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1  |  INTRODUC TION

The SARS-CoV-2 pandemic arose in China at the end of 2019 and has 
caused over 450 million infections and more than 6 million deaths 
worldwide. Initially, the virus caused a wide range of clinical manifes-
tations from asymptomatic and mild to severe and critical, leading to 
death in ~1.5% of infected individuals. Elderly patients were initially 
at risk of severe disease together with those who had co-morbid 

conditions, such as diabetes and obesity. Pneumonia and respiratory 
failure often led to hospitalization; however, this infection caused gas-
trointestinal and endothelial injury leading to systemic illness affecting 
multiple organ systems that included the brain and many others.1 With 
mild illness even after recovery, post-acute sequelae of SARS-CoV-2 in-
fection (PASC) has also been reported without clear underlying patho-
physiologic mechanisms.2 At first, sequelae were thought to occur only 
after severe infection, but now PASC has been commonly reported after 
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Summary
Infection with SARS-CoV-2, the etiology of the ongoing COVID-19 pandemic, has re-
sulted in over 450 million cases with more than 6 million deaths worldwide, causing 
global disruptions since early 2020. Memory B cells and durable antibody protec-
tion from long-lived plasma cells (LLPC) are the mainstay of most effective vaccines. 
However, ending the pandemic has been hampered by the lack of long-lived immunity 
after infection or vaccination. Although immunizations offer protection from severe 
disease and hospitalization, breakthrough infections still occur, most likely due to 
new mutant viruses and the overall decline of neutralizing antibodies after 6 months. 
Here, we review the current knowledge of B cells, from extrafollicular to memory 
populations, with a focus on distinct plasma cell subsets, such as early-minted blood 
antibody-secreting cells and the bone marrow LLPC, and how these humoral com-
partments contribute to protection after SARS-CoV-2 infection and immunization.

K E Y W O R D S
antibody secretion, antibody-secreting cell, COVID-19, long-lived plasma cell, SARS-CoV-2

*This article is part of a series of reviews covering SARS-CoV-2 Immunity appearing in Volume 309 of Immunological Reviews.  

www.wileyonlinelibrary.com/journal/imr
https://orcid.org/0000-0002-5389-6731
https://orcid.org/0000-0001-9262-2920
https://orcid.org/0000-0002-5252-7539
https://orcid.org/0000-0003-3963-6586
https://orcid.org/0000-0003-0487-1914
https://orcid.org/0000-0003-4182-587X
mailto:﻿
https://orcid.org/0000-0002-6133-5942
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:f.e.lee@emory.edu


    |  41NGUYEN et al.

both mild and severe disease at frequencies as high as 10-30% mak-
ing it even more puzzling. Therefore, understanding immune mediators 
of protection from infection and severe disease as well as the immune 
mechanisms of the sequelae are critical to overcoming this pandemic.

Viral neutralizing antibodies (nAbs) secreted by LLPC pro-
vide durable protection after infection. Prior to COVID-19, the 
best-known pandemic was the 1918 H1N1 influenza virus, which 
offered life-long serologic protection after primary infection.3 
However, reinfections could occur from new re-assorted influenza 
viral mutants and not necessarily from the previously circulating 
strains. But, in COVID-19, unlike influenza virus infections, anti-
body responses after SARS-CoV-2 infection whether it be mild or 
severe appear to persist for only 18-20 months.4,5 Thus, antibody 
protection after SARS-CoV-2 infection may not necessarily be long 
lasting and a cause of breakthrough infections. Additionally, similar 
to influenza viruses, the evolution of new viral variants of SARS-
CoV-2 for which there is little cross-protection may be another 
cause of repeat coronavirus infections with the recent Delta6 and 
Omicron7 mutants despite history of previous infection.8–10

In the United States and then globally, vaccines to SARS-CoV-2 
were introduced within a year after the start of the pandemic which 
was an incredible scientific achievement. These vaccines provided 
robust protection especially with high titers of nAbs and afforded 
safeguards for severe disease. However, the primary vaccine series 
were effective only short-term and exhibited waning efficacy within 
months.11–14 Thus, the CDC guidance now recommends a booster 
dose 6  months after the initial primary two-dose immunization. 
Despite shielding from hospitalizations, waning vaccine titers were 
not necessarily effective against new viral variants, causing many 
breakthrough infections (BTI) even though most were mild. In all, 
following emerging viral mutants, the understanding of the mecha-
nisms of durable humoral protection from infection and vaccination 
is vital in the fight against this pandemic.

2  |  B CELL S AND LONG -LIVED PL A SMA 
CELL S IN VIR AL INFEC TION

During a canonical respiratory viral immune response, naive B cells 
encounter viral antigens, become activated, and differentiate into 
antibody-secreting cells (ASC) from extrafollicular (EF) or germinal 
center (GC) B cells. Some naive B cells enter the GC to engage with 
the antigen and T follicular helper cells (Tfh) to undergo rounds of ex-
pansion, somatic hypermutation (SHM), and antigen-specific positive 
selection. Ultimately, successful GC-derived clones differentiate into 
high-affinity ASC and memory B cells (MBC) and are thought to be-
come long-lived. The decision of GC B cells to remain in the GC, exit 
as MBC, or further differentiate into ASC have been studied in mouse 
models15 but are not well described in human studies16 (Figure 1).

At steady state, healthy humans have a low ASC frequency in 
the circulation (i.e., <1% of the total B cells)17–19 but during acute 
viral infections, ASC rapidly burst into the bloodstream with a rise 
in protective pathogen-specific antibody levels.18,20,21 Typical ASC 

responses after acute infection range from 2 to 10% of total B 
cells; but in some specific infections such as with Hantavirus and 
Dengue viruses, ASC may account for up to 70-80% of all circulat-
ing B cells.17,18,22–24 Whether the magnitude of the responses reflect 

F I G U R E  1  B cell response development in COVID-19. Primary 
infection with SARS-CoV-2 results in a spectrum of disease severity 
with differing impacts on humoral response development. (Right) 
Mild COVID-19 or vaccination results in a GC-focused response, 
allowing normal accumulation of somatic hypermutation, affinity 
maturation, memory formation, and plasma cell development. The 
extent of LLPC development in GC-focused COVID-19 responses 
remains a critical open question with important implications in 
response longevity. (Left) Severe/critical COVID-19 results in an 
extrafollicular (EF)-biased response with the rapid development of 
low-mutation effector B cells (DN2) and plasmablasts. While the 
neutralizing capability of these populations has been confirmed, the 
impact of EF-biased responses on memory formation, plasma cell 
development, and bone marrow engraftment is less clear. Heavy 
arrows—dominant pathway; Light arrows—secondary pathway; 
Dotted arrows—unconfirmed pathway. GC, germinal center; aNav, 
activated naive B cells; DN2, double negative (i.e., IgD−CD27− B 
cells that also lack expression of CXCR5 and are involved in the EF 
response that is outside the GC but can still have T cell help); ASC, 
antibody-secreting cell; SLPC, short-lived plasma cell; LLPC, long-
lived plasma cell
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primary versus secondary exposures or result from the different 
types of viruses is not entirely clear.

Typical serum titer responses reveal an early GC-independent 
phase with the appearance of low-affinity primarily IgM,21,25 fol-
lowed by high-affinity, class-switched, pathogen-specific durable 
IgG and IgA. After the initial robust rise in Ab titers, the decay 
kinetics of the antigen-specific levels are twofold as shown in non-
human primate models. The first is a rapid fall-off due to apoptosis 
of short-lived ASC and then a slower decline or “memory” Ab after 
months likely from LLPC generation and maintenance.26 The main 
source of serum “memory” Abs arises from circulating GC-derived 
MBC which differentiate into ASC to mature into tissue-resident 
LLPC, both of which are extremely rare and produce highly diverse 
and affinity-matured Abs.27–30 In mice, LLPC have been identified 
in the spleen, the gut, and the bone marrow (BM), and are found 
weeks following the initial induction.31

The mechanisms of how human LLPC are generated and main-
tained are not entirely clear. However, it is known to include GC 
and MBC responses and the migration of ASC to long-lived tis-
sue sites such as the BM niches. In humans, LLPC were found 
in the BM CD19−CD38hiCD138+ compartment from natural viral 
infections that occurred over 40 years ago. However, exposures 
to repeat viral infections and vaccination were localized in other 
BM compartments such as CD19+CD38hiCD138+ subsets and 
the LLPC subsets.32 After the initial burst into the blood, most 
early-minted ASC or plasmablasts undergo apoptosis triggering 
the rapid primary decline of Ab titers. Only some ASC eventu-
ally enter long-lived tissue sites such as the BM to submit to 
further development and maturation through factors provided 
by the specialized microniche.33 These cells are likely responsi-
ble for the second slower Ab decay. Histology shows that LLPC 
have unique morphology from nascent ASC such as increased 
cytoplasm/nucleus ratio and higher number of mitochondria. 
Although LLPC are derived from early-minted ASC, they are 
transcriptionally and epigenetically different illustrating ongoing 
maturation in the BM sites.34 These special molecular and epi-
genetic pathways enhance longevity, minimize energetic needs, 
and upregulate programs to acquire resistance to apoptosis in 
order to maintain antibody secretion for a lifetime.34 In this re-
view, we will investigate whether ASC after SARS-CoV-2 infec-
tion and new COVID-19 mRNA vaccines follow the canonical B 
cell and LLPC maturation programs or if these humoral responses 
are fundamentally altered.

