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Carbon Dioxide (CO
2
 ) is a significant contributor to greenhouse gas emissions and one of the main 

drivers behind global warming and climate change. In spite of the global economic slowdown due to 
the COVID-19 pandemic, the global average atmospheric CO

2
 concentration reached a new record high 

in 2020 with its year-on-year increase being the fifth highest annual increase in 63 years, according to 
the National Oceanic and Atmospheric Administration. Furthermore, the years 2020 and 2019 were 
respectively the second and third warmest, while the decade 2010–2019 was the warmest decade ever 
recorded. In an attempt to curb this climate emergency, many countries and organizations globally 
have adopted ambitious goals and announced plans to help dramatically reduce CO

2
 emissions. As part 

of these plans, various innovative smart city projects are being developed, focusing on implementing 
Internet of Things (IoT) technologies. By collecting sensor-based data, such technologies aim towards 
automating data-driven decision-making around carbon emission management and reduction. In 
this work, a hybrid machine learning system, aimed at forecasting CO

2
 concentration levels in a 

smart city environment was developed using a multivariate time series dataset containing IoT sensor 
measurements of CO

2
 , as well as various environmental factors, taken at every second. The proposed 

system demonstrated superior performance to similar methods, while also maintaining a high degree 
of interpretability. More specifically, the approach was empirically compared against other similar 
approaches in several scenarios and use cases, thus also offering more insight into the predictive 
capabilities of such state-of-the-art systems. For this comparison, both traditional time series and 
deep learning approaches were employed, including the current state-of-the-art architectures, such 
as attention-based, transformer networks. Results demonstrated that, when measured across various 
settings and metrics, including three different forecasting horizons, the hybrid solution achieved the 
best overall results, and in some cases, the difference in performance was statistically significant. 
At the same time, insights from the system’s inner workings were extracted, shedding light on the 
reasoning behind the model’s predictions and the factors that contribute to them, thus showcasing 
its transparency. Lastly, throughout the experiments, deep learning approaches illustrated their 
ability to better handle the multivariate nature of the dataset and in general tended to outperform the 
traditional time series methods, especially for longer forecasting horizons.

Carbon dioxide (CO2 ) levels and other greenhouse gases in the atmosphere have risen to new highs in recent 
years. Being one of the main drivers behind global warming, CO2 emissions have resulted in some of the warm-
est years on record; in fact, the decade 2010–2019 was the warmest ever recorded. Recent predictions for the 
World Meteorological Organization by a team from 11 forecast centers have shown that there’s a 48% chance 
the globe will temporarily reach a yearly average increase of 1.5 ◦ C above pre-industrial levels of the late 1800s, 
between 2022 and 2026. There is consensus among scientists that such an increase, if sustained long-term, risks 
unleashing severe climate change effects on people, wildlife, and ecosystems—some of which may be  irreversible1.
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As a result, the Paris Agreement, adopted in 2015, aimed to strengthen the global response to the threat of 
climate change by keeping a global temperature rise this century well below 2 ◦ C above pre-industrial levels and 
given the grave risks, to strive for the 1.5 ◦ C threshold. To achieve this outcome, the agreement lays out plans to 
strengthen the ability of countries to deal with the impacts of climate change and maintain environmental sus-
tainability, through appropriate financial flows, a new technology framework and an enhanced capacity-building 
 framework2. One of the main goals of the agreement is for countries to bear the responsibility of reducing their 
CO2 emissions. More specifically, hitting the ambitious 1.5 ◦ C mark requires almost halving global CO2 emis-
sions from 2010 levels by 2030 and cutting them to net zero by 2050. Implementation of the Paris Agreement is 
also essential for the achievement of the Sustainable Development Goals set out by the  UN3.

Thus, in light of the increasingly serious, CO2 emissions-derived problems, the significance of CO2 levels 
monitoring and forecasting has been acknowledged, as an important means of enacting and applying appropri-
ate proactive and reactive measures. To this end, more and more smart-city projects are employing Internet of 
Things (IoT) systems to enable continuous environmental monitoring by measuring CO2 concentrations among 
other pollutants in urban living environments. Recent advances in IoT technologies and devices have led to the 
deployment of monitoring systems based on low-cost Wireless Sensor Networks (WSNs) for real-time collection 
of CO2 data both in open city  environments4 and indoor  contexts5. Such systems seek to provide efficiencies in 
areas such as energy  consumption6,  transportation7, and more by utilizing micro-sensors, micro-controllers, 
wireless communication technologies, cloud IoT platforms, and advanced data analysis methods for collecting, 
processing and storing data, as well as for producing forecasts and visualizations to end users.

In this study, a multivariate dataset containing IoT sensor measurements of several environmental factors 
was used to develop a hybrid time series model, aimed at forecasting CO2 concentration in a smart-city envi-
ronment. More specifically, the approach consists of a statistical method, AutoRegressive Integrated Moving 
Average method (ARIMA)8 and a deep learning method, Temporal Fusion Transformers (TFT)9. c. That said, 
studies using time series models along with IoT technologies for emissions forecasting are relatively sparse in 
the literature. At the same time, the proposed system is highly interpretable by nature, meaning that the reasons 
behind its forecasts can be attributed back to its inputs—a critical and much-desired property for the adoption 
of such systems in real-life  applications10. The developed hybrid approach was benchmarked against its sepa-
rate core components, ARIMA and TFT, as well as several other methods, namely Exponential  Smoothing11, 
Fast Fourier Transform (FFT)12, the Theta method,  DeepAR13, N-BEATS14, Transformer  Networks15, Temporal 
Convolutional Networks (TCN)16 and Long Short-Term (LSTM)  Networks17.

The rest of this paper is organized as follows: in section “Related work”, a number of related studies pertaining 
to CO2 emissions forecasting are presented. Subsequently, in section “Methods”, the dataset and its preprocessing 
are described, the proposed hybrid solution and the motivation behind it are analyzed and the implementation 
details around the experimental procedure are outlined. Later, in section “Results and discussion”, the results 
are reported and discussed. Finally, the concluding remarks of this study are provided in section “Conclusion”.

Related work
In this section, scientific work related to this study, regarding CO2 concentration and/or CO2 emissions predic-
tion, is presented. In general, CO2 forecasting models can be split into four broad categories: statistical time 
series models, traditional machine learning models, deep learning time series models, and lastly hybrid models, 
which combine models from one or more of the above categories.

Statistical time series techniques are used to model data that come in the form of sequences. In the domain 
of CO2 forecasting, this can be a series of CO2 measurements captured at successive, equally spaced points in 
time, for example, the CO2 concentration around a certain area every minute or some other time interval. Such 
models, including but not limited to autoregressive (AR), moving average (MA)8, exponential  smoothing11,18 and 
structural time series  models19,20 can naturally handle the sequential nature of the data. Among the statistical time 
series methods, ARIMA seems to be the most popular for CO2 emissions  forecasting21,22. That said, many others, 
such as  ARMA23,24,  ARIMAX25,  NARX26,  SARIMAX27 the Holt-Winters exponential smoothing  model22,27,28 
as well as the more recent Prophet  model29 have been also applied to the same problem. Statistical time series 
models for CO2 forecasting typically come with two main limitations. Firstly, they usually make strong assump-
tions about the underlying data properties, their distribution as well as time dependencies. If not satisfied, these 
assumptions can pose limitations on modeling, which in turn could potentially hinder performance. Secondly, in 
order to perform well, they often rely on human domain knowledge and expertise, which might be hard to obtain.

