve comparable levels 
of accuracy. Moreover, kriging’s direct estimation of uncer-
tainty is especially valuable in control applications, where 
understanding the confidence in predictions can critically 
influence system stability and performance. Additionally, 
the minimal requirement for parameter tuning in kriging 
models, as opposed to the often labor-intensive optimization 
process for neural networks, further validates our choice, 
enabling quicker deployment and adaptability in varying 
control scenarios.

By harnessing these attributes, especially in uncertainty 
estimation, our approach utilizes GPs for intelligent and 
rapid control optimization. This not only ensures adaptability 
under diverse conditions but also guarantees the convergence 
of the system, a critical aspect in engineering applications 
demanding accuracy, efficiency, and reliability. This integra-
tion of GPs into control systems represents a significant leap 
forward, showcasing the versatility and robustness of GPs in 
addressing complex engineering challenges.

One challenge with machine learning methods, such 
as the kriging algorithm, is their limited performance in 
beyond-the-data-range scenarios (Yousefpour et  al., 2022). 
However, our proposed approach mitigates this through 
a correction term. As long as the error remains within the 
acceptable range, as outlined in the theoretical framework 
and the Remark 1 section, the method’s performance and 
convergence are assured, even when extrapolating.

SIMULATION RESULTS

In this section, we assess the efficacy of our proposed 
method using two illustrative examples. Example 1 show-
cases the performance of our approach when the GP is 
trained with a comprehensive dataset. Conversely, example 
2 delves into a scenario where the GP is trained on limited 
datasets. Here, the initial conditions are significantly diver-
gent from those in the dataset. This exploration serves to 
highlight the robustness of our technique in managing unex-
pected system dynamics under varying initial conditions. 
This comprehensive evaluation demonstrates the adaptabil-
ity and reliability of the proposed method in diverse data 
environments. The system parameters are defined as follows: 
l
1
 = 0.2 kgm2, l

2
 = 0.25 kgm2, m

1
 = 2 kg, and m

2
 = 0.85 kg. In 

numerous methodologies, especially with neural networks, 
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the precision in specifying system parameters is essential. 
Our approach, however, tolerates errors due to inaccuracies 
and uncertainties in these parameters. Provided the resulting 
uncertainty remains within the acceptable limits detailed in 
the Remark 1 section, our method ensures satisfactory per-
formance and assures convergence.

Training optimal GP

To generate the dataset, we implemented a range of initial 
conditions, introducing variations by randomly modulating 
their amplitudes. Following this, MPC was employed to 
determine the nominal optimal control inputs, which were 
then measured and recorded as the output. Consequently, the 
dataset encompasses both the position and velocity of each 
link (as input parameters) and the corresponding optimal 
control signals (as outputs).

For the training of the GP, this collected dataset was uti-
lized in an offline setting. Emphasizing the richness of the 
training data, we incorporated 2000 distinct sets of initial 
conditions to ensure comprehensive learning. Figure 2 illus-
trates the diversity of the training dataset, showcasing how 
the system responds to varied initial conditions. This exten-
sive training approach is critical for the robust performance 
of the GP in diverse operational scenarios.

Example 1: performance evaluation with a 
rich dataset

For this experiment, the initial states were set to 

1 2 1 2[ .(0) 0, , , ]( [0.0) (0 5, 0.5,) ( ) 1, 1]q q q q � � �   Figures 3 
and 4 provide a clear illustration of the controller’s effec-
tiveness in handling the rehabilitation system. As depicted 
in the figures, the system rapidly converges to the desired 

Figure 2:  Training data generated under various initial conditions and the associated optimal control signals for training the 
GP, showcased for both link 1 and link 2. Abbreviation: GP, Gaussian process.
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state, underscoring the efficiency of our proposed technique. 
This rapid convergence is indicative of the controller’s 
robust design and its capability to handle varying operational 
conditions.