3  |  A SC RESPONSE IN SARS- COV-2 
INFEC TION

3.1  |  Primary infection: virus-specific antibodies 
are highly diverse, peak early, and decline

The majority of primary SARS-CoV-2 infections elicits a robust sys-
temic viral-specific Ab response initially within 1-2  months,35–37 
although the Ab magnitude among infected individuals is 

heterogenous with peak levels varying over 200-fold.37,38 By and 
large, Ab levels were reduced by 5-fold to 10-fold compared to the 
peak at 5 months35–37,39 with some studies showing that they remain 
detectable for 5-12 months,37,39–45 13-14 months,46,47 and some sug-
gesting 18-20 months,4,5 in the absence of vaccination and reinfec-
tion. However, the pandemic started only 2 years ago, and so longer 
durability data are just not available.

After an early peak within 2-5 weeks, Abs decline in a fashion 
that varied by isotype, viral antigen-specificity, and age.37,48,49 While 
IgM and IgA often wane rapidly and become undetectable after 
2-3 months,50,51 IgG decays at a slower rate. Additionally, different 
viral antigens such as nucleocapsid (N), receptor-binding domain 
(RBD), and spike (S) also give rise to variable kinetics. For example, 
the serum N-Ab decay more rapidly compared to RBD- or S-Ab. The 
estimated average half-life in most infections of S-specific IgG, IgM, 
or IgA1 is 14-33, 8, or 6 weeks, respectively.37,52 On average, the 
fastest waning Abs were N-specific IgG with two-third the levels at 
4-9 months and undetectable levels in 33% of the patients. By 1 year, 
almost all patients had no measurable N-specific IgG.53–57 S-specific 
IgG decays slowest, waning to less than one-third of the peak levels 
at 8-10 months. However, nearly all patients (90-97%) have detect-
able S-IgG titers at 12-13 months.53–55 Finally, not all SARS-CoV-2-
infected patients developed demonstrable serum Abs, with some 
studies reporting 5% to 33% of PCR-positive patients particularly in 
young adults who did not seroconvert.58–60

Antibodies that functionally neutralize correlate with total virus-
specific Abs and RBD-specific Abs.61 Both total virus-specific and 
nAbs usually peaked between 3 and 5 weeks after infection, but also 
rapidly decayed with an average half-life of 8-13 weeks.37,41,50,52,62–65 
However, it appears that in mild to moderate infections, nAbs could 
last for at least 5-7  months.14,39,66–70 Both total viral-specific Abs 
and nAbs rapidly wane initially, but then declined at a much slower 
rate to remain relatively stable with time.37,39,51,71–73 In all, infection-
induced serum S- and RBD-specific IgG were positively correlated 
with nAbs, and these antibodies peaked within a few months and 
initially wane rapidly and then with a slower decay over the first 
year.37,52,53,56,74–76 Whether this slower decay will ultimately plateau 
as seen in other infections to provide LLPC and life-long protection 
remains at large.

Increased Ab responses were associated with older age, male 
sex, and hospitalization.38 However, disease severity seemed to 
have the greatest effect on the magnitude of infection-induced 
Abs.38,73,77,78 In general, severe infections were associated with both 
a more rapidly rise and a higher peak in both binding and neutralizing 
Abs.40,51,79,80 These Abs rocketed rapidly within days of symptom 
onset40,81 especially in hospitalized or critically ill patients compared 
to mild (outpatients or asymptomatic) subjects.40,50,51,54,56,73,79 
Moreover, unlike conventional responses, the majority of these re-
sponses did not generate an early IgM response followed by the con-
ventional class-switched IgG and IgA.50,77 Instead, a class-switched 
IgG with neutralization was detected early in these critically ill pa-
tients. Later monoclonal antibody studies showed low or germline 
mutation frequencies found in severe infections, implicating unique 
nonconventional B cell origins.81–83
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3.2  |  Germinal centers are disrupted in severe 
COVID-19 infection

Unlike typical viral infections, early studies showed that in severe 
SARS-CoV-2 infections, the GC are impaired84,85 and are associated 
with large plasmablast expansions and enhanced Ab levels compared 
to mild disease37,40,77,86 (Figure 1). The decreased numbers of Tfh in 
the draining lymph nodes (LN) and spleen provided evidence that 
functional GC fail to form during critical illness.84,85 Furthermore, 
in these severely ill patients, a robust EF B cell response dominates 
with higher ASC expansion and correlated with nAb levels.81,86 
Corroborating this model, multiple potent nAbs were isolated from 
severe patients exhibiting only few mutations suggesting that EF re-
sponses can give rise to effective nAbs.83,87 Interestingly enough, 
both mild and severe COVID-19 infections showed evidence of 
class-switched MBC with higher mutation frequencies41,78,88,89 and 
strong Tfh cell responses.90–92 Thus, a strong EF response may not 
always occur at the exclusion of GC B cell responses. However, the 
collapsed GC in the critically ill patients give rise to a massive early 
EF ASC response, causing the rapid rise in Ab titers.

3.3  |  SARS-CoV-2-specific ASC responses

The rapid and transient expansion in the circulation of ASC is gener-
ally a hallmark of early B cell responses during acute viral infections.21 
Initial infections with SARS-CoV-2 give rise to an early Ab peak within 
the 2nd week post-induction that wanes substantially and rapidly 
over time (declining by 5-fold to 10-fold within 3-4 months or to <7% 
of the peak at 5-6  months) (Figure  2).19,35–37,51,71–73,77,93–95 This fast 
decay most probably reflects apoptosis of many circulating short-
lived IgG and IgA ASC, known to appear within a few days after ini-
tial antigen exposure.20,22–24,32,96,97 In severe infections, circulating 
ASC defined as CD19+CD27hiCD38hi, which included CD138+ sub-
sets were expanded although their frequency was not associated 
with virus-specific IgM.81,86 A similar pattern was seen in Dengue 
infections, where higher ASC expansions were associated with more 
severe illness.86,98,99 Hence, the rapid antibody decay is a manifesta-
tion of apoptosis of the nascent blood ASC.

Early ASC may serve as a biomarker of disease severity,40,81 
which at the same time, raises concerns about a potential pathogenic 
role of ASC.86,98,99 One study showed that the expansion of ASC 
in the circulation in hospitalized patients with COVID-19 infection 
decreased 28-day mortality although the differences were small, 
suggesting ASC might actually also serve as a marker of disease res-
olution.100 Whether ASC expansions are pathogenic or bystander 
effects from certain proinflammatory cytokines supporting ASC 
survival, such as IL-6 and TNF-α, which are coincidently elevated in 
severe COVID-19,81,86,101–103 is not entirely clear.

A meaningful ASC response depends not only on quantity but 
also on quality, such as nAb and different isotypes. Different iso-
types IgM, IgA, and IgG were notable in the serum and/or mucosal 
sites 1-2 weeks post-symptom onset.40,77,104 In COVID-19, although 

IgA is normally responsive at mucosal sites, virus-specific IgA ASC 
were also expanded in the circulation.95,105 Additionally, SARS-
CoV-2 neutralization was correlated more closely with IgA than 
IgM or IgG in the first weeks after symptom onset.95 Despite this 
result, the IgA responses were not associated with disease sever-
ity and serum IgA concentrations decreased by 1 month. However, 
mucosal neutralizing IgA remained detectable in the saliva for more 
than 3 months, suggesting locally differentiated IgA ASC may have 
a longer half-life than systemic IgA ASC and confer protection from 
reinfection.95 In all, IgA ASC can be found in the blood and mucosal 
sites during an acute infection. However, it is not clear if mucosal 
IgA ASC differentiate locally or systemically and then migrate to the 
mucosal sites in acute illness.