Traditional machine learning models have demonstrated the ability to learn complex relationships from 
the data itself, with little or no human  intervention30. Such models have appeared in numerous CO2 emis-
sions forecasting studies, with linear regression (LR)31,32, support vector  machines27,32, random forest (RF)27,32,33 
and feed-forward neural networks (ANNs)22,34 being the most commonly used approaches. Other supervised 
regression approaches have also been applied, albeit to a lesser degree; these include ridge regression (RR)32,35, 
polynomial  regression36, k-nearest  neighbours32, extreme learning  machine23,37, decision trees (DT)32,35, gradi-
ent boosting (GB)32,35, Gaussian  processes38 as well as neuro-fuzzy rules (39 and evolutionary  algorithms40. A 
great limitation of traditional machine learning models for CO2 forecasting is that, unlike statistical time series 
methods, they cannot inherently handle the temporal nature of time series data. Firstly, they often assume that 
data points are independent and identically distributed (i.i.d.). However, in time series data, observations are 
highly correlated and exhibit complex temporal dependencies. Secondly, time series data often exhibit time-
related characteristics, such as seasonality and trend. Traditional machine learning models typically struggle to 
effectively capture and model these patterns without additional preprocessing steps such as data transformations 
and feature engineering.
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Deep learning time series models, similarly to statistical time series methods, can inherently handle sequential 
 data41. However, instead of relying on human expertise to guide them, they allow for complex data relation-
ships, including temporal ones, to be learned directly from the data itself. More specifically, such models have 
been shown to be particularly efficient in learning high-level data representations arising from complex variable 
 relationships42. Deep learning models for time series usually make use of one or more of the following neural 
network architectures as their building blocks: recurrent neural  networks43, convolutional neural  networks44 
and more recently attention-based neural networks, such as  transformers15. Compared to other methods, deep 
learning-based approaches, either pure or hybrid, for CO2 emissions forecasting are much less common in 
literature. Most approaches employ recurrent neural  networks45 and their variations, such as long short-term 
memory  networks46–48 and bidirectional long short-term memory  networks49, while attention-based recurrent 
neural networks have also been  applied50. Deep learning models can be very powerful but do not come without 
their own drawbacks. Due to their superior expressiveness, they are prone to  overfitting51 and often require 
large amounts of training data to generalize well. Furthermore, the majority of deep learning models suffer from 
interpretability issues, as they often act as black boxes and their decisions cannot be explained  well52.

To address the shortcomings of each of the previously discussed single-model categories, hybrid approaches 
that combine one or more models from one or more categories are often used. Specifically for CO2 emissions 
forecasting, a framework integrating index decomposition analysis (IDA) along with ANNs and data envelop-
ment analysis (DEA)for the modeling greenhouse gases produced annually by Canada’s industrial sector was 
employed  in53, while a model combining a general regression neural network and scenario analysis was con-
structed  in54, in order to forecast China’s carbon emissions between 2016 and 2040, under different scenarios, 
based on various influencing factors.  In55, a pure deep-learning hybrid was proposed as long short-term networks 
were combined with convolutional neural networks to predict CO2 levels for the year 2020. In an older  study56, an 
ensemble Adaptive Neuro-Fuzzy Inference System (ANFIS) learning method, integrating the advantages of both 
fuzzy inference systems and ANNs was applied to predict CO2 emissions. Furthermore,  in57, a hybrid approach 
blending the results of nine different algorithms (a variety of machine learning, statistical time series, and deep 
learning) along with mathematical programming was developed to forecast the emission rate of greenhouse 
gases in Iran between 2018 and 2028, while  in58 two hybrids were proposed; the first combined the metabolic 
non-linear grey model (MNGM) with ARIMA, while the second fused MNGM with a back propagation neural 
network model (BPNN). Both models were applied to predict the carbon emission trajectory of China, the US, 
and India for the 2019–2030 period. A two-step hybrid method was developed  in59: first, CO2 emissions are 
predicted using multiple regression, Gaussian process regression, and ANN models separately, whose predictions 
are then fed as input to an ANN to produce the final prediction. Three different models, namely ANNs, RF, and 
particle swarm optimization (PSO) were integrated into a single approach  in60 to make projections regarding 
the Chinese commercial sector CO2 emissions from 1997 to 2017. Although a number of recent studies have 
developed hybrid approaches to the problem of CO2 forecasting, existing hybrid solutions do not focus on the 
benefits of using attention mechanisms, such as TFT, in time series, which have been shown to achieve both 
improved performance over comparable recurrent networks and a greater degree of interpretability through 
attention  weights9. More specifically, the capabilities of TFT were demonstrated  in61, where Huy et al. combined 
it with linear regression for Short-Term Electricity Load Forecasting. Their hybrid approach was compared 
against a number of models both statistical and deep learning ones, demonstrating its superiority. Similar results 
were reported  in62, where TFT-based hybrids outperformed other comparable models in the vast majority of 
performance metrics for wind speed forecasting. At the same time, the model’s interpretability was illustrated, 
offering insights into the deciding factors of wind speed forecasts during each season (Spring, Summer, Autumn, 
and Winter). The interpretable nature of TFT was further illustrated  in63, where TFT was applied to a multi-
variate dataset, including historical tourism volumes, travel forum, and search engine data as well as monthly 
new confirmed cases of travel destinations to forecast tourist volumes amid the COVID-19 pandemic. Analysis 
revealed, among other insights, to what degree pandemic-related search engine data affected traveling volumes.

Methods
Data description and preprocessing
For both modeling and evaluation purposes a multivariate CO2 dataset, originally proposed  in35, containing 
measurements observed by a WSN was used. More specifically, the network consisted of three main parts includ-
ing the sensor device, the sink node device, and the server. All IoT devices were deployed to gather measurements 
regarding environmental conditions every 1 s for 24 h per day over a three-month period. In particular, the 
following environmental factors were recorded: CO2 concentration in ppm (part per million), the temperature 
in ◦ C, light intensity in foot candles (approx. 0–1000), and percentage of humidity. Table 1 contains a summary 
of the dataset. Furthermore, on the left-hand side of Fig. 1, the raw time series of each variable is depicted over 
a 3-day period, while on the right-hand side, the entire data distribution of each variable is shown in the form 
of a box-plot. As mentioned, more information about the dataset and its collection process can be found  in35.

In terms of data preprocessing, firstly, all duplicated values were removed from the dataset. Subsequently, 
any bad records, i.e. records that did not adhere to the dataset schema, were dropped. The next step included 
some basic outlier handling by capping values found to be outside reasonable bounds—most likely caused by 
some software or hardware bug. More specifically, the following ranges were used to restrict the values of each 
column: 0–1000 for CO2 concentration, 20–40 for temperature, 0–100 for humidity, and 0–1000 for light inten-
sity. These values were determined based on the data distributions, boxplots for which are presented in Fig. 1. 
Any values outside these ranges represent the most extreme 0.3% or less of data points for any of the variables. 
This process resulted in 19,492 values being clipped in order to be kept within the aforementioned ranges, which 
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can be broken down as follows: 18162 CO2 concentration values, 582 humidity values, 374 temperature values, 
and 374 light intensity values.

