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The relationship between insect pathogenic fungi and their insect hosts is a classic
example of a co-evolutionary arms race between pathogen and target host:
parasites evolve towards mechanisms that increase their advantage over the host,
and the host increasingly strengthens its defenses. The present review summarizes
the literature data describing the direct and indirect role of lipids as an important
defense mechanism during fungal infection. Insect defense mechanisms
comprise anatomical and physiological barriers, and cellular and humoral
response mechanisms. The entomopathogenic fungi have the unique ability to
digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and
proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry
within the host. The key factor in insect resistance to fungal infection is the
presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which
can promote or inhibit fungal attachment to cuticle, and might also have
antifungal activity. Lipids are considered as an important source of energy, and
as triglycerides are stored in the fat body, a structure analogous to the liver and
adipose tissue in vertebrates. In addition, the fat body plays a key role in innate
humoral immunity by producing a range of bactericidal proteins and polypeptides,
one of which is lysozyme. Energy derived from lipid metabolism is used by
hemocytes to migrate to the site of fungal infection, and for phagocytosis,
nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic
acid, is used in the synthesis of eicosanoids, which play several crucial roles in
insect physiology and immunology. Apolipoprotein III is important compound
with antifungal activity, which can modulate insect cellular response and is
considered as important signal molecule.
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1 Introduction

After the Nobel Prize in Medicine was awarded to Bloch and Lynen for their
contributions to the study of lipid metabolism (Kennedy and Westheimer, 1964), the
function, metabolism and biochemistry of this group of compounds have received
considerable attention. Although most of these studies use mammals as models,
increasing numbers of studies are focusing on lipids in insects.

Lipids are detected in many tissues in insects, which include the midgut, ovaries, and
imaginal discs; however, the important tissue for fat storage is the fat body (FB), which is the
center of lipid metabolism (Toprak et al., 2020). The amount of lipids in insects varies widely
and is affected by many factors including developmental stage, nutritional status, sex,
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environmental temperature, reproductive time and migratory flight.
In general, female insects contain more fat than males, most likely
including some fat stores for egg production (Toprak and
Musselman, 2021). The lipid metabolism starts in the midgut,
after food intake. The lipid compounds are first digested by
lipases, with the products being transported by lipophorins to the
targets, including the FB, ovaries and muscles. From here, fatty acids
are transported to target cells by and fatty acid transport and binding
proteins.

The lipids comprise a chemically diverse group of fatty acids,
glycerolipids, glycerophospholipids, sphingolipids, sterols and
prenols that perform many different functions in insects, both in
physiological and pathological processes. Lipids are the main energy

reserve material for many processes, such as embryogenesis, growth,
development, metamorphosis, diapause, reproduction and
prolonged flight, and are crucial in overwintering and enabling
survival during periods of food shortage (Ryan and van der Horst,
2000). Significant quantities of neutral lipid are deposited in the
developing oocyte during oogenesis, and in most species, the
predominant fraction is triglyceride (Fruttero et al., 2017). In
holometabolic insects, the body lipid content increases steadily
during larval development, although not proportionally across
larval stages; in fact, 95% of the energy for metamorphosis is
derived from fatty acid oxidation (Palm and Rodenfels, 2020). In
migrating insects, during intensive lipogenesis, carbohydrates from
the diet are converted into lipids and stored in the fat body in the
form of triglycerides (Hou et al., 2021). The epicuticular lipid layer is
the main barrier preventing water loss in insects, thus allowing them
to inhabit different environments (Wang et al., 2016).

Lipid synthesis, accumulation and hydrolysis takes place in the
FB and triacylglycerol (TAG) accumulation predominantly occurs
in intracellular lipid droplets (LDs) in adipocytes, the main cells in
the FB (Skowronek et al., 2021). These processes are facilitated by
fatty acid synthase (FAS) and perilipins, under the control of the
insect endocrine system (Gondim et al., 2018; Toprak et al., 2020).
The insect lipid metabolism scheme is given in Figure 1.

Lipids also play a key role in pathological processes, one of which
is fungal infection. This review article describes how lipids are
involved in the defense system of insects during infection with a
particular focus on entomopathogenic fungal infections, as
summarized in Figure 2. The review focuses on the protective
functions of lipids as components of the cuticle and their
participation in the cellular and humoral immune response. An
important element of the work is also to discuss the role of lipid
metabolites, such as eicosanoids, and the process of lipid
peroxidation as a stress/inflammatory marker.