Another study showed that RBD-specific ASC are released 
into the blood transiently during acute COVID-19 with high IgM 
and low IgG ASC frequencies.106 However, these results may have 
been skewed with antigen-labeled flow cytometry which only se-
lect for ASC that retain surface BCR expression. From B cell to ASC 
differentiation, surface Ig receptors are often downregulated.32,97 
Interestingly, only IgM ASC preferentially express surface BCR com-
pared to IgG ASC.82 Hence, antigen-specific surface flow cytometry 
of ASC may neglect the majority of blood ASC in this infection.

3.4  |  Memory B cell evolution and cross-variant 
reactive antibodies in COVID-19 infection

Understanding MBC specificity and kinetics is key to predicting 
durability of protection from reinfection. After infection, it is well-
established that a strong MBC response is elicited. While most Ab 
response metrics decrease within 4-6 months, the frequency of cir-
culating MBC remain relatively stable for 6-9  months after infec-
tion (including mild and asymptomatic),36,42,52,107–109 and may even 
increase before plateauing during convalescence.37,41,52,78

It appears that even after viral clearance, the MBC response con-
tinues to mature. Perhaps more importantly, infection-induced MBC 
continue to accumulate somatic mutations over 12 months compara-
ble to those acquired in other acute viral infections.85,110 This matu-
ration results in the emergence of unique clones and the production 
of memory Abs with increased affinity.36,107,111 Although class-
switched MBC evolved in both mild and severe COVID-19,41,78,88 
such affinity maturation might not be the same. For example, B cell 
repertoires in severe patients are enriched for clonally expanded 
and unmutated ASC and MBC clones, consistent with EF-dominant 
responses,81 whereas in mild illness, they are characterized by clon-
ally diverse and mutated MBC.112 Evolution of MBC after infection 
was observed over 12 months together with persistence of GC 
after infection intimated antigen persistence.36,42,113 Interestingly 
enough, some asymptomatic individuals 4  months after the onset 
of COVID-19 infection showed persistence of SARS-CoV-2 nu-
cleic acids in the intestinal biopsies, demonstrating antigenic per-
sistence.36 With each new emerging mutant, whether MBC in the 
LN continue to rapidly evolve to generate higher affinity clones that 
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could provide a stronger and more cross-reactive protection will re-
quire further study.

3.5  |  Lack of bona fide LLPC in response to 
COVID-19 infection

High-affinity “memory” nAbs in the serum are the effector molecules 
of long-term protection. While ASC provide robust Ab response dur-
ing the acute infection, tissue-resident LLPC in the BM are the cellular 
origins of such persistent “memory” Abs. LLPC secrete Ab continu-
ously in the absence of antigen.114 After mild SARS-CoV-2 infections, 
plasma cells specific for SARS-CoV-2 have been identified in the BM 
7-11 months after infection.45 However, BM niche is known to contain 

both LLPC and other shorter-lived subsets32 (Table 1), and this study45 
did not demonstrate whether these viral-specific ASC were residents 
of the BM LLPC subset32 (i.e., PopD; Table 1). Furthermore, the se-
rologic data after acute infection37,39,51,71–73,77 may not be consistent 
with the presence of LLPC, and thus, whether this infection generates 
bone fide LLPC still remains unknown (Figure 1).

3.6  |  Transcriptional profiles of ASC in 
COVID-19 infection

ASC single cell profiling from COVID-19-infected patients is often 
sorted from total peripheral blood mononuclear cell (PBMC) sam-
ples.115,116 Despite acute and recovered time points and known 

F I G U R E  2  ASC kinetics and Ab effector functions during responses to infection with and vaccination against SARS-CoV-2. Initial 
infection induces ASC that produce virus-specific, low-affinity serum Abs. In general, mild infection, priming vaccination, or tertiary 
vaccination generates a GC response, by which the derived MBC undergo continued clonal evolution over 6-12 mo, leading to the 
production of more potent and broader nAbs. The frequency of ASC generally correlates with the magnitude of the serum Ab levels (total 
binding Ab pool size). Dose 1 vaccine induces a robust GC response resulting in the generation of virus-specific ASC (and MBC) including 
in infection-naive subjects and which is substantially enhanced either by Dose 2 (in infection-naive subjects) or in previously infected 
(recovered) subjects—and further enhanced by boosters (in infection-naive subjects). The highest total binding Ab production is observed 
in recovered, tertiary vaccinees. Dose 1 ignites potent nAbs (in about half the subjects) that are enhanced by Dose 2 and further enhanced 
by booters—against the wildtype but less potent against variants (decreasing cross-variant nAb potency). S-specific and nAbs wane over 
4-6 mo following infection, although total binding Abs could be detected 18-20 mo post-infection. The nAb waning period of time in COVID-
19-naive vaccinees also are usually 4-6 mo; it may last longer in previously infected subjects (i.e., 10-12 mo). Ab, antibody; nAb, neutralizing 
antibody; ASC, antibody-secreting cell; EF, extrafollicular; S, spike
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expansions, these cells are relatively rare in the blood. Therefore, 
single-cell studies using PBMC can at best enumerate the ASC, B cell, 
and other lymphocytes but have major limitations in understanding 
the transcriptional profiles of ASC due to the small number of ASC 
recovered from PBMC isolations. Using PBMCs, one study explored 
the transcriptional profile of ASC from COVID-19 during acute infec-
tion from those who shed virus <7 days versus <14 days and healthy 
adults. COVID-19 had higher percentage of ASC with significantly 
reduced naive BC frequencies as compared to healthy controls. As 
expected, they could only see higher level of B cell activation-related 
genes and ASC differentiation were upregulated in the COVID-19 
patients.115 Another PBMC study showed that ASC from a severe co-
hort had interferon responsive genes such as FOS, IFI6, and MX1,117 
suggesting the potential of EF B cell origins found in autoimmunity 
and recently described severe COVID-19.81,118 However, the ASC 
numbers analyzed were small. Qi et al.119 re-analyzed data from three 
published PBMC single-cell datasets from mild and severe COVID-19 
and showed that metabolic genes regulating oxidative phosphoryl-
ation were expressed at highest level in ASC of severe COVID-19. 
Although interesting, the progressive upregulation this pathway had 
been previously appreciated in B cell to ASC differentiation.120,121

The novel single-cell technologies have proven to be extremely 
powerful in deeply characterizing the transcriptional profiles and 
the VDJ sequences of plasma cells. However, the rare frequencies 
of ASC despite their large expansions together with the propensity 
for apoptosis are the major technical limitations of further enriching 
this population for single-cell studies. Hence, using total PBMC iso-
lations to study ASC on a single-cell level has many limitations. To 
properly analyze the heterogeneity of ASC subsets and their possi-
ble role in severe and mild COVID-19 infection, strategies for better 
enrichment will be needed to provide insights into the ASC meta-
bolic, homing, survival, and maturation pathways to become a LLPC.

3.7  |  Neutralizing versus non-neutralizing 
antibodies in COVID-19 infection

Neutralization is thought to be the main mechanism of immune pro-
tection to most infections, including SARS-CoV-2. This mechanism is 

achieved by blocking the engagement of the SARS-CoV-2 S protein 
to its cognate receptor ACE2. As expected, many nAbs target the 
RBD.122,123 During severe COVID-19 illness, patients have higher 
levels of Abs and exhibit an oligoclonal ASC expansion.86 Although 
higher nAb titers are seen in severe disease,124,125 the potency of 
neutralization is actually associated with survival and favorable clini-
cal outcomes.126,127 Amanat et al.128 showed that mRNA vaccines 
can elicit more potent antiviral polyclonal responses than those seen 
with infection, but vaccines can actually induce a majority of non-
nAbs. While the benefits of nAb are known, the exact role played by 
non-nAbs is still under intense investigation.

Before vaccines were available, passive transfer with convales-
cent plasma was approved for clinical use. Concerns about poten-
tial risk of antibody-dependent enhancement (ADE) of infection in 
SARS-CoV-2 with non-nAbs were raised.77,129–134 These concerns 
were based on evidence of that virus-specific Abs can promote cellu-
lar infection through Fc receptors. This phenomenon has been seen 
with several other endemic coronaviruses (eCoV),135 including fe-
line infectious peritonitis virus,136 SARS-CoV-1,137–142 and MERS.143 
Additionally, in SARS-CoV-1, Fc-mediated Ab function can skew 
macrophage activation to a more inflammatory state in the lung 
leading to tissue injury.144 Furthermore, Abs against SARS-CoV-2 
could facilitate viral entry into myeloid cells through Fc receptors in 
vitro.145,146 Although studies have shown viral genetic and protein 
content inside macrophages,147–150 there is still debate whether this 
cell type is permissive to productive SARS-CoV-2 viral replication.151 
To our knowledge, there is no evidence of clinically significant ADE 
with SARS-CoV-2 infection or vaccination.