The deployment of three IoT sensors meant that for each point in time, in this case for every second, there 
were typically three different values for each environmental factor, each corresponding to a separate sensor. Such 
large data volumes, combined with limited computational resources, resulted in the values of the IoT data being 
averaged at an hourly level for modeling and evaluation purposes. That is, for every column, any data points, 
from any sensor, present in a given hour of the day (1–24) were averaged to form a single data point in time 

Figure 1.  Raw data distribution for each variable over a 3-day period (left). Box-plot for each variable over the 
entire 3-month period (right).



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17266  | https://doi.org/10.1038/s41598-023-42346-0

www.nature.com/scientificreports/

corresponding to the hourly period in question. It is also worth noting that any empty values present in the data 
were ignored during this calculation. Lastly, in the cases where, after performing this averaging for a given hour 
(1–24) in a day, the result was an empty value, i.e. all second-level measurements from all three sensors for that 
hour had empty values, then that hour was completely ignored.

Proposed hybrid time series approach
This section outlines the motivation behind the proposed hybrid approach and its two main blocks, AutoRe-
gressive Integrated Moving Average (ARIMA) and Temporal Fusion Transformer (TFT), are analyzed in detail.

Motivation
When it comes to the application of machine learning systems to smart cities, although several studies were 
conducted over the last decade, the number of those focusing specifically on the CO2 emissions prediction issue 
with IoT technologies is limited, compared to other  applications64,65. An older  study66, developed three differ-
ent machine learning models, Naive Bayes, ANN, and DT, using sensor information to forecast CO2 levels, as a 
proxy of air quality in smart environments. In a more recent  study67, the RF algorithm was applied to estimate the 
CO2 content in the air of a smart home, based on factors such as the internal and external temperature, internal 
relative humidity, and the date and time of day, while  in35 a variety of models, namely RF, GB, LR, RR, DT and 
LSTM were developed and then compared for CO2 concentration estimation. More studies were conducted 
over the last two years: in 2021, a system that utilized real-time in-vehicle sensor data was  proposed48, in order 
to forecast the vehicle’s CO2 levels using an LSTM network; then in 2022, a multi-linear regression approach 
was  adopted68 to predict CO2 emissions, based on IoT traffic flow data, taking into account both congested and 
uncongested conditions.

In this work, a new, highly interpretable, hybrid model, able to naturally handle time series data (unlike 
traditional machine learning models, such as RF, DT, LR, GB, etc), was built for CO2 concentration forecasting. 
Hybrid approaches have a long history in time series  forecasting69. One of the first and most influential works 
on hybrid models for time series was that of  Zhang70, combining ARIMA with a neural network model. Since 
then, hybrid models for time series have gained a lot of popularity and a wide variety of combinations have been 
 proposed71–73.

The fundamental motivation behind hybrid methods is that the combination of the best of statistical and 
machine learning methods would bring out the best of both worlds and counter-balance the limitations of each 
approach using the strengths of the other. Another argument in favor of hybrid approaches is that although deep 
learning methods have exhibited extraordinary results in domains such as natural language and computer vision, 
they have not yet delivered on their promise when it comes to time series forecasting. This was demonstrated in 
the M4  competition74, where various time series models were benchmarked across 100,000 time-series datasets. 
The results of the study showed, among other things, that 1. the top-performing approaches involved combina-
tions of models, 2. the least-performing approaches were either pure statistical or pure machine learning models, 
3. the best overall approach was a hybrid solution that utilized both statistical and machine learning features 
and 4. increased model complexity potentially leads to enhanced forecasting performance. Lastly, approaches 
purely based on deep learning methods usually act as black boxes, making their output hard to  interpret10, which 
makes simpler approaches often more desirable in real-life applications, especially if the loss in performance is 
not significant.

The most common and widely used hybrid combination is the one comprised of ARIMA and artificial neural 
 networks69, highlighting the versatility of both methods in a variety of time series domains. This study builds 
on this well-established trend, by combining ARIMA and TFT, a neural-network-based architecture, as its two 
main blocks for CO2 concentration forecasting. The importance of incorporating TFT is twofold: firstly, when 
benchmarked against other comparable deep learning approaches, such as simple LSTMs, TFT has demon-
strated improved performance in various time series forecasting  tasks61,62, and secondly, through the analysis of 
its attention weights it can achieve a greater degree of interpretability, thus alleviating black-box  concerns9,62,63.

Step 1: ARIMA forecasting
The first step of the proposed pipeline is to forecast CO2 concentration values using an ARIMA model. ARIMA 
models cannot handle multivariate time series data and therefore only past values of the target variable (CO2 
concentration) were used for modeling. As a result, any forecasts from this step leave out important additional 
information from other environmental factors present in the dataset, detailed in section “Data description and 
preprocessing”, such as humidity, temperature, and light intensity. On the other hand, by focusing purely on 

Table 1.  Summary of CO2 dataset. For each environmental factor, there are measurements from three 
different IoT sensors.

Environmental factor Unit Total records Bad records Empty records Value-range

CO2 concentration ppt 6114708 0 32 0–1000

Temperature ◦C 6114708 9 0 20–40

Humidity % 6114708 3 0 0–100

Light Intensity foot-candles 6114708 0 40 0–1000
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the previous values of CO2 , this step makes sure that such information–arguably the most important piece of 
information—is more heavily weighted, once the models’ outputs are combined in step 3.

The  ARIMA9 family of models, is one of the most popular and effective statistical models for time series 
forecasting. It is based on the fundamental principle that the future values of a time series are generated from a 
linear function of past observations and error terms. ARIMA consists of three sub-components: “AR”, “I” and 
“MA”; in this section, these sub-parts are analyzed in deeper detail.

The “AR” component, standing for “AutoRegressive” indicates that the target variable is modeled as a linear 
combination of its past values. At time t the target variable’s value yt can be mathematically expressed by Eq. (1):

where yt−1, yt−1 . . . yt−p are the target variable’s past values at time-steps t − 1, t − 2, . . . , t − p , β0,β1 . . . βp are 
the parameters of the regression and ǫt is white noise at time t. The parameter p represents the maximum lag, 
also known as the lag order; for example, a model notated as AR(p) denotes an AutoRegressive model of order p.

The “I” element, stands for “Integrated”, denoting that a differencing step to the modeled data. Differencing 
is a method of transforming a time series dataset to make it stationary, i.e. remove its time-related properties, 
such as trend and seasonality. It is conducted by subtracting the past observation from the current observation 
and can be repeated as many times as needed, i.e. differencing the differences themselves, until all temporal 
dependencies have been eliminated. The term “difference order” refers to the number of times differencing has 
been performed. The reason for differencing is that differences are more stationary than raw, un-differenced 
values. As a result, the statistical properties of the produced model are unaffected by the period the sample was 
taken. In general, models based on stationary data are more reliable. Assuming a first-order differencing has 
taken place, Eq. (1) can be re-written, as shown in Eq. (2):

The order of differencing is controlled by a parameter, usually denoted by the letter “d”.
The “MA” part, standing for “Moving Average”, refers to a model where the target variable only depends on 

the previous forecast errors. This means that a Moving Average model forecasts the target variable as a linear 
combination of the errors of its own forecasts regarding past time steps, also called residuals. According to a 
Moving Average model, at time t the target variable’s value yt can be mathematically described by Eq. (3):

where ǫt−1, εt−1 . . . εt−q represent the errors in the model’s forecasts at time-steps t − 1, t − 2, . . . , t − q respec-
tively, θ0, θ1 . . . θq are the parameters of the regression and c is the mean of the series value. The parameter q 
controls the number of previous errors to consider when forecasting the next time step; a model notated as MA(q) 
denotes a Moving Average model of order q.