Figure 5 showcases the control signal as produced by our 
proposed method, specifically through the application of 
the control law outlined in Equation (19). To demonstrate 
how each component of the control signal [the optimal 

signal derived from the GP and the corrective term from 
control law shown in Equation (19)] contributes to system 
stabilization, these elements are depicted separately. The 
figure underscores the controller’s steady performance, 
ensuring that operations stay within a desirable range. 
Predominantly, the system’s regulation is driven by the 
signal from the GP, with the corrective signal’s magnitude 
being significantly smaller. This reduced need for correction 
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Figure 3:  Time response of the first link of the rehabilitation robot. This behavior is shown in a case where the GP 
is trained on a comprehensive dataset, with both links having a reference point at the origin and initial conditions set as 

1 2 1 2[ .(0) 0, , , ]( [0.0) (0 5,0.5,) ( ) 1, 1]q q q q = − −   Abbreviation: GP, Gaussian process.
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Figure 4:  The temporal response of the rehabilitation robot’s second link. Displayed in a scenario where the GP has been 
trained with an extensive dataset, this behavior illustrates both links set to a reference point at the origin and initial conditions 
defined as = − − q q q q1 2 1 2[ , , , ] [0.5,0.5, 1, 1].(0) (0) (0) (0)  Abbreviation: GP, Gaussian process.
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is due to the depth and quality of our training data, which 
effectively reduces uncertainties in the GP-generated con-
trol signal.

Example 2: performance evaluation with a 
limited dataset

In this example, our objective is to assess the controller’s 
performance when our proposed algorithm is trained using 
a suboptimal dataset. While maintaining the same number 
of data points as in the previous section, we deliberately 
reduced the amplitude of the initial conditions by an order 
of magnitude of 10 to the power of minus 3. Specifically, 
while Figure 2 displays initial condition amplitudes rang-
ing randomly from −4 to 4, here the amplitude values for 
initial conditions range from −0.004 to 0.004. This adjust-
ment ensures that during training, the model is exposed to 
minimal fluctuations under the initial conditions, essentially 
encountering beyond-the-data-range scenarios. As discussed 
in the Comparison with Other Techniques section, machine 
learning models often struggle in such situations. In terms of 
computation cost, both methods are within the same range as 
we utilize the same dataset, albeit with the added challenge 
of poor quality data.

Given the reduced accuracy of the GP signal in such a 
scenario, we hypothesize a more pronounced role for the 
correction term. Figures 6 and 7 illustrate the state trajecto-
ries for the first and second links of the rehabilitation robot 
under our advanced control strategy. The initial states were 
set to 1 2 1 2[ ,  ,  ,  ] [1.5,  1,  0,  0].(0) (0) (0) (0)q q q q � �   The 
images effectively highlight the robust adaptive controller’s 
efficiency, despite the limitations of the training dataset. 
This showcases the controller’s ability to maintain system 

stability and achieve desired performance levels under less-
than-ideal training conditions.

Figure 8 depicts the control signals generated by our pro-
posed control method. The graph presents a clear visual of 
the total control input and its individual components: the 
optimal term derived from the GP model and the correction 
term. It is observable that after an initial transient phase, both 
the optimal term and the correction term stabilize and closely 
align with the total control input, indicating a robust con-
trol strategy that swiftly counterbalances any uncertainties. 
The minimal deviation between the optimal and correction 
terms throughout the majority of the time horizon reflects 
the controller’s capability to ensure consistent performance, 
even when faced with the intrinsic limitations of the train-
ing dataset. This alignment showcases the effectiveness of 
the control scheme in adapting to and compensating for the 
dynamics of the system, confirming the precision and relia-
bility of the GP model within the control framework.

A key aspect of this controller is its operational independ-
ence from the quality of the training data. It does not require 
prior knowledge about the training sample’s quality or how it 
might affect performance, which is a significant advantage in 
practical applications. This feature is particularly vital in the 
context of rehabilitation robotics, where fast, reliable, and 
adaptive responses are essential. The controller’s ability to 
handle uncertainties and adapt to varying conditions demon-
strates its potential for reliable and effective use in scenarios 
where precise and adaptable control is crucial.

Comparison of simulation results

A side-by-side comparison of the simulations detailed in 
the Example 1: Performance Evaluation with a Rich Dataset 
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Figure 5:  Temporal history of the control signals generated by the proposed control technique, applied to both the first and 
second links of the rehabilitation robot. This is demonstrated in a scenario where the GP is trained using a comprehensive 
dataset. Abbreviation: GP, Gaussian process.
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section and the Example 2: Performance Evaluation with a 
Limited Dataset section highlights the controller’s adapt-
ability to the training data’s quality. In the Example 1: 
Performance Evaluation with a Rich Dataset section, using a 
rich dataset, the system achieved rapid convergence with neg-
ligible corrective input, suggesting high predictive accuracy 
(Figs. 3 and 5). Conversely, the limited dataset mentioned 

in the Example 2: Performance Evaluation with a Limited 
Dataset section led to increased reliance on the correction 
term to achieve stability, as reflected in Figures 6 and 8. 
Despite this, effective control was maintained, demonstrat-
ing the controller’s robustness against data insufficiency. The 
comparative analysis accentuates the method’s resilience, 
maintaining efficacy across variable data conditions.
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Figure 6:  Temporal response of the first link of the rehabilitation robot, illustrated in a scenario where the GP is trained on a 
limited dataset. In this case, both links are aligned with a reference point at the origin, and initial conditions are established as  