In vivo animal models of SARS-CoV-2 infection have revealed 
that Fc-mediated Ab function improves disease outcomes and 
reduces viral replication. Consistent results have been seen in 
mice,145,152–155 hamsters,154 and macaques.145,156,157 In humans, Fc 
patterns differentially correlate with disease outcomes. Patients 
with clinically more severe COVID-19 disease exhibited a more 
proinflammatory pattern of Ig Fc glycosylation than those with 
mild disease.158,159 On the contrary, Fc-mediated antiviral functions 
of non-nAbs have also been observed in vitro, including antibody-
dependent complement deposition (ADCD),156 antibody-dependent 
cellular phagocytosis (ADCP),152,156 and antibody-dependent cellular 

TA B L E  1  Phenotype of blood and bone marrow ASC subsets

Blood ASC subsets Pop2 Pop3 Pop5

CD19 + + −

CD138 − + +

CD38 ++ ++ ++

Bone marrow ASC subsets PopA (SLPCa) PopB (Intermediate) PopD (LLPCb)

CD19 + + −

CD138 − + +

CD38 ++ ++ +

aShort-lived plasma cell.
bLong-lived plasma cell.
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cytotoxicity (ADCC).160,161 ADCP was associated with lower inflam-
mation and clinically milder COVID-19 than ADCD.162 Interestingly, 
adults after mRNA vaccination have a distinct pattern not seen with 
infection.159,163 This finding demonstrates how different immunity 
to vaccination and infection can be. In another study, Zohar et al.164 
showed that in severe SARS-CoV-2 infection, Fcγ receptor binding 
and Fc effector activity were compromised and associated with 
COVID-19 non-survivors.

Another potential protective mechanism of non-nAb is through the 
soluble Fcγ-binding protein (Fcγbp) located on mucosal surfaces. Fcγbp 
is a large molecular weight mucin-like secretory Fc receptor protein se-
creted by human goblet cells in the large and small intestine. Virus-Ab 
complexes can engage the soluble Fcγbp attached to mucin and fa-
cilitate viral clearance.165 Fcγbp may be one potentially protective 
non-nAb functions in COVID-19, and there are likely other innate-like 
functions of non-nAb. In sum, although non-neutralizing, these Abs can 
cause pro- or anti-inflammatory based on different Fc functionalities.

4  |  A SC RESPONSES TO SARS- COV-2 
VACCINATION

4.1  |  Primary vaccine series: nAbs are robust and 
predictive of vaccine efficacy (VE) but wane

The currently available COVID-19 vaccines use SARS-CoV-2S anti-
gen and are developed from two distinct platforms: mRNA-based 
and adenovirus-based vector vaccines.166 These vaccines exhibit 

high initial efficacy at preventing infections (91-95%) as well as hos-
pitalization and severe disease (97%).11,167–175 In addition to individ-
ual protection provided to vaccine recipients, massive vaccination 
could reduce community transmission,176 although the absence of 
residual mucosal IgA with systematic vaccines may have hindered 
this potential benefit177,178 (Figure 3).

Similar to SARS-CoV-2 infection, mRNA vaccination induces 
early and robust production of S-specific IgM, IgA, and IgG in the 
circulation179–183 (Figures  2 and 3). The GC disruptions present in 
severe COVID-19 patients81,84 are not observed after mRNA vacci-
nation and active SARS-CoV-2-specific GC responses can detected 
for several months.183 However, with vaccination, the expansion of 
ASC is often less robust compared to acute infections (i.e., average 
of 2-6% and mostly <20% of the total circulating B cells).18,22–24 In 
contrast with infection that exposes the infected patient to epitopes 
across the entire viral proteome, vaccines only include S epitopes.166 
Therefore, as expected and unlike infection, vaccination incites a 
largely homogeneous S-specific response among vaccinees.184–186

After receiving the first dose of mRNA vaccine, about only half 
of the recipients produce nAbs, which, to most of the vaccinees, 
increase after the second dose.187–189 In comparison with the two-
dose mRNA vaccination strategy, the single-dose adenovirus vac-
cine used in the United States elicits lower S-specific Abs.175,190,191 
However, it sufficiently primes the immune system and provokes a 
durable humoral and cellular immunity lasting up to 8 months.192 As 
with infection, serum binding S-specific IgG elicited by vaccination 
(both mRNA-based and adenovirus-vectored) positively corelate 
with nAbs40,74–76,193–195 and are associated with VE.74,193–196 Thus, 

F I G U R E  3  Mucosal and systemic antiviral responses after SARS-CoV-2 infection and vaccination. Mucosal exposure to viral antigen (by 
natural infection or by intranasal immunization) leads to in situ as well as systemic activation of virus-specific adaptive immune cells. With 
intramuscular immunization, mucosal exposure to antigen is not present, therefore, only generating systemic but not mucosal immune 
responses. With mucosal antigen exposure, there is generation of tissue-resident memory lymphocytes and ASC that locally prevent 
infection upon subsequent virus exposures. Without mucosal responses but in the presence of systemic antiviral responses, there is 
protection against severe disease but less so against the early infection at the mucosal entry site. Ab, antibody; BTI, breakthrough infection
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like infection, nAbs have been identified as a surrogate marker/pre-
dictor of VE.

Consistent with epidemiological data of VE, S-specific bind-
ing and neutralizing Abs induced by vaccination exhibit a time-
dependent reduction.12,13,74,174,197,198 Moreover, most ASC undergo 
apoptosis rapidly after their peaks in peripheral blood (i.e., 5-7 days 
post-induction), resulting in a sharp fall of total Abs.20,23,24,32,114 Ab 
waning often occurs within 4-6 months, yet it starts to become ev-
ident at 3-10 weeks after the second dose.199 Ab decrease is more 
profound in immunosuppressed patients13,200 and exhibits a more in-
tense decline in the older individuals.13,179,201–203 Nevertheless, Abs 
(including nAbs) may still be detected 6-8 months post-vaccine.192,204

4.2  |  Breakthrough infections with waning Abs and 
emerging immune-escape variants

Vaccine breakthrough infection (BTI) refers to individuals who get 
infected 2 weeks or more after the initial vaccination series. Despite 
the initial high VE against infection, BTI cases of COVID-19 have 
become increasingly common—first by the Beta variant,205,206 then 
quickly followed by the Delta variant,13,174,197,207–215 which emerged 
in the late spring–summer of 2021,6,8,216,217 and currently with the 
dominating Omicron variant.7

While there is a significant reduction in VE (54-85%) with most 
variants, numerous observational studies suggest that VE remains 
substantial (90-100%) against hospitalization and severe infec-
tions.8,12,206,218–221 Despite high viral loads and persistent viral 
RNA shedding, BTI are mostly mild or asymptomatic209,222 and are 
associated with substantially lower risk of developing long COVID 
symptoms than infections in unvaccinated individuals.223 The facts 
that most BTI are associated with lower disease severity8,209,222,224 
suggest that nAbs elicited by wildtype antigens remain protective 
against severe infection to SARS-CoV-2 variants. Nonetheless, such 
protection of severe disease in BTI may be attributed to vaccine-
induced S-specific T cell responses, as variants can evade Abs but 
not the T cell immunity.225–230 Of note, in addition to nAb evasion 
and waning immunity, the lack of protective mucosal IgA mucosal 
in the setting of mRNA-based (i.e., intramuscular) vaccination177,178 
might also be a contributing factor in BTI (Figure 2).