In summary, an ARIMA(p,d,q) model uses a combination of the “AR” and MA” models, whose orders are 
controlled by the p and q parameters respectively. This model mixture, along with integrated differencing (“I”), 
the order of which is determined by d, allow for powerful time series analysis.

Step 2: TFT Forecasting
This step attempts to address the main shortcomings of ARIMA, used in step 1. Although ARIMA is a powerful 
tool for time series forecasting, due to its linearity and stationarity assumptions, it is not as effective in modeling 
more complex data relationships, often encountered in real-world time series. Furthermore, to produce forecasts 
for a given time series, it can only learn from that series’ past values alone, being unable to incorporate and learn 
from external time series, also known as covariates.

Newer deep learning models, such as TFT, address these shortcomings as they are able to model multivari-
ate time series data and extract valuable information with regard to how these different variables interact with 
one another. As a result, any forecasts produced in this step take into account both the past values of the target 
variable (CO2 concentration) as well as all the available external environmental factors present in the dataset, 
namely temperature, humidity, and light intensity.

TFT is a state-of-the-art deep learning model purposefully designed for time series modeling. Its complex 
architecture, displayed in Fig. 2, consisting of LSTM encoding layers and interpretable transformer attention lay-
ers, offers more features and capabilities than any of the previously proposed deep learning-based architectures. 
The five components that make up the basic structure of the TFT are analyzed below: 

1. Gating mechanisms: It is often challenging to gauge the degree of necessary non-linear processing needed, 
and there may be circumstances in which simpler models are advantageous, such as when datasets are not 
big enough or contain a lot of noise. TFT alleviates both these issues by employing Gated Residual Networks 
(GRN)75. A GRN accepts a primary input α and an optional context vector c and its output is shown in 
Eqs. (4, 5 and 6): 

(1)yt = β0 + β1yt−1 + β2yt−2 + . . .+ βpyt−p + εt ,

(2)

yt − yt−1 = β0

+ β1(yt−1 − yt−2)

+ β2(yt−2 − yt−3)

+ . . .

+ βp(yt−p − yt−p−1)

+ εt

(3)yt = θ0 + θ1εt−1 + θ2εt−2 + . . .+ θpεt−q + c,
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where ELU is the Exponential Linear Unit activation  function76, η1 ∈ R
dmodel , η2 ∈ R

dmodel are intermediate 
layers, LayerNorm is the standard layer normalization  of77, and ω is a weight-sharing index. Additionally, 
Gated Linear Units (GLUs)78, which gating layers are built on, allow for skipping over any components that 
are not helpful for modeling a particular dataset. The output of a GLU accepting γ ∈ R

dmodel as its input can 
be expressed as shown in Eq. (7): 

where σ is the sigmoid activation function, W ∈ R
dmodelXdmodel is the set of weights, b ∈ R

dmodel is the set of 
biases, ⊙ is the element-wise Hadamard product, and dmodel hidden state size, which is common across 
the whole architecture. In summary, GLU enables TFT to regulate how much the GRN contributes to the 
initial input α . In the extreme case, it is able to even skip a layer entirely if necessary, thus zeroing out any 
nonlinear effects.

2. Variable selection networks: It is often challenging to pre-determine which factors going to be important for 
a given dataset/problem. To address this, TFT offers out-of-the-box instance-wise feature selection for both 
static and time-dependent covariates. Not only do variable selection networks shed light on which features 
contribute mostly to TFT’s forecasts, but also enable TFT to get rid of any noisy inputs that could potentially 
hamper its performance.

  TFT calculates variable selection weights as described in Eq. (8): 

where �t =
[

ξ
(1)
t

⊺

, . . . , ξ
(µχ )
t

⊺
]

⊺

 the flattened array of all past datapoints at time t, ξ (j)t ∈ R
dmodel the trans-

formed input of the j-th variable at time t, c s a context vector, computed by a static covariate encoder. Each 
ξ
(j)
t  is also passed through its own GRN, as shown in Eq. (9), producing another non-linear transformation 
ξ̃
(j)
t  . 

 These transformations are then weighted to produce the final contribution as shown in Eq. (10): 

(4)GRNω(a, c) = LayerNorm(a+ GLUω(η1)),

(5)η1 = W1,ωη2 + b1,ω ,

(6)η2 = ELU(W2,ωα +W3,ωc + b2,ω),

(7)GLUω(γ ) = σ(W4,ωγ + b4,ω)⊙ (W5,ωγ + b5,ω),

(8)υχt = Softmax(GRNυχ (�t , cs)),

(9)ξ̃
(j)
t = GRNξ̃(j)

(ξ
(j)
t )

Figure 2.  TFT Model architecture. Adapted  from9.
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where υ(j)
χt  is the j-th element of vector υχt.

3. Static covariate encodings: By design, TFT pays special attention to static metadata by creating four different 
context vectors. More specifically, these are contexts regarding the local processing of temporal informa-
tion, the enhancement of temporal information with static features, as well as temporal feature selection. 
These context vectors, produced by different GRN encoders, are strategically placed in different parts of the 
architecture where the impact of static variables can prove significant.

4. Temporal processing: To both improve the model’s interpretability and better understand the long-term 
relationships between various time steps, TFT adjusts the underlying transformer network’s multi-head 
attention mechanism. Just like any typical attention mechanism, it calculates values V ∈ R

N×dv based on 
the relationships between keys K ∈ R

N×dattention and queries Q ∈ R
N×dattention as shown in Eq. (11): 

where A(Q,K) = Softmax( QKT√
dattention

) . Multi-head attention uses different attention heads for different rep-
resentation spaces, which are mathematically represented by Eq. (12) 

where  Hh = Attention(QW
(h)
Q ,KW

(h)
K VW

(h)
V ) and W

(h)
Q ∈ R

dmodel×dattention  ,  W
(h)
K ∈ R

dmodel×dattention  , 
W

(h)
V ∈ R

dmodel×dV are head-specific weights for queries, keys, and values respectively, while the outputs of 
all heads Hh are linearly combined by the weights WH ∈ R

(mHḋV )×dmodel . Since in each head, different values 
are calculated, attention weights cannot adequately explain the contribution of a particular variable. To this 
end, TFT adjusts its multi-head attention mechanism to share values in each head. The equations are then 
modified as shown in Eq. (13): 

where WV ∈ R
dmodel×dV denotes the array of weights shared by the different heads and WH ∈ R

dattention×dmodel 
represents the final linear transformation.

5. Predictions intervals and loss functions: In addition to predicting single points in time, TFT also produces 
forecasts for whole intervals. This is accomplished by predicting different percentiles or quantiles, such as 
the 10th, 50th, and 90th. These interval predictions are produced simultaneously at each time step by linearly 
transforming a decoder’s output according to Eq. (14): 

where Wq ∈ R
1×d , bq ∈ R are the coefficients for a given quantile q

Regarding its training, TFT learns by optimizing the summed quantile loss over all quantile outputs as shown 
in Eq. (15):

where QL(y, ŷ, q) = qmax(0, y − ŷ)+ (1− q)max(0, ŷ − y) , � denotes the domain of training set, W the model’s 
weights, Q the set of quantiles e.g. Q = {0.1, 0.9} and M the number of samples in the training set.