2 Cuticle–the first defense mechanism

In insects, the cuticular integuments are regarded as the first line
of defense and the most important barrier protecting them against
fungal infections (Butt et al., 2016; Balabanidou et al., 2018; Pedrini,
2018). Insect cuticles consist of an integument saturated with chitin,
comprising a single-layered epithelium containing waxes, fatty acids
and sterols. Moreover, the tracheas and the anterior and posterior
intestines are also lined with chitin (Tajiri, 2017). The process of
fungal adhesion occurs through three successive stages: firstly,
adhesion of the fungal propagules to the surface of the cuticle
took place; after this, the bond between the pregerminated
propagules and the epicuticle is consolidated; finally, the fungi
germinate and then develop on the cuticle itself. Following this,
penetration structures such as the appressorium, penetration pegs or
hyphae develop. Sclerotization and high content of chitin in the
cuticle increase its protective potential in insects; in addition to
preventing desiccation, some epicuticular lipids also have antifungal
properties (Pedrini et al., 2007). Nevertheless, by adhering to the
epidermis and penetrating the tissues of the host, fungal spores are
still able to break through this protective barrier. Fungal spores
produce a variety of cuticle-degrading proteases, lipases and
chitinolytic enzymes (Samuels and Paterson, 1995).

FIGURE 1
Lipid metabolism in insects. Lipids are digested at the midgut
lumen and then absorbed and metabolized by midgut cells.
Subsequently, they are transported in the hemolymph by lipophorin to
fat body and oocytes, where they are stored in lipid droplets.
Abbreviations: CE, Cholesteryl ester; Cho, Cholesterol; DAG,
diacylglycerol; FFA, Free fatty acid; LD, Lipid droplet; Lp, Lipophorin;
LPL, Lysophospholipid; LpR, Lipophorin receptor; PL, Phospholipid;
TAG, triacylglycerol (based on the information in Majerowicz and
Gondim (2013); structural formulas of chemical compounds from
PubChem database).
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Epicuticular lipids play an important role in preventing lethal
desiccation, affecting insecticide and chemical penetration (Juarez,
1994). The epicuticle is hydrophobic, which is widely regarded as
being suitable for fungal spore adhesion. However, some exceptions
have been noted; for example, the booklouse, Liposcelis
bostrychophila L., expresses fatty amides in the cuticule, which
seem to prevent adhesion of (dry) conidia by entomopathogenic
fungi (Lord and Howard, 2004). Although strategies based on
preventing cuticular adhesion are rare, the hydrocarbon content
of the waxy layer is known to influence fungal pathogenesis and a
number of antimicrobial compounds are observed on the cuticle.
For example, the cuticle of the Southern stink bug,Nezara viridula L.
presents lipids and aldehydes that have a fungistatic effect on
Metarhizium anisopliae, and Heliothis zea Boddie cuticle extracts
are toxic towards Beauveria bassiana (Smith and Grula, 1982; Sosa-
Gomez et al., 1997). In addition, a number of free fatty acids from
Lepidoptera spp. and fatty acids from Forcipomyia nigra (biting
midge) inhibited germination in many entomopathogenic fungi
(Urbanek et al., 2012).

A combination of enzymatic and mechanical mechanisms
facilitates penetration of the host cuticle. Entomopathogenic
fungi are capable of producing various enzymes that break down
the cuticle, including endoproteases, aminopetidases,
carboxypetidases, N-acetylglucosaminidases, chitinases, esterases
and lipases (Gillespie et al., 2000). It has been found that the
cuticle-degrading ability of C. coronatus is related to its

production of hydrolytic enzymes and the concentrations of
certain compounds in the cuticles of susceptible and resistant
insect species: some compounds are used by the fungus as
nutrients, indicated by positive correlations, while others appear
to be engaged in insect resistance, indicated by negative correlations
(Bogus et al., 2017b; Wronska et al., 2018b).

Conidiobolus coronatus-resistant flies (Calliphora vicina,
Calliphora vomitoria, Sarcophaga carnaria, Musca domestica,
Sarcophaga argyrostoma) possess a cuticular lipid layer with a
range of cuticle fatty acids, fatty alcohols, esters and sterols,
together with tocopherol acetate and squalene, which are known
to inhibit various activities of C. coronatus in a concentration-
dependent manner (Golebiowski et al., 2008; Bogus et al., 2010;
Golebiowski et al., 2011; Golebiowski et al., 2012b; Golebiowski
et al., 2013a; Golebiowski et al., 2013b; Golebiowski et al., 2014a;
Golebiowski et al., 2014b; Kaczmarek et al., 2020a; Kaczmarek et al.,
2020b; Wloka et al., 2022).