The antigenic variants that emerge and become the predominant 
strain are mostly those that escape pre-existing immunity. Compared 
with the wildtype, the Alpha, Beta, Gamma, and Delta variants ex-
hibit a several-fold drop in vaccination-induced nAbs231–233 (Table 2) 
that further decreases over time.53 Moreover, VE against variants is 
predicted to lose more than half of its power at 12 months,231 which 
may explain the BTI and reinfection with variants are increasingly 
occurring.70,206,234,235

All this was further complicated by the emergence of Omicron in 
the fall of 2021. Once identified, this highly transmissible Omicron 
variant spread rapidly worldwide and by mid-winter it accounted for 
nearly 100% of new US infections.7 Compared to the ancestral strain, 
Omicron has 56-60 mutations throughout its genome (Table 2). Of 

these mutations, 31-37 are in S with 15-16 of those in RBD.236,237 
While RBD accounts for only 15% of S, it is the target of over 90% 
serum nAbs.123 Importantly, 8-10 of the 15-16 RBD mutations are 
present in receptor-binding motif (RBM), which directly interacts 
with ACE2 receptor (and most monoclonal nAbs).236,237 For com-
parison, Delta and Gamma have 10-12 and 12-13S mutations—with 
1-3 and 3 localized in RBD, respectively.237 Consequently, Omicron-
specific nAbs are low or undetectable in individuals that had previ-
ously had infection to other strains or have been vaccinated with 
wildtype S. This makes Omicron very effective at evading immune 
responses and VE drops to 57% with this variant.210,238–240 Omicron 
also escapes 85% of existing monoclonal nAbs.241 Vaccination, with 
or without a booster, provides better protection against Delta than 
Omicron,238,240 but BTI with Delta are associated with higher dis-
ease severity than with Omicron.221

4.3  |  Booster vaccines increase nAbs and reduce 
infection with nAb-escaping variants

The rapid waning of VE (and correlatively, nAbs) and the everchang-
ing SARS-CoV-2 have made necessary the implementation of an ad-
ditional vaccine dose. This is usually a third dose called a booster 
for mRNA-based vaccinations (or a second dose after the one-dose 
adenovirus vector vaccine regimens). This approach of a COVID-19 
booster vaccination (administered 5-9  months after the two-dose 
regimens) has shown to reduce the infection risk, severe illness, and 
deaths,238,240,242 including older individuals243–245 and immunosup-
pressed patients.246 It also more rapidly decreases the viral RNA 
loads in patients with BTI and temporarily restores the declining im-
munity previously evoked by two-dose vaccination.210,211 Regardless 
of the type of initial and vaccine technologies used, boosters sub-
stantially raise the levels of binding Abs (by 5-fold to 55-fold) and of 
cross-variant nAbs (by 4-fold to 73-fold) against multiple strains, in-
cluding Beta, Gamma, Delta, and Omicron.231,238,247–250 Importantly, 
the highest nAb production against Omicron is observed in BTI with 
Delta (i.e., infection on two-dose vaccination) or two-dose vac-
cinated convalescent individuals,251–253 emphasizing the superior 
neutralization potency of hybrid immunity against immune-evading 
variants. Boosters can also potentially decrease the BTI infectious-
ness risk (i.e., disease transmission by variants).210,239 Even though 
boosters contain wildtype S, they can restore waning immunity and 
expand its breadth, possibly prolonging protection against reinfec-
tion with either the ancestral strain or variants.

4.4  |  Memory B cell responses in COVID-19 
vaccination

Like infection, primary vaccination against SARS-CoV-2 also pro-
vokes a strong MBC recall response and with booster vaccines 
eliciting expansion of MBC that rapidly enhance production of 
cross-variant nAbs.183,247 Similarly, the frequency of circulating MBC 
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remains relatively stable for 6-9 months post-vaccine.181 In contrast 
to infection where class-switched MBC continuously evolve over 
time,36,42,113 the evolution of vaccine-generated primary MBC is ei-
ther little or no change in the blood or secondary lymphoid organs 
weeks after the second dose.111,113,254

4.5  |  Lack of bona fide LLPC in response to 
COVID-19 vaccination

To be long-term effective, a vaccine must generate LLPC, which de-
liver durable recall protection through constitutively secreting cir-
culating “memory” Abs as a rapid primary response. In reality, not all 
vaccines generate and maintain LLPC. For example, while tetanus, 
smallpox, or MMR vaccines offer long-lasting protection (i.e., long-
lived vaccines: LLV), pneumococcal 23-valent (PSV23), hepatitis B, 
or influenza vaccine confers short-lived efficacy (i.e., short-lived vac-
cines; SLV).27,255–258 Although the mechanisms for LLV and the gen-
eration and maintenance of LLPC remain poorly understood,34,114 
infections with a whole, replicative virus often induce long-lasting 
response even though viral Ag component-based vaccines usually 
lead to short-lived immunity.114

Concerns have been raised that COVID-19 vaccines more likely 
belong to the SLV group.259–261 The acquired humoral immunity rap-
idly waning within 4-6 months after completing two-dose and post-
boosters (i.e., VE decreases to 66% and 78% within 4  months262) 
(Figure 2) is inconsistent with LLPC being generated and maintained. 
Indeed, mRNA vaccination, instead of consistently provoking a pri-
mary LLPC response, may just trigger a secondary recall.113,260,263 
The nature of such recall response might be that of immunity 
conferred by pre-existing cross-reactive MBC and cross-reactive 

memory T cells,263 which were previously elicited from prior vac-
cination113 or previous eCoV infection), which may be mostly non-
neutralizing and non-protective against the newest virus.

In a single study, mRNA vaccines are reported to induce per-
sistent GC reactions that last for months,183 where blood circu-
lating ASC peak around 3-4 weeks and decline until becoming 
virtually absent at 7 weeks. The presence of genuine LLPC is 
again not entirely evident.16,32,103 Surprisingly, S-specific GC 
B cells and ASC residing in LN are detected for up to 6  months 
post-vaccination.254 At this time point, when Ag-specific MBC are 
formed and display levels of mutation similar to the GC-derived 
clones, highly mutated S-specific ASC are present in the BM.254 If 
persistent GC reactions and possibly reactivation of pre-formed 
MBC are ongoing for up to 6  months (which is a very long time 
for typical GC activities),254 they would keep seeding the BM with 
newly generated ASC. Hence, it is crucial to consider not only the 
presence of those newly generated ASC but also the actual tim-
ing of their arrival in the BM. Additionally, identification of ASC 
within the BM compartment does not necessarily mean they are 
LLPC due to the heterogeneity of the plasma cells in this site.32 
Consequently, new ASC arrivals in the BM may not have suffi-
cient time to mature. Thus, BM samples collected within months 
post-infection or post-vaccination may or may not become LLPC. 
Currently, there are no sequential studies to assess the actual tim-
ing of newly generated ASC and their arrival in the BM. Moreover, 
there are no immune correlates of durability which can only be 
conclusively determined by a tincture of time. Thus, like natural in-
fection, definitive evidence of bona fide LLPC16,32,103 in response 
to vaccination against SARS-CoV-2 is currently lacking. This po-
tential absence of vaccine-induced LLPC might indeed be one of 
the reasons for reinfections and BTI within months.68

TA B L E  2  Protection induced by homologous vaccine boosting or wildtype virus infection against evolving SARS-CoV-2 virus

Variant of concern Wildtype Alpha Beta Gamma Delta Omicron

Sequence mutationa

Genome − 25-26 22-23 25-26 24-36 56-60

S − 10-11 10-11 12-13 10-12 31-37

RBD − 1-2 3-4 3 1-3 15-16

RBM − 1-2 2 2 1-3 8-10

nAb potencyb +++++ ++++ ++ +++ +++ +

Vaccine- or infection-induced 
protectionb

+++++ ++++ ++ +++ +++ +

Note: Natural infection with wildtype SARS-CoV-2 virus or receipt of a homologous vaccine booster after completion of the two-dose wildtype S-
based vaccine series induces nAb potency (and hence, protection) of the highest level against the wildtype virus, which decreases gradually against 
variants of concern. In general, the most or the least reduced protection is observed in the variant bearing the most numerous or the least numerous 
numbers of mutations, respectively, in RBD/RBM sequence (i.e., most epitopic changes or more conserved epitopes, respectively). It is the generated 
MBC that increase in the number and continue to clonally evolve for at least 6-12 mo after (mild) infection or upon boosting that give rise to Abs with 
higher potency and broader breadth in neutralizing activities against the evolving virus. See texts for detail. Sequence mutation is retrieved from 
https://covdb.stanf​ord.edu/page/mutat​ion-viewe​r/.
Abbreviations: nAb, neutralizing antibody; RBD, receptor-binding domain; RBM, receptor-binding motif; S, spike.
aVaries by sublineages.
bBy homologous boosting (3rd dose) or wildtype virus infection; the more (+), the stronger.

https://covdb.stanford.edu/page/mutation-viewer/
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4.6  |  Transcriptional profiles of ASC after 
vaccination