Step 3: Hybrid ARIMA‑TFT Ensemble
Since ARIMA focuses exclusively on the linear relationships present in the data, it is better equipped than TFT 
to capture them in its forecasts. On the other hand, TFT forecasts take into account the non-linear relationships, 
while also taking advantage of the rich amount of extra information, thus fully exploiting the multivariate nature 
of the dataset. In this step, in order to use the strengths of both while balancing out their individual weaknesses, 
predictions from steps 1 and 2 are combined using a voting regressor ensemble, producing the average of the two 
independent CO2 concentration forecasts. A flowchart of the whole process is presented in Fig. 3.

Interpretability
Interpretability refers to the degree a model’s output can be explained and attributed to the corresponding 
input variables. The higher the interpretability of a model, the easier it is to understand why certain predic-
tions were made by a model, given the respective inputs the model  received79. Interpretability is crucial and 

(10)ξ̃t =
µχ
∑

j=1

υ
(j)
χt ξ̃

(j)
t ,

(11)Attention(Q,K ,V) = A(Q,K)V ,

(12)Multihead(Q,K ,V) = [H1, . . . ,HmH ]WH ,

(13)

H̃ = Ã(Q,K)VWV

=
∑mH

h=1 A(QW
(h)
Q ,KW

(h)
K )

H
VWV

=
∑mH

h=1 Attention(QW
(h)
Q ,KW

(h)
K ,VWV )

H

,

(14)ŷ(q, t, τ) = Wqψ̃(t, τ)+ bq,

(15)Loss(�,W) =
∑

yt∈�

∑

q∈Q

τmax
∑

τ=1

QL(yt , ŷ(q, t−, τ), q)

Mτmax
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a much-desired property for all automated systems, but especially those to be adopted in sensitive yet critical 
domains, where human lives can be directly  affected10, such as smart city technologies. Both sub-components 
of the hybrid ensemble are interpretable on their own without the need to apply any post hoc interpretability 
methods. More specifically, ARIMA is a so-called white box model; it’s linear and simple by design and there-
fore naturally interpretable. Furthermore, TFT’s architecture is transformer-based and uses a novel multi-head 
attention mechanism that can provide extra interpretable insights into its temporal dynamics by measuring 
and ranking the importance of each input variable with respect to its forecasts. As a result, the proposed hybrid 
ensemble is also inherently interpretable.

Other time series models used for comparison
To assess the predictive capabilities as well as the robustness of the proposed method in different scenarios, 
comparisons were drawn against ten other forecasting approaches. These can be split into two broad categories: 
statistical and deep learning time series methods. The first category includes the AutoRegressive Integrated 
Moving Average (ARIMA)8, Exponential  Smoothing11, Fast Fourier Transform (FFT)12 and  Theta80 methods. 
The second category encompasses the following methods:  DeepAR13, N-BEATS14, a Transformer  Network15, 
Temporal Fusion Transformers (TFT)9, Temporal Convolutional Network (TCN)16 and Long Short-Term (LSTM) 
 Network17. Most statistical time series models can only accept univariate data, in this case only past values of 
CO2 , ignoring other environmental variables, and therefore their relationships; in contrast, deep learning models 
can handle multivariate time series data and model such complex relationships. Table 2 shows what types of data 
are supported per model as well as information on covariates, which are discussed in greater detail in section 
“Past and future covariates”.

Past and future covariates
In time series problems, a distinction is usually made between the target time series and the so-called covariate 
time series. The term “target time series” refers to the time series whose values are to be predicted, based on its 
history. For the purposes of this study, the values of CO2 concentration are considered the target time series. 
The term “covariate time series” refers to time series, which may be useful in forecasting the target series, but 
no forecast is made about them.

Covariate series can be further split into past and future covariates depending on whether they can be known 
in advance or not. Time series whose past values are known at prediction time are referred to as past covariates. 
In this study, the values of temperature, humidity, and light intensity contained in the dataset are all considered 

Figure 3.  Hybrid ARIMA-TFT Pipeline.

Table 2.  Breakdown of the forecasting models and corresponding types of covariates used in this study.

Model Univariate Multivariate Past covariates Future covariates

ARIMA �

DeepAR � �

ES �

FFT �

Hybrid � � �

LSTM � �

N-BEATS � �

TCN � �

TFT � � �

Theta �

Transformer � �
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past covariates. Time series whose future values are already known at prediction time is referred to as future 
covariates. These can represent known future information such as holidays, or even predictions such as a weather 
forecast, and are perfectly valid to incorporate in time series modeling when possible. In this study, the “hour 
of the day” (1–24), “day of the week” (1-7), “day of the month” (1-31), and “month of the year” (1-12) were all 
used as future covariates. Such temporal attributes can be very powerful as they allow models to better and more 
easily capture the trend and seasonality of the target series.

It should be noted that not all models support the use of past and future covariates. In general, simpler sta-
tistical models, such as ARIMA and Exponential Smoothing cannot deal with any type of covariates and can 
only accept a single target series. In comparison, the majority of deep learning methods are capable of natively 
handling past covariates, however, only a limited number of models can make use of future covariates. In Table 2, 
the types of covariates supported and used by each model in this study are presented in detail.

Experimental setup
A total of 30 cases were examined, using different data splits, forecasting horizons, training methodologies, 
and metrics. These cases are presented in detail in Table 3. For all the experiments, the Darts Python  library81 
was extensively utilized. The final sets of hyperparameters used to train each model, in order to reproduce the 
reported results can be found in Supplementary Table S1, while the full technical implementation can be found 
at the following public GitHub repository: https:// github. com/ ML- Upatr as/ co2- conce ntrat ion- forec asting.

Lookback windows and forecasting horizons
A lookback window refers to a given period of time, preceding the time of prediction, during which the model 
has access to information that it learns from in order to make forecasts. On the other hand, a forecasting horizon 
indicates how far in the future a model predicts. In a smart city setting, predictions regarding different combina-
tions of lookback windows and forecasting horizons can be used for different planning purposes. In this study, 
three different settings of lookback windows and forecasting horizons were experimented with:

Table 3.  Experimental setup outline.

Case # Forecasting horizon Data split (Train-Test) Retraining Evaluation metric

Case 1 Short-term (1 h) 80–20 Yes RMSE

Case 2 Short-term (1 h) 80–20 No RMSE

Case 3 Short-term (1 h) 90–10 Yes RMSE

Case 4 Short-term (1 h) 90–10 No RMSE

Case 5 Mid-term (24 h) 80–20 Yes RMSE

Case 6 Mid-term (24 h) 80–20 No RMSE

Case 7 Mid-term (24 h) 90–10 Yes RMSE

Case 8 Mid-term (24 h) 90–10 No RMSE

Case 9 Long-term (168 h) 80–20 Yes RMSE

Case 10 Long-term (168 h) 80–20 No RMSE

Case 11 Short-term (1 h) 80–20 Yes MAE

Case 12 Short-term (1 h) 80–20 No MAE

Case 13 Short-term (1 h) 90–10 Yes MAE

Case 14 Short-term (1 h) 90–10 No MAE

Case 15 Mid-term (24 h) 80–20 Yes MAE

Case 16 Mid-term (24 h) 80–20 No MAE

Case 17 Mid-term (24 h) 90–10 Yes MAE

Case 18 Mid-term (24 h) 90–10 No MAE

Case 19 Long-term (168 h) 80–20 Yes MAE

Case 20 Long-term (168 h) 80–20 No MAE

Case 21 Short-term (1 h) 80–20 Yes MAPE

Case 22 Short-term (1 h) 80–20 No MAPE

Case 23 Short-term (1 h) 90–10 Yes MAPE

Case 24 Short-term (1 h) 90–10 No MAPE

Case 25 Mid-term (24 h) 80–20 Yes MAPE

Case 26 Mid-term (24 h) 80–20 No MAPE

Case 27 Mid-term (24 h) 90–10 Yes MAPE

Case 28 Mid-term (24 h) 90–10 No MAPE

Case 29 Long-term (168 h) 80–20 Yes MAPE

Case 30 Long-term (168 h) 80–20 No MAPE

https://github.com/ML-Upatras/co2-concentration-forecasting
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• Short-term forecasting horizon: Predicting the CO2 concentration after 1 h given a lookback window of 24 
h.