C. coronatus conidia were unable to germinate on the cuticle of
exposed C. vicina larvae, suggesting the presence of inhibitory
compounds (Bogus et al., 2007). Moreover, C. vicina was found
to be resistant to C. coronatus enzymes secreted into the culture
medium in vitro, while G. mellonella and Dendrolimus pini were
found to be susceptible; this host-specific resistance based on cuticle
composition (Bogus et al., 2007; Bogus et al., 2017b; Wronska et al.,
2018b). In fact, the three species have significantly different cuticle
compositions: C14:0, C16:1 and C20:0 are present in C. vicina, while

FIGURE 2
Overview of the role of lipids during infection in insects. Parts of the figure were drawn by using pictures from Servier Medical Art. Servier Medical Art
by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
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they are absent from D. pini and exist in trace amounts in G.
mellonella (Golebiowski et al., 2008). FFAs C14:0, 16:0, 16:1, 18:0, 18:
1, 18:2, 18:3, 20:0, and 20:1 inhibit C. coronatus in vitro, manifested
as reduced sporulation, lower hyphal biomass, reduced ability to
infect G. mellonella larvae and the release of less toxic products into
the culture (Bogus et al., 2010); hence, these fatty acids may influence
resistance to fungal attack.

The three insect species mentioned above employ different
defense strategies upon contact with the pathogenic fungus,
providing an effective physical and chemical barrier. In C. vicina,
resistance to the fungus may be explained by the cuticle
demonstrating high resistance to hydrolytic enzymes, as well as
the possible presence of fungistatic compounds that can inhibit
conidial germination, and its surface topography. Thanks to this
strong protection provided by the cuticle, C. vicina can afford to
reduce investment in defense mechanisms inside the hemocoel.
Thus, the evolution of the cuticle in C. vicina may have been
driven with the aim of reducing the overall cost of cellular and
humoral defense: an ideal solution is a tradeoff between efficiency
and cost.

2.1 Antimicrobial features of cuticular lipids

The cuticle lipids are involved in various types of chemical
communication between insect species. They reduce the penetration
of insecticides, chemicals and toxins, and provide protection against
the attack of microorganisms, parasites, insects and predators.
However, in addition to participating in the creation of a
mechanical barrier, a key role played by cuticle lipids in
protecting against infection is by offering antimicrobial properties
(Rajabi et al., 2017).

The antimicrobial activity of free fatty acids (FFAs) has been
described most widely in the literature. Their antimicrobial activity
is influenced by length of the carbon chain, the nature of any double
bonds that may be present, and by the presence of a hydroxyl
group. In addition, unsaturated FFAs are more active than saturated
FFAs (Zheng et al., 2005). Not all the mechanisms of the
antibacterial action of fatty acids are fully understood, but the
main mechanisms may be focused on the action on the cell
membrane (Batalha et al., 2020).

The FFA mixture from F. nigra (containing C14:0, C16:1, C16:0,
C18:2, C18:1, and C18:0) was found to be effective against bacteria,
especially Bacillus cereus and Enterococcus faecalis; however, C9:0,
C10:0, and C16:1 demonstrated the greatest activity (Urbanek et al.,
2012). Lucilla sericata larva FFA extract was found to be effective
against Staphylococcus aureus and Streptococcus pneumoniae and
demonstrated significant anti-biofilm activity against the species
(Liu et al., 2021). The minimum inhibitory concentration (MIC) of
the cuticular FFA extract from Rhynchophorus palmarum was found
to range between 1.5 and 20 μg/mL against Gram-positive bacteria
(Staphylococcus epidermidis, E. faecalis), Gram-negative
(Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia),
and fungal species (Candida albicans, Candida tropicalis) (Batalha
et al., 2020).

The cuticular fatty acids from C. vomitoria, C. vicina, S. carnaria
and L. sericata was have also been found to demonstrate antifungal
activity against entomopathogenic fungi (Golebiowski et al., 2012a;

Golebiowski et al., 2013a; Golebiowski et al., 2013b; Golebiowski
et al., 2014b). The Galleria mellonella FFAs C14:0, 16:0, 16:1, 18:0,
18:1, 18:2, 18:3, 20:0, and 20:1 displayed fungistatic activity against
C. coronatus in vitro; the fungus demonstrated lower hyphal
biomass, reduced sporulation, lower virulence against wax moth
larvae and less toxic metabolites (Bogus et al., 2010). Gołębiowski
et al. demonstrated the antifungal activity of cuticle lipids, including
fatty alcohols (C10–C30) and various other compounds, e.g., butyl
oleate, squalene and tocopherol acetate, from four flies: C. vicina, C.
vomitoria, M. domestica and S. carnaria. Fatty alcohols
C10–C30 have also exhibited moderate activity against fungal
entomopathogens (B. bassiana, Lecanicillium lecanii, M.
anisopliae, Paecilomyces fumosoroseus, P. lilacinus) and have been
found to be highly effective against fungal pathogens affecting
humans, such as Aspergillus niger, C. albicans, C. lipolytica and
C. tropicalis. In addition, the compounds tocopherol acetate, butyl
stearate and glycerol oleate, present in the cuticle, demonstrated
moderate antifungal activity in both groups of fungal pathogens
(Golebiowski et al., 2012b; Golebiowski et al., 2013b; Golebiowski
et al., 2014a; Golebiowski et al., 2015).