The exact mechanism of the efficiency of mRNA-based vaccines 
against SARS-CoV-2 remains largely unclear. Recent studies have 
tried to resolve this query by characterizing the transcriptional 
profile of ASC post-vaccination. Studies have shown that the first 
dose generated polyclonal non-neutralizing IgA-dominant ASC re-
sponse with some S2-specific plasmablasts with low SHM, whereas 
the second dose provided neutralizing B cell responses to S1 with 
RBD.264,265 A mass cytometry-based study identified expansion of 
metabolically active, class-switched plasmablasts expressing CD71, 
CD98, and cytochrome C between day 0 and 28 post-vaccine.266 
Similarly, Amanat et al.128 reported that some of the isolated S2-
specific mAbs had cross-reactivity toward human coronaviruses, 
suggestive of recall responses which were initially induced by sea-
sonal beta-coronavirus exposure. To support this model, some of the 
cross-reactive mAbs showed extensive SHM. Ultimately, NTD and 
RBD antibodies co-dominated the response induced by SARS-CoV-2 
mRNA vaccination, indicating alternative targets for vaccine.128

Although abovementioned studies have provided the initial 
characterization of ASC response after vaccination, they are mostly 
qualitative using PBMC,267,268 thus resulting in the same limitations 
as previously described in single-cell analysis of ASC after infection. 
Furthermore, these studies are devoid of transcriptional compari-
sons of ASC between SARS-CoV-2-infected and vaccinated individ-
uals but enumerate ASC subsets within total PBMC populations. 
For example, the CITE-seq-based study showed an enrichment of 
plasmablasts in COVID-19-infected patients but not after vaccina-
tion.268 This may have resulted apoptosis of ASC using frozen PBMC. 
From the limited number of plasmablasts, these studies showed that 
COVID-19 patients were enriched in oxidative phosphorylation, type 
I and type II IFN responses, fatty acid metabolism, and mTORC1 sig-
naling genes as compared to healthy donors. Additionally, plasmab-
lasts of mRNA vaccinated and healthy donors were transcriptionally 
overall similar except for TNF-NFkB pathway activation. A similar 
observation was made where volunteers were vaccinated with in-
active COVID-19 vaccine.267 Although interesting, limited numbers 
of ASC analyzed would require further validation with enriched ASC 
populations.

5  |  HYBRID IMMUNIT Y IN SARS- COV-2 
INFEC TION AND VACCINATION

5.1  |  Local vs systemic protection: Abs at the viral 
entry site

While infection incites a specific mucosal response dominated by 
potent neutralizing IgA early on at the site of viral entry,95 intra-
muscular vaccines only lead to the production of circulating but not 
residual mucosal IgA177,178 (Figure 3). However, intramuscular vac-
cines can induce virus-specific IgG in the upper respiratory mucosal 

sites.269 With intranasal (adenovirus-vectored) vaccines, both circu-
lating and mucosal IgA are accelerated to protect against infection 
and transmission in animals,270 similar to mucosal immunity after 
infection. Altogether, as protection is not a single outcome with con-
clusive correlates, it would be important to understand the durabil-
ity of both mucosal and systemic humoral responses.

5.2  |  Protection conferred by vaccination versus 
infection: equivalent, superior, or inferior?

To control reinfection at both population and individual levels, it is 
essential to understand whether protection elicited by vaccination 
might be more durable than by infection.271 Initially, high levels of 
protection (>90-95%) against reinfection were observed equally 
after vaccination11,167–174 and infection,69,235 in part due to similar 
early decay rate of nAbs after infection and vaccination (approxi-
mately 60 days).74,179 Also, similar protective Ab response was also 
observed between individuals after two vaccine doses and those 
who had a previous COVID-19 infection after only one vaccine 
dose.272 Thus, protection elicited by vaccination and infection origi-
nally appeared to be relatively equivalent.

While infections with the 1918 influenza pandemic virus elicited 
life-long protection,3 after influenza vaccines, humoral immunity 
rapidly declines within 6 months.273 For COVID-19, protective im-
munity conferred by vaccines was most sufficient within 2 months, 
although it may last 4-6  months.11,167–174 Immunity after infection 
appeared to last 4-9  months.36,69,186,235 However, observational 
studies suggest prior infections, especially those caused by Delta, 
drove greater protection against reinfection and severe disease than 
did full vaccination at 3-8  months.14,70,274,275 The reinfection risk 
among the survivors from initial infection drops remarkably by 80-
95% over 6-9 months and even at 12 months.54,67,69,235,276–280 Even 
if patients were reinfected, they had lower incidence of severe dis-
ease. Thus, protection elicited by infection may be superior.

On the contrary, other studies suggest vaccines may provide 
better protection. For example, cross-neutralization occurred spo-
radically in the sera among previously infected patients but if pre-
viously infected individuals are vaccinated, nearly all developed 
cross-neutralizing titers against multiple variants.281 Immunization 
of non-infected patients also elicited cross-neutralization but at 
lower rates. Yet, another study showed that there was higher fold re-
duction of neutralization titers to new spike variants in patients with 
history of COVID-19 infection vs vaccine recipients.282 Additionally, 
and in favor of vaccination, an epidemiologic study of COVID-19-
hospitalized infections showed 5.5 times higher rates among previ-
ously infected patients compared to fully vaccinated adults within 
90-179 days after infection or vaccination.283 Prior to the circulation 
of Delta, COVID-19 infections were higher among persons who 
survived previous infection, suggesting that vaccination appeared 
superior; however, when Delta became the predominant circulating 
strain, case rates were higher among persons who were vaccinated 
compared to those who survived previous infection, demonstrating 
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immunity from infection was indeed superior.221 Whether this is 
true also for Omicron will require further study.

The differences between infection versus vaccine-induced pro-
tective durability may be influenced by several immunological fac-
tors. The different aspects may drive MBC evolution and selection to 
distinctive Abs. For example, infection-induced MBC appears to un-
dergo greater affinity maturation than those induced by vaccination, 
possibly generating more robust and durable immunity.36,42,107,111,113 
Antigen persistence in infection is weeks while for mRNA vaccines, 
it is days.36 The route of Ag delivery probably plays a role with mu-
cosal routes in infection and intramuscular with the current mRNA 
vaccines. Infections with its sundry of proteins in the intact virus 
compared to the adynamic pre-fusion S in the vaccines likely also 
manifests different immune responses.284 In sum, while infection-
induced immunity may be generally superior to vaccine-elicited 
one,114 virtues of immunity provided by vaccination in addition to 
protection from infection can be appreciated.

5.3  |  Hybrid immunity confers better protection 
than vaccine or infection alone

Hybrid immunity, which is induced by prior infection in combination 
with vaccination, may drive stronger and longer-lasting protection 
against reinfection and severe disease compared to either immunity 
from infection or vaccination alone during 3-8 months from induc-
tion. During the Delta-virus surge in the summer 2021, previously 
infected persons who received the vaccine were protected against 
reinfection and severe disease better than adults who received just 
two doses of the vaccine.14,70,274,275,285,286 Although all immunity 
wanes, vaccination after infection induced a rapid nAb titer which 
had higher cross-variant neutralizing activity compared to healthy 
adults after just two vaccine doses42,107,187–189,197,272,281,287–290 
(Figure  2). Also, BTI significantly enhanced Ab responses to el-
evate IgA production (possibly owning to the intranasal route of 
Ag exposure) and broaden cross-nAb potency against variants.291 
Importantly, hybrid immunity appears the most protective against 
Omicron, which is the most mutated and most immune evasive vari-
ant to date.5,251–253,292,293 Overall, hybrid immunity appears to offer 
an immune response that is more robust, more durable, and with 
the best cross-variant neutralization than immunity from vaccine or 
infection alone.