• Mid-term forecasting horizon: Predicting the CO2 concentration after 1 one day (24 h), given a lookback 
window of 168 h.

• Long-term forecasting horizon: Predicting the CO2 concentration after 1 one week (168 h), given a lookback 
window of 240 h.

Data splits
For all experiments, the dataset was split between train and test data. The former was available to the models 
during the training, error-minimizing procedure, while the latter remained unknown to the models during the 
training process and was only used for evaluation purposes. More specifically, the experiments for the short-
term and the mid-term forecasting horizons were performed for two different splits of train-test data, 90–10 
and 80–20 splits. However, in the case of long-term forecasting horizon, the 90–10 split was not possible due to 
a lack of the required number of instances for the prediction.

Training methodology (retraining vs. no‑retraining)
Statistical time series models are always re-trained on the entire available history, once new points in time 
become available, thus always expanding their look-back window. This process of retraining from scratch every 
time new data points are observed can be very resource-consuming, especially for deep-learning models, which 
are notoriously resource hungry. That said, deep learning methods do offer the alternative of only being trained 
once on the initial sequence and then learning from new observations in a recursive manner, without visiting 
the entire sequence again. In this study, all experiments regarding deep learning models were performed in both 
settings, and results were reported for both ways of training deep learning methods (with retraining and without).

Evaluation metrics
In terms of evaluation metrics, the root mean squared error (RMSE), the mean absolute error (MAE), as well as 
the mean absolute percentage error (MAPE), were employed to assess the performance of each time series model. 
Both RMSE and MAE measure the differences between predicted values and ground-truth values. It should be 
noted that larger errors have a disproportionately negative effect on both and, as a result, they are sensitive to 
outliers. Using the differences between predicted values and ground-truth values without taking into account 
the magnitude of the values involved, can be somewhat unintuitive since the values involved can vary hugely 
among the different problems. MAPE tries to solve this, by returning the error as a percentage of the original 
value the regressor tried to predict.

The RMSE of an estimator for a given dataset of n data points, defined as shown in Eq. (16):

where yi is the observed value of the i-th data point and ŷi the estimated values of the i-th data point
The MAE of an estimator for a given dataset of n data points, defined as shown in Eq. (17):

where yi is the observed value of the i-th data point and ŷi the estimated values of the i-th data point
The MAPE of an estimator for a given dataset of n data points, defined as shown in Eq. (18):

where yi is the observed value of the i-th data point and ŷi the estimated values of the i-th data point

Results and discussion
Short-term forecasting horizon
Models using the short-term forecasting horizon are essentially using the lowest unit of time in the dataset, after 
its preprocessing, which is 1 h. In this case, evaluation is straightforward; such models only produce a single 
forecast, 1 h into the future and this predicted value is compared against the ground truth. A total of four differ-
ent experiments took place based on the train-test split (80–20 and 90–10) as well as the re-training mechanism 
(yes/no). The results for each split are presented in Tables 4 and 5 respectively. The effects of re-training the deep 
learning models were evident at such a short forecasting horizon, as in the vast majority of cases a performance 
improvement was observed, highlighting the importance of the knowledge of the previous hour in predicting 
the next hour; most notably, the TCN’s mean absolute error dropped from 37.876 to 13.8507 after implementing 
the retraining approach. The forecasts of the three overall-best models against the ground truth for that period 
are displayed in Figs.  4 and 5 for the 80–20 and 90–10 splits correspondingly.

In terms of interpretability, Fig. 6 displays the feature importance ranking as percentages for the TFT model 
when it comes to short-term forecasting. Temperature is by far the most important feature, contributing almost 
50% to TFT’s CO2 future forecasts. It’s followed by past values of CO2 concentration, light intensity, and time, 
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)

(18)MAPE = 100%

n

n
∑

i=1

(

∣

∣

∣

∣

yi − ŷi
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Table 4.  Results for short-term forecasting horizon (1 h); split: 80–20. Ranked by name ascending, MAE 
descending. Bold means the lowest error/best performance.

Model MAE RMSE MAPE Retrain

ARIMA 17.448 24.6932 7.1174 No

ARIMA 17.448 24.6932 7.1174 Yes

DeepAR 64.7228 77.2451 27.4174 Yes

DeepAR 131.7028 138.3546 55.5346 No

ES 18.8689 26.4666 7.6474 No

ES 18.8689 26.4666 7.6474 Yes

FFT 58.8585 79.6313 20.9765 No

FFT 58.8585 79.6313 20.9765 Yes

Hybrid 14.8924 21.8897 6.0875 No

Hybrid 15.3382 21.7836 6.2550 Yes

LSTM 22.8856 30.9246 9.1051 Yes

LSTM 41.7699 46.5224 17.0413 No

N-BEATS 20.0911 27.3967 8.0493 Yes

N-BEATS 27.8837 36.5021 10.9623 No

TCN 15.3361 22.6401 6.2671 Yes

TCN 47.6637 52.0583 19.5002 No

TFT 15.7214 22.2269 6.4413 No

TFT 17.1849 23.1732 6.9738 Yes

Theta 18.4945 26.0843 7.548 No

Theta 18.4945 26.0843 7.548 Yes

Transformer 19.8563 26.7944 8.0028 Yes

Transformer 41.826 47.7851 16.483 No

Table 5.  Results for short-term forecasting horizon (1 h); split: 90–10. Ranked by name ascending, MAE 
descending. Bold means the lowest error/best performance.

model MAE RMSE MAPE retrain

ARIMA 16.5583 25.0833 6.947 No

ARIMA 16.5583 25.0833 6.947 Yes

DeepAR 35.9894 46.7989 16.2622 No

DeepAR 54.9676 64.7337 23.6953 Yes

ES 18.2426 26.3802 7.6694 No

ES 18.2426 26.3802 7.6694 Yes

FFT 40.0957 47.9071 16.6586 No

FFT 40.0957 47.9071 16.6586 Yes

Hybrid 14.4070 22.0454 6.0505 Yes

Hybrid 14.8782 23.0485 6.2390 No

LSTM 18.5033 26.8 7.7944 Yes

LSTM 26.3356 32.4004 11.2312 No

N-BEATS 20.0553 28.7076 8.4444 Yes

N-BEATS 32.9029 45.9709 13.3077 No

TCN 13.8507 22.3402 5.8706 Yes

TCN 37.876 42.9418 16.4676 No

TFT 14.9456 22.6287 6.2223 Yes

TFT 15.2929 23.151 6.3806 No

Theta 17.7509 25.8706 7.4749 No

Theta 17.7509 25.8706 7.4749 Yes

Transformer 18.466 25.2346 7.7625 Yes

Transformer 31.7511 38.764 13.6757 No
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while the least important predictor of CO2 is humidity. Feature importance is only displayed for the 80–20 split 
for all horizons; the corresponding figure for the 90–10 split is quite similar and offers no new significant insights 
into the model’s workings.