3 Immunological system of insect

The second line of defense against pathogen infection is the
innate immune system. Insects employ cellular and humoral
defenses depending on the type of threat. In some insects, for
example, G. mellonella, there is a strong structural and functional
similarity of their immune system to the innate immune response
described in mammals. Despite not being able to produce specific
antibodies, insects are still able to produce various antimicrobial
peptides (AMPs), which are then secreted to the hemolymph. While
the humoral immune response acts through melanization, clotting
and ROS production, cellular immunity acts through phagocytosis,
nodulation and encapsulation (Dolezal et al., 2019; Ali
Mohammadie Kojour et al., 2020; Ahlawat and Sharma, 2022).

3.1 The cellular response

The cellular response starts working immediately after the entry
of the pathogen, and it is mediated by hemocytes, these being
immunocompetent cells. The cellular response involves three
main mechanisms of action: phagocytosis, nodulation and
encapsulation (Sheehan et al., 2018). Insect hemocytes and
mammalian neutrophils share many structural and functional
features. (Bergin et al., 2005; Renwick et al., 2007; Browne et al.,
2013). The pathogen is recognized by receptors on the surface of
immune cells or by opsonins, proteins which are found in the
hemolymph and bind to antigens. Recognition of the pathogen
leads to the reorganization of the cytoskeleton of the hemocytes,
thanks to which the cells spread to the pathogen penetration site
(Marmaras and Lampropoulou, 2009; Zhang W. et al., 2021;
Eleftherianos et al., 2021).

Hemocyte subpopulations may differ from one insect species to
another. The G. mellonella larvae, the most popular insect model,
includes five types of hemocytes: prohemocytes, plasmocytes,
granulocytes, spherulocytes and oenocytoids (Senior and Titball,
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2020). The majority of hemocytes circulating in the hemolymph are
granulocytes and plasmatocytes, these being the only types capable
of adherence (Hillyer, 2016). After adhesion to various surfaces, the
circular plasmatocytes develop pseudopodia ranging in size from
10 to 15 µm wide and 20–30 µm long. Granulocytes are spherical,
with a small nucleus and numerous granules in the cytoplasm. Upon
encountering a foreign body, the granules undergo exocytosis,
releasing compounds that act as opsonins and attractants for
other hemocytes (Jiravanichpaisal et al., 2006; Lapointe et al.,
2012). Spherulocytes and oenocytoids are non-adherent
hemocytes. Spherulocytes transport cuticle components and
contain numerous round and oval spheres that are bound to the
cell membrane. Oenocytoids are round or oval cells with a small
nucleus; these support melanization by carrying components of the
phenoloxidase system. Oenocytoids can also release nucleic acids,
which can warn about infection (Altincicek et al., 2008).

Four major types of hemocytes are described in Drosophila:
prohemocytes, plasmatocytes, crystal cells, and lamellocytes.
Plasmatocytes have similar function and morphology as
vertebrate macrophages, while crystal cells and lamellocytes have
similar functions to coagulation and granuloma formation in
mammals (Tattikota et al., 2020). Lamellocytes are able to
encapsulate foreign bodies such as parasitoid wasp eggs in
Drosophila larvae, which cannot be phagocytosed. Finally, crystal
cells enclose prophenoloxidase (ProPO), the most important
enzyme in melanin biosysnthesis, which is stored as crystalline
inclusions and released upon cell rupture (Lu and St Leger, 2016).

The total numbers and types of hemocytes are influenced by the
developmental stage and environment, such as diet and stress factors
(Vogelweith et al., 2016; Arteaga Blanco et al., 2017; Boguś et al.,
2018). When the cellular response mechanisms are activated, the
total hemocyte count (THC) and differential hemocyte count
(DHC) change. Hemocytes neutralize foreign bodies by
encapsulating them in capsules or nodules; interestingly, the
spatial structure of nodules and capsules remains similar despite
the contents (Ratcliffe and Gagen, 1976; Ratcliffe and Gagen, 1977).
These structures may also contain melanin depending on the species
(Hillyer, 2016).