6  |  THE A SC RESPONSE IN COVID -19: 
PREDIC TING LONG -TERM ANTIBODIES

6.1  |  Protection is not a single outcome but 
correlated with nAbs that wane

The long-term control of the COVID-19 pandemic depends on under-
standing durability of protection, which is based on memory induced 
by infection and/or vaccination. Protection against symptomatic 

reinfection and severe illness is normally assessed epidemiologically 
since a single immune outcome is not available. Immune protection is 
likely attributed by multiple aspects of memory responses involving 
dynamic interplays of viral replication and pathogenesis with key hu-
moral and cellular components that include Abs, B cells, and T cells 
(and secreted products).195,225,229,294,295 The current lack of stand-
ardized or consensus quantitative Ab (particularly nAb) assays across 
studies further complicates this assessment.296

Although Ab responsiveness represents only a partial picture 
of the overall immune responses, the magnitude of serum nAbs in 
most viral infections and vaccination is highly predictive of pro-
tection against reinfection.74,126,297 Immunologically, this effect is 
based on nAb functions which are to block the entry of virus into 
its target cells through binding viral surface Ag epitopes. Indeed, 
the success of vaccines to date has relied on nAbs. For SARS-CoV-2, 
passive transfer of monoclonal nAbs, which mostly recognize viral 
RBD,298–300 offers protection against infection and severe disease in 
outpatients301 and macaques.229 nAbs can contribute to over 68% 
vaccination-induced protection.195 Moreover, in severe disease, fatal 
outcomes are associated with the delayed nAb kinetics.302 Overall, 
nAbs are positively correlated with protection against symptomatic 
(not asymptomatic) reinfection and severe disease.126 Thus, while 
MBC have recently been proposed to serve as an indicator of pro-
tection beyond declining nAbs, nAbs may be a surrogate measure of 
protection in COVID-19.303,304

6.2  |  Predicting long-term Abs against SARS-
CoV-2: lessons from endemic coronaviruses

The maintenance of long-term protection in COVID-19 can only be 
conclusively defined with the passage of time. However, as SARS-
CoV-2 and other coronaviruses, including SARS-CoV-1, MERS-CoV, 
and eCoV, are related phylogenetically and antigenically, the natu-
ral history and immune durability of coronaviruses may provide in-
sights to predict potential outcome for SARS-CoV-2. eCoV circulate 
worldwide and elicit SARS-CoV-1-specific MBC (and memory T cells) 
in many adults.263,305–308 Durability of the response to eCoV var-
ies significantly and is also strain-dependent.309 Most infections 
with eCoV, such as OC43, NL63, 229E, or HKU1, as well as SARS-
CoV-1 and MERS-CoV, led to Ab responses that last for only sev-
eral months,310,311 although some wane within 12-18 months.306–308 
Thus, they were thought to be short-lived. However, one report 
showed they persist for up to 3 years while another suggested longer 
durability but they were just modeling studies.68,312,313 SARS-CoV-1 
nAbs appear 5-10 days post-symptom onset314 but may wane even 
more rapidly than total Ag-specific Abs, raising questions whether 
there is humoral durability after infection with any coronavirus.312 
During initial SARS-CoV-1 outbreaks, nAbs were detected for 16-
24 months.306–308,312,315 Using linear mixed models, Ab levels associ-
ated with protection against reinfection last 1.5-2 years.74,316 In sum, 
it is not clear that after infection life-long protection is maintained 
with coronaviruses.
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6.3  |  Original antigenic sin and how pre-existing 
immunity affects SARS-CoV-2 antibodies

After 2 years into the pandemic and the widespread administration 
of vaccines, the immune landscape of COVID-19 is ever changing 
with a variety of MBC responses among individuals with vaccine-
induced, infection-induced, or hybrid immunity. Questions arise 
whether MBC are always helpful or can be potentially harmful to 
new emerging variants. Original antigenic sin (OAS) refers to an im-
munological phenomenon when the recall immunity generated by 
a previous strain dominates over the primary response to the new 
virus, resulting in potentiating disease severity.317 Dominance of 
pre-existing Abs that cross-react but do not likely neutralize the 
novel virus actually interferes with effective responses to the new 
infection. The best example of OAS is perhaps the 1918 influenza 
pandemic, which explains the increased morbidity of young adults. 
Recent studies suggest that these deaths may have resulted from 
past MBC responses, causing a rapid EF ASC response to the old 
but similar virus and delayed new naive B cell responses to the 
new viral subtype to mediate effective viral clearance. OAS is also 
known by various terms, such as immunological imprinting, Ag 
imprinting, Ag seniority, negative interference,318 and recently, 
back-boosting.319 For SARS-CoV-2, it is not clear if OAS will be 
problematic as new emerging variants arise; thus, close attention 
will be required.

eCoV, such as 229E, NL63, OC42, and HKU1, are among 
the most common causes of respiratory infections world-
wide.263,305–308 The pre-existing eCoV-specific MBC may be cross-
activated upon SARS-CoV-2 exposure, which might influence the 
subsequent response to SARS-CoV-2 infection263—and probably 
vaccination.113 While antigenic imprinting appear to be common 
and associated with disease severity in COVID-19, their overall 
protective impact has to date been largely neutral. In general, no 
protective correlation is observed,320–325 which is likely due to the 
inability of the raising eCoV-specific Abs to normally neutralize 
the new virus.35,323 However, cross-reactivity induced by recent 
eCOV infection could be relevant clinically as it can lessen disease 
manifestations322,323 or facilitate faster recovery in COVID-19.326 
Notably, children develop robust and stable cross-reactive Abs 
beyond 12 months, which may be linked to their often milder or 
asymptomatic COVID-19.327 Of note, recent in vitro studies using 
human FcγR-expressing cells suggest that these cross-reactive Abs 
may be worse than non-protective since they can induce ADE of 
infection with SARS-CoV-2 virus in these cells.325,328 Whether this 
in vitro phenomenon is relevant to patient disease is not known. 
In sum, infection with SARS-CoV-2 enhances pre-existing, eCoV-
specific Abs that are cross-reactive but mostly non-neutralizing 
against the new virus, unveiling in COVID-19 an OAS response that 
is often poorly protective and potentially harmful. In all, the cur-
rent serum assays to study OAS are severely limited since serum 
cannot distinguish newly generated Abs arising from newly minted 
ASC from Abs secreted by previously established plasma cells in 
BM and spleen.

7  |  AUTORE AC TIVE FE ATURES OF A SC 
AF TER SARS- COV-2 INFEC TION

7.1  |  Extrafollicular B cells in COVID-19 infection

An increasingly important component in the investigation of pri-
mary humoral immunity has revolved around the identification of 
non-canonical B cell activation pathways that initiate outside of tra-
ditional GC structures329 (Figure 1). First described in mouse mod-
eling of infectious disease,330 the EF response pathway was initially 
described as an expedited pathway to the generation of short-lived 
ASC responsible for the earliest waves of Ag-directed Ab produc-
tion. However, over the past decade, this model has developed nu-
ance, with evidence that EF pathway effectors can undergo SHM 
and contribute in a limited manner through both the generation of 
EF-derived memory and LLPC generation.331 These findings impli-
cate the need to view the EF pathway as a potential integral compo-
nent in all phases of immunity, not just in acute response. As such, 
understanding of primary B cell and ASC development requires 
careful evaluation of both GC- and EF-derived pathway activation.

While the balance of these pathways has been relatively limited 
in primary viral infection prior to the COVID-19 pandemic, exten-
sive work in autoimmune disorders such as systemic lupus erythe-
matosus (SLE) has revealed that disease severity in these patients 
is directly correlated with the extent of EF response bias. These 
responses are easily recognizable through the emergence of two 
t-bet-driven effector B cells—CD11c + IgD + CD27-activated naive 
(aN) cells and CD11c+IgD−CD27− double negative 2 (DN2) cells.118 
Both EF populations can be identified as expanded circulating com-
ponents in patients with active/flaring autoimmune disease and 
have been directly linked by repertoire analysis to the expanded ASC 
populations that are widely identified in SLE as pathologic compo-
nents of disease.332 Importantly, ASC resulting from EF-dominated 
B cell responses in those disease systems have undergone low lev-
els of SHM, low levels of negative selection, and have been directly 
linked to the emergence of self-reactivity within the humoral com-
partment.332 Though both pathways can contribute to the forma-
tion of long-term memory and persisting humoral immunity, their 
relative dominance in an ongoing immune response has important 
implications.

While extensive mouse studies had established EF response ac-
tivation as an important component in both primary infections and 
autoimmune models, its relevance to human infectious response had 
remained less clear due to the difficulty in establishing primacy in 
severe primary infection. Studying naive-derived responses to pre-
viously circulating seasonal viral infections in humans were often 
challenging to interpret due to unknown infection history and back-
ground memory B cells. However, the emergence of SARS-CoV-2 
provided a unique opportunity to study a single primary “natural” 
viral infection in the global human population. Early in the pandemic, 
a lack of effective immunomodulatory therapies allowed scientists 
to observe the ‘natural’ response courses in infected individuals, 
studies which would not be possible today. Employing emerging 
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technologies including high-dimensional flow cytometry,333 single-
cell RNA sequencing,334 VDJ repertoire analysis,110 and advanced 
serological screening methods,40 several groups, including our own, 
took advantage of these unique circumstance to characterize the 
natural development of B cell responses across a spectrum of pri-
mary viral disease severity.