Mid-term forecasting horizon
Models using the mid-forecasting horizon (24 h) have to rely on their own forecasts for the near future in order 
to make more forecasts for further ahead. More specifically, for each instance of the test dataset, each time-step 
of the forecasting horizon is calculated in an auto-regressive manner: the prediction of a time-step at a moment 

Figure 4.  Short-term (1 h) forecasts vs ground truth for test set; split: 80–20.

Figure 5.  Short-term (1 h) forecasts vs ground truth for test set; split: 90–10.

Figure 6.  TFT feature importance for short-term forecasting horizon (1 h); split: 80–20.
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t is used for the prediction of the time-step t + 1 for each t until the end of the horizon. The evaluation, however, 
is only based on the very last prediction value, corresponding to the very last time step of the forecasting hori-
zon. In this case, only the prediction for the 24th h is compared against its respective ground truth. In Fig. 7, the 
process of making and evaluating a mid-term horizon forecast is displayed.

Similarly to the short-term horizon experiment, a total of four different settings were considered, based on the 
train-test split (80–20 and 90–10) as well as the re-training mechanism (yes/no). For each split, the correspond-
ing results are presented in Tables 6 and 7 . In the mid-term horizon experiments, re-training the deep learning 
models with the new hourly observations, as they become known/available, did not prove as important when 
predicting the 24th h in the future. This was, to a high degree, expected as the correlation between the values of 
two successive time steps is usually much higher compared to two values being 24 time steps apart.

The forecasts of the three overall-best models against the ground truth for that period are displayed in Figs. 8 
and 9 for the 80–20 and 90–10 splits respectively.

In Fig. 10 the feature importances for the TFT mid-term forecasting model are shown as percentages. In 
general, the trend is similar to that of short-term forecasting as the ranking of the features is exactly the same. 
The temperature continues to be the dominant contributing factor, however, its percentage dropped to about 
35%. The importance of both CO2 and light intensity increased, while on the other hand, the significance of time 
dropped as the horizon increased. Similarly to short-term forecasting feature importance is only displayed for 
the 80–20 split as the corresponding figure for the 90–10 split is quite similar and offers no additional insights 
into the model’s workings.

Figure 7.  Mid-term forecasting horizon: lookback window, prediction and evaluation.

Table 6.  Results for mid-term forecasting horizon (24 h); split: 80–20. Ranked by name ascending, MAE 
descending. Bold means the lowest error/best performance.

Model MAE RMSE MAPE Retrain

ARIMA 50.4179 66.5427 20.3895 No

ARIMA 50.4179 66.5427 20.3895 Yes

DeepAR 51.5311 65.1488 19.3256 Yes

DeepAR 148.1671 163.798 64.5237 No

ES 62.3673 80.3399 24.9125 No

ES 62.3673 80.3399 24.9125 Yes

FFT 78.2073 106.9273 26.0654 No

FFT 78.2073 106.9273 26.0654 Yes

Hybrid 37.2767 50.2714 14.0757 No

Hybrid 37.3014 49.1574 14.0701 Yes

LSTM 69.8758 88.1066 28.7614 Yes

LSTM 74.4279 90.2769 26.9331 No

N-BEATS 77.1808 94.3703 27.9407 No

N-BEATS 77.3075 95.9042 29.0755 Yes

TCN 76.0906 94.678 26.9718 No

TCN 85.9327 109.742 35.625 Yes

TFT 36.2344 49.7219 13.1591 No

TFT 51.2105 62.8617 19.2797 Yes

Theta 61.4604 79.2995 24.6313 No

Theta 61.4604 79.2995 24.6313 Yes

Transformer 67.2404 86.1076 23.2706 No

Transformer 76.9394 99.9903 32.1631 Yes
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Long-term forecasting horizon
Similarly to mid-term, long-term forecasting horizon models also have to rely on their own forecasts. Therefore 
an identical evaluation procedure was followed, where only the prediction of the very last timestamp, in this 
case, the 168th h, was used for evaluation. For the long-term horizon experiment, the data did not span enough 
into the future to perform a test using a 90–10 split. As a result, a total of two different settings were considered, 
based on the re-training mechanism (yes/no), but for a single split only, 80–20; results are shown in Table 8. 
In terms of performance, results become more unstable in general, when predicting so far into the future. This 
instability in forecasts is also shown in Fig.  11, where the forecasts of the three overall-best models against the 
ground truth for that period using an 80–20 split are displayed.

Feature importances for the long-term horizon model, shown in Fig. 12, are more or less the same as the short 
and mid ones. Temperature and CO2 remain the two most powerful predictors and there are two notable observa-
tions 1. humidity jumped two places, from last to third; its contribution, however, is still limited at approximately 
10% and 2. the contribution of time as a variable continues to decline as the length of the horizon expands. Once 
again, feature importance is only displayed for the 80–20 split as the corresponding figure for the 90–10 split is 
quite similar and does not provide any extra information about the model’s behavior.

Table 7.  Results for mid-term forecasting horizon (24 h); split: 90–10. Ranked by name ascending, MAE 
descending. Bold means the lowest error/best performance.

Model MAE RMSE MAPE Retrain

ARIMA 52.0185 63.5268 23.424 No

ARIMA 52.0185 63.5268 23.424 Yes

DeepAR 35.4227 45.8422 14.8968 Yes

DeepAR 83.7181 103.7674 37.3648 No

ES 65.3607 78.0223 29.1344 No

ES 65.3607 78.0223 29.1344 Yes

FFT 42.2596 52.1752 16.9636 No

FFT 42.2596 52.1752 16.9636 Yes

Hybrid 29.4695 36.5776 13.164 No

Hybrid 30.7673 38.0473 13.682 Yes

LSTM 78.7371 95.8902 36.6992 No

LSTM 86.3846 106.3583 39.5714 Yes

N-BEATS 55.2179 68.9673 24.7866 No

N-BEATS 65.2014 83.7045 29.6462 Yes

TCN 58.733 70.0161 24.57 No

TCN 92.241 120.2069 42.0035 Yes

TFT 31.5093 37.5722 13.7158 No

TFT 46.5937 53.5309 19.7722 Yes

Theta 64.6421 77.2401 28.9297 No

Theta 64.6421 77.2401 28.9297 Yes

Transformer 51.3384 60.9133 21.1374 No

Transformer 78.3312 98.7249 36.9034 Yes

Figure 8.  Mid-term (24 h) forecasts vs ground truth for test set; split: 80–20.
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Friedman test and Holm post-hoc test
To get a better sense of the overall model performance and rank the different models across all the different set-
tings, Friedman’s non-parametric statistical  test82 was applied. The final rankings for MAE, RMSE, and MAPE 
can be seen in Tables 9, 10, and 11 respectively. Results indicated that the hybrid approach overall produced 
better results than the other approaches for all three metrics and in many cases, the difference was statistically 
significant, as concluded by applying Holm’s posthoc  test83.