1 2 1 2[ , , , ] [1.5, 1,0,0].(0) (0) (0) (0)q q q q = −   Abbreviation: GP, Gaussian process.
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Figure 7:  Time response of the rehabilitation robot’s second link, displayed in a situation where the GP is trained using 
a restricted dataset. Here, both links are set with a reference point at the origin, and the initial conditions are defined as 

1 2 1 2[ , , , ] [1.5, 1,0,0].(0) (0) (0) (0)q q q q = −   Abbreviation: GP, Gaussian process.
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As shown in both examples in our simulations, the con-
troller consistently achieved state stabilization in less than 
one time unit, a remarkable feat that underscores its robust-
ness and efficiency. In summary, the results of our simu-
lations provide strong evidence of the effectiveness of the 
control methodology we have developed for tracking control 
in rehabilitation robots, especially in situations involving 
unknown dynamics. This approach not only ensures the sta-
bility of the system but also enhances its robustness in the 
face of uncertainties and variable conditions. These attrib-
utes are particularly beneficial in real-world settings, where 
unpredictable system behaviors are common. The practical-
ity and efficiency of our proposed control strategy make it a 
compelling solution for the dynamic and often unpredictable 
world of rehabilitation robotics.

CONCLUSION

In this study, we introduced a novel approach in the realm 
of rehabilitation robotics, merging the strengths of machine 
learning with classical control methods to meet the complex 
demands of this fast-evolving field. Our study emphasizes 
the need for a control mechanism that is not only reliable and 
precise but also adaptable to the varied needs of individual 
patients while ensuring the highest safety and effectiveness 
standards. Central to our methodology is the innovative use 
of kriging-based MPC, which benefits from the advanced 
capabilities of GPs. We have augmented this system with 
a correction term, designed to bolster robustness and relia-
bility. This addition is critical, enabling the system to adapt 
and remain resilient against unforeseen challenges that were 

not encountered during its training phase. Grounded in the 
Lyapunov stability theorem, our approach has a solid the-
oretical underpinning that guarantees our controller’s sta-
bility. Numerical validations through two simulations have 
exhibited the efficacy and efficiency of our control scheme, 
even with a GP trained on a limited dataset. These simu-
lations have not only illustrated the controller’s ability to 
manage unknown or dynamically evolving uncertainties but 
also its robust performance across various challenging con-
ditions. The comparative analysis between the Example 1: 
Performance Evaluation with a Rich Dataset section and the 
Example 1: Performance Evaluation with a Limited Dataset 
section underscores our controller’s remarkable adaptability 
to varying data quality, exhibiting resilience and maintaining 
high performance under diverse conditions. This adaptabil-
ity, showcased through rapid convergence with rich datasets 
and effective control with limited data, highlights the poten-
tial for further refining and testing the controller in broader 
application scenarios. Future work could explore enhanc-
ing this adaptability, potentially setting new benchmarks 
in control system efficiency and robustness. Although our 
research represents a significant advancement in the control 
of rehabilitation robots, there is still ample room for further 
development. One promising avenue is the integration of 
finite-time control strategies within our kriging-based MPC 
framework. Such an approach has the potential to signifi-
cantly enhance the agility and performance of rehabilitation 
robots, optimizing their function across a range of clinical 
settings. Additionally, the inherent uncertainty quantifica-
tion provided by the kriging algorithm opens another com-
pelling direction for future investigation. Leveraging this 
uncertainty data could lead to advancements in adaptive 
control strategies, further improving both the precision and 
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Figure 8:  Temporal progression of the control signals generated by the proposed control technique, implemented on both the 
first and second links of the rehabilitation robot. This display is in the context of a scenario where the GP has been trained with 
a limited dataset. Abbreviation: GP, Gaussian process.
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responsiveness of the controller to achieve superior perfor-
mance and agility in dynamic environments.
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