7.2  |  Autoreactive features of COVID-19-
induced ASC

Despite early speculation that disease severity might correlate with 
a failure of B cell development and antibody production, these con-
cerns proved unfounded with early reporting of nAb titers across 
a spectrum of disease severity in the acute and recovery phase of 
COVID-19.335 These serologically based studies were rapidly bol-
stered by cellular analyses identifying ASC expansion as a critical 
feature of patients with severe disease.333 Importantly, dimension-
ality reduction and clustering analysis contained within that work 
revealed some indications of EF response intermediates in patients 
with highly expanded ASC, although a lack of markers dedicated to 
B cell classification made positive identification difficult. This robust 
ASC expansion was reminiscent of previous work in dengue where 
severe viral infection resulted in rapid ASC responses,18 suggest-
ing that the observed responses to COVID-19 may not be entirely 
unique. To further probe these responses, our group made use of 
directed B cell panels tuned to the identification of EF activation 
pathways to investigate emerging B cell responses across highly 
characterized patient groups with both mild/moderate and severe/
critical COVID-19. Surprisingly, the responses identified were highly 
similar to activation profiles seen in patients with chronic autoim-
mune disorders81, whereas mild/moderate patients displayed rela-
tively modest activation of the EF pathway, expanding transitional 
B cell populations and unswitched memory compartments. Analysis 
of severe disease revealed significant increases in aN, DN2, and ASC 
compartments, similar to the B cell compositions identified in SLE 
patients with high-activity.81

In addition, serum collected from these patients revealed an 
important hallmark of reduced peripheral tolerance with increased 
circulation of antibodies derived from B cells expressing IGHV4-34 
as a component of the BCR. This is significant because in germline 
configuration, these antibodies contain an inherent capacity for self-
targeting.336 In healthy individuals, while IGHV4-34+ clones can be 
readily identified in the naive B cell compartment, they are either 
negatively selected due to self-reactivity, or “redeemed” through 
SHM that eliminates the self-reactive potential of these clones.337 
Loss of this peripheral tolerance enforcement had been previously 
identified in flaring SLE and linked directly to the emergence of 
new autoreactivity.332 This finding combined with extraordinarily 
low SHM frequencies identified by our group and others110 within 
the ASC compartment were strongly suggestive that the course of 
severe infection may reflect some of the biology previously char-
acterized in the context of autoimmune disease. This possibility of 

emerging autoreactivity was supported by several early reports of 
self-targeted antibodies against phospholipids,338 nuclear antigens, 
and immune components such as type 1 interferons.339

However, despite the indications that some ASC targeting may 
be self-directed, patients displaying strong activation of the EF 
pathway nonetheless displayed higher levels of nAbs at early time 
points during acute infection whereas mild/moderate disease had 
more memory-oriented B cell composition.81 Indeed, direct testing 
of individual ASC clonotypes emerging from this low-selection en-
vironment displays high specificity to the virus with more than 65% 
confirmed as SARS-CoV-2 specific.82 However, despite this speci-
ficity, these cells are also prone to self-reactivity with clonotypes 
capable of binding nuclear antigens, naive B cells, and even glomer-
ular basement membrane, a target often associated with pathology 
of the kidney and lung. Interestingly, these features appeared inde-
pendently controlled. Individual clonotypes could display viral bind-
ing alone, self-reactivity alone, or even both.82 Thus, these findings 
are consistent with a general reduction in negative selection thresh-
olds and suggest that documented emergence of autoreactivity in 
these patients is more likely a function of altered tolerance than the 
result of molecular mimicry or non-specific clonal activation.

In patients with mild illness, a lack of these low-mutation ASC 
clonotypes together with lower levels of identified autoreactivity 
suggests that these features of ASC selection are highly responsive 
to the local developmental microenvironment. In this model, the EF 
response pathway could be envisioned as an emergency response 
mechanism. Under highly inflammatory conditions (reflecting severe 
viral illness), the slow process of GC-based B cell selection would 
be suppressed or even suspended84 in favor of EF activation for 
the purpose of rapid antibody production and infection control. 
Previous work in mice suggests that even in these EF responses 
positive selection is likely to guide clonotype inclusion, thereby en-
suring that the overall ASC mobilization will be generally viral spe-
cific. However, autoreactive clonotypes that have escaped central 
tolerance would also have the opportunity to respond under these 
circumstances, ultimately resulting in a mix of self-reactive and viral-
reactive ASC pools. These mixed antibody responses, while actively 
and effectively participating in viral clearance, may also contribute 
to the overall inflammatory environment through innate activation 
and self-targeting to create a feed-forward loop of EF response bias 
(Figure 4). Ultimately, this bias may result in mounting tissue damage. 
Perhaps more interesting is how engagement of multiple antigens 
due to poor negative selection might combine to drive low-affinity 
clones toward response inclusion, although extensive molecular and 
cellular study would be required to confirm this phenomenon.

7.3  |  Post-acute sequelae of SARS-CoV-2 infection 
(PASC) and the role of auto-Ab responses

Long COVID-19 syndrome (LCS), COVID-19 long hauler, post-acute 
COVID-19, long-haul COVID-19, or chronic COVID-19 is all terms re-
ferring to post-acute sequelae of SARS-CoV-2 infection (PASC). The 
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incidence and prevalence of PASC are difficult to determine given 
that these non-specific symptoms overlap with other clinical condi-
tions.8,340,341 However, PASC is becoming one of the most important 
healthcare problems of our time.341 Since SARS-CoV-2 infection can 
elicit auto-Ab responses, especially in those critically ill,82 whether 
the autoimmune responses during the acute phase of infection 
persist to contribute to the pathogenic mechanisms in PASC is not 
known.

Targets of these auto-Abs have been documented to include 
self-Ag seen commonly in autoimmune conditions342–345 and some 
have with molecular homology with SARS-CoV-2.346 Some identi-
fied targets included phospholipids,347–349 cytokines,343,345 and 
type 1 interferons.343,344,350 The disruption of these targeted self-
molecules could potentially explain procoagulant states, immune 
dysregulation, and the weakened antiviral responses, respectively, 
conditions commonly observed in COVID-19.351 Some research-
ers352 have even hypothesized that anti-idiotype auto-Abs against 
SARS-CoV-2-specific Abs could structurally resemble the SARS-
CoV-2  S epitopes with the potential to cause cellular dysfunction 
by engaging its cognate receptor ACE2. Notably, anti-ACE2 auto-
Abs have been reported in COVID-19.346 These proposed anti-
idiotype Abs would also be able to induce ADCC if the appropriate 
Fc functionality is present. It is still unknown whether the gener-
ation of auto-Abs during acute infection correlates with PASC, 
but evidence is starting to emerge that patients with PASC harbor 
auto-Abs for longer than the acute infection process,342,344,347 and 

overall immune perturbations last longer than the acute period.353 
Interestingly, SARS-CoV-2 mRNA vaccination does not appear to 
trigger auto-Ab responses.354

Forecasting who will eventually develop PASC could be help-
ful in anticipating complications and possibly directing treatment. 
Prediction models of self-reported symptoms and immune param-
eters have been suggested.355 One showed particular IgM and IgG3 
subclass signatures356 and another one utilized a complex multi-
omics analysis to show that during acute illness, auto-Abs and Th1-
like responses, along with type 2 diabetes, SARS-CoV-2 viremia, and 
Epstein–Barr virus viremia may anticipate PASC.344 Interestingly, the 
study also showed a signature of atypical memory B cells which were 
likely the previously described T-bet driven DN2 in SLE and severe 
COVID-19.81,118 Ultimately, a better understanding the longevity of 
autoreactive ASC after EF-biased responses after acute COVID-19 
infection may provide insight into one immune mechanism of PASC.

8  |  CONCLUSIONS

After 2 years into the COVID-19 pandemic, we are still witnessing 
an ongoing “arms race” between an everchanging SARS-CoV-2 virus 
and an evolving immunity induced by infection or vaccination. Much 
progress has been made in understanding the cellular origins of such 
responses yet many questions remain unanswered about the dura-
bility of long-term protection. A better understanding of the balance 
between the EF and GC responses and the phenotype of ASC for 
the generation and maintenance of LLPC after infection and vaccina-
tion are still needed. The role of antigenic imprinting with each new 
emerging mutant will also be essential to develop a nimble vaccine 
strategy together with viral surveillance. Scientifically, the pandemic 
has proven itself to be an unprecedented opportunity to understand 
the immune response to primary viral infections. With the deep im-
munological insights of B cell and plasma cells, we will be prepared 
for the next one which is not a matter of if but when.
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