More specifically, when the hybrid approach was retrained with each new data point as it became available, 
the difference in performance was statistically significant (5% significance level) in 13 out of 20 cases, in terms 
of RMSE, in 5 out of 20 cases for the MAE metric, and in 6 out of 20 cases regarding MAPE, as displayed in 
Supplementary Tables S2, S3, and S4 respectively. As anticipated, when the retraining methodology was not 
applied, performance dropped and the difference in performance was statistically significant in 2 out of 20 cases 
for the RSME metric, 3 out of 20 for the MAE, and just 1 out of 20 regarding MAPE, as shown in Supplementary 
Tables S5, S6 and S7 respectively. That said, retraining does not come without a cost, as it’s a computationally, and 
potentially environmentally expensive procedure. It should therefore be preferred as long as the circumstances 
allow for it.

Conclusion
Accurate prediction of CO2 levels can greatly assist data-driven decision-making around carbon emissions 
handling and eventually lead to its automation in the future as smart city projects develop worldwide. In this 
work, a hybrid system was proposed for CO2 concentration forecasting using a multivariate time series dataset 
consisting of IoT sensor measurements. Furthermore, both traditional time series and deep learning models, 
including the current state-of-the-art architectures such as attention-based, transformer networks, were employed 
and compared against, for the same problem, across a series of different experiments, regarding three different 
forecasting horizons: short-, mid-, and long-term.

In terms of performance evaluation, the MAE, RMSE, and MAPE were measured and reported. Despite 
the fact that there is no one-size-fits-all solution, results indicated that, in general, deep learning architectures, 

Figure 9.  Mid-term (24 h) forecasts vs ground truth for test set; split: 90–10.

Figure 10.  TFT feature importance for mid-term forecasting horizon (24 h); split: 80–20.
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Table 8.  Results for long-term forecasting horizon (168 h); split: 80–20. Ranked by name ascending, MAE 
descending. Bold means the lowest error/best performance.

Model MAE RMSE MAPE Retrain

ARIMA 50.0553 59.9567 22.4499 No

ARIMA 50.0553 59.9567 22.4499 Yes

DeepAR 53.6133 65.1733 21.681 No

DeepAR 361.8434 383.8009 162.3037 Yes

ES 59.5156 70.124 25.3462 No

ES 59.5156 70.124 25.3462 Yes

FFT 41.4947 57.8828 16.0627 No

FFT 41.4947 57.8828 16.0627 Yes

Hybrid 27.60433 40.0019 11.0065 Yes

Hybrid 52.01891 61.6153 21.8509 No

LSTM 36.3327 45.9371 14.5081 No

LSTM 47.7941 60.1755 20.4239 Yes

N-BEATS 67.8996 91.989 27.0301 Yes

N-BEATS 69.2761 87.3965 27.3918 No

TCN 41.112 53.0607 16.4957 No

TCN 57.9019 74.9861 23.097 Yes

TFT 42.7254 50.6654 18.6652 Yes

TFT 69.4283 93.8396 29.4499 No

Theta 52.4786 64.0677 22.3683 No

Theta 52.4786 64.0677 22.3683 Yes

Transformer 35.0836 44.6991 14.2247 No

Transformer 56.2405 71.9889 22.4218 Yes

Figure 11.  Long-term (168 h) forecasts vs ground truth for test set; split: 80–20.
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Figure 12.  TFT feature importance for the long-term forecasting horizon (168 h); split: 80–20.

Table 9.  Friedman statistical test ranking using the MAE. Bold means the lowest error/best performance.

Model Ranking (MAE)

Hybrid with retraining 2.2

Hybrid without retraining 4.0

TFT with retraining 5.8

TFT without retraining 7.2

ARIMA without retraining 7.3

ARIMA with retraining 7.3

Theta without retraining 11.5

Theta with retraining 11.5

Transformer without retraining 12.2

TCN with retraining 13.6

TCN without retraining 14.8

LSTM without retraining 15.0

ES with retraining 15.1

ES without retraining 15.1

FFT with retraining 15.3

FFT without retraining 15.3

LSTM with retraining 15.4

DeepAR with retraining 16.4

Transformer with retraining 16.6

N-BEATS without retraining 17.6

N-BEATS with retraining 17.8

DeepAR without retraining 21.2
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Table 10.  Friedman statistical test ranking using the RMSE. Bold means the lowest error/best performance.

Model Ranking (RMSE)

Hybrid with retraining 1.4

Hybrid without retraining 4.2

TFT with retraining 4.6

TFT without retraining 7.0

ARIMA without retraining 7.5

ARIMA with retraining 7.5

Theta without retraining 12.1

Theta with retraining 12.1

Transformer without retraining 12.2

TCN with retraining 14.6

ES with retraining 14.7

ES without retraining 14.7

TCN without retraining 14.8

LSTM without retraining 14.8

DeepAR with retraining 15.6

FFT without retraining 15.7

FFT with retraining 15.7

LSTM with retraining 15.8

Transformer with retraining 16.4

N-BEATS without retraining 17.2

N-BEATS with retraining 18.2

DeepAR without retraining 21.4

Table 11.  Friedman statistical test ranking using the MAPE. Bold means the lowest error/best performance.

Model Ranking (MAPE)

Hybrid with retraining 1.8

Hybrid without retraining 4.2

TFT with retraining 5.2

TFT without retraining 7.2

ARIMA without retraining 9.1

ARIMA with retraining 9.1

Transformer without retraining 11.0

Theta without retraining 11.5

Theta with retraining 11.5

TCN with retraining 13.8

FFT without retraining 13.9

FFT with retraining 13.9

ES with retraining 15.1

ES without retraining 15.1

TCN without retraining 15.2

LSTM without retraining 15.2

DeepAR with retraining 16.0

LSTM with retraining 16.4

Transformer with retraining 17.2

N-BEATS without retraining 17.6

N-BEATS with retraining 18.4

DeepAR without retraining 20.2
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capable of better exploiting the complex relationships arising in multivariate settings, tended to outperform 
traditional time series methods. Using Friedman’s test to produce the relative ranking of the algorithms, it was 
shown that the hybrid approach overall produced overall better results than the other approaches when measured 
across different settings. At the same time, insights were offered into the inner workings of the hybrid system’s 
most complex component, the Temporal Fusion Transformer, in the form of feature importance, illustrating its 
interpretability potential.

In the future, the proposed predictive system could be enhanced with more dedicated components aimed 
at improving the quality of the data, before it’s provided as input to the models. To this end, some immediate 
enhancements include better data imputation (how to better deal with missing data), better outlier detection and 
handling, as well as better feature generation through the use of embedding layers. Data quality improvements 
can result in substantial performance gains and promote robustness. Finally, a very crucial, but often overlooked, 
aspect of systems that aim to be deployed in a real-world setting, such as a smart city, is their continuous moni-
toring, which ensures that the corresponding system is always working as intended, the input data is up-to-date 
and its predictions meet certain quality standards.

Data availability
The original dataset, as well as the necessary source code used in this study to parse and preprocess the data, 
train and evaluate the models, draw the graphs and create the tables, can be found at the following public GitHub 
repository: https:// github. com/ ML- Upatr as/ co2- conce ntrat ion- forec asting. Correspondence and requests for 
materials should be addressed to P.L.
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