Fungal infection induces several changes in cellular defense.
The cellular defense mechanism was found to activate in G.
mellonella in response to immunization with α-1,3-glucan from
A. niger, reflected in changes in THC and DHC value, the
formation of hemocyte aggregates and changes in apolipophorin
III localization (Staczek et al., 2020). Conidiobolus coronatus
infection results in damage to the G. mellonella hemocytes in
several ways: by destruction of the cytoskeleton, more specifically
the actin fibers (Kazek et al., 2020), resulting in cell death of
hemocytes (apoptosis, autophagia) (Kazek et al., 2020; Wronska
et al., 2021), oxidative stress (Kazek et al., 2020), and the
production of highly toxic metabolites: coronatin-1, coronatin-
2, dodecanol, octanoic acid, harman and norharman (β-carboline
alkaloids) and two trichothecenes (HT-2 and T-2 toxic) (Wieloch
et al., 2011; Paszkiewicz et al., 2016; Bogus et al., 2017a; Wronska
et al., 2018a; Kazek et al., 2021; Kaczmarek et al., 2022). A
significant decrease in the number of hemocytes was discoverd
in Spodoptera litura treated with Aspergillus flavus compared to
control. The decline may be due to cytotoxic fungal activities,
which inhibit the activity of defensive hemocytes to support the

fungal infection (Karthi et al., 2018). Similar results were presented
by Kaur et al. , who report a decrease in S. litura hemocyte counts
after treatment with the fungus Alternaria alternata (Kaur et al.,
2015).

In locusts, the cellular defense is moderated by hemocytes
and hematopoietic tissue. In Locusta migratoria, hemocytes and
hematopoietic tissue work together to clear invading pathogens
from the hemocoel. A β-1,3-glucan infection of L. migratoria
induces nodule formation, increases apoptosis in hematopoietic
tissue, resulting in a considerable loss of hemocytes in circulation
and a consequent instant increase of hemocytes and
hematopoietic tissue cells to support the host cellular defense
(Duressa et al., 2015). It is believed that the key phagocytes
protecting against invasion by Metarhizium acridum in L.
migratoria are plasmatocytes and granulocytes. During fungal
infection, an increase of amount of locust hemocytes was
observed in the initial days after infection, as well as a
decrease in the next period of infection compared to the
control group (Cao et al., 2016; Yu et al., 2016).

3.2 The humoral response

The cellular immune response is assisted by the mechanisms of
the humoral response. Antigen recognition by PRRs (pattern
recognition receptors) activates two main signaling cascades: the
Toll and Imd (immune deficiency) pathways (Wang X. et al., 2019;
Lin et al., 2020). Their activity induces the transcription of genes
encoding pathogen-specific effector proteins, including
antimicrobial peptides (AMPs) (Wu et al., 2018). Enzymatic
cascades also regulate the process of coagulation and
melanization, as well as the production of ROS and RNS (Clark,
2020).

Toll receptors were first discovered while studying the dorsal-
ventral (DV) polarization of Drosophila melanogaster embryo
(Nusslein-Volhard and Wieschaus, 1980). Extensive
phylogenetic analyses have confirmed the presence of the Toll
pathway in many organisms from protozoa to mammals
(Brennan and Gilmore, 2018). This pathway is triggered in
response to infections by Gram-positive bacteria or fungi; it
also influences the genes associated with antibacterial and
antifungal proteins (Shin et al., 2006; Geng et al., 2021). The
ligand for Toll receptors is Spatzle, also known as Spaetzle or
Spätzle (Spz). Its activation results in the Toll receptor - Spatzle
complex being cleaved by the serine protease SPE (Spaetzle
processing enzyme) (Rahimi et al., 2019; Zheng et al., 2020).
The attachment of Spz to the transmembrane Toll receptor,
found on the surface of the cells of the fat body, activates the
intracellular signaling cascade. It includes, among others, the
adapter proteins MyD88 and Tube, and Pelle kinase. After
activation, they phosphorylate the Cactus protein
(homologous to the Iκ-B protein), which exists as a complex
with the transcription factors Dif and Dorsal; this
phosphorylation contributes to the release of transcription
factors and their subsequent transfer to the cell nucleus
(Carvalho et al., 2014; Chowdhury et al., 2019; Sarvari et al.,
2020; Zhang K. et al., 2021). Following this, the genes encoding
AMP are transcribed (Yu et al., 2020).
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The peptidoglycan of Gram-negative bacteria is characterized by
the existence of meso-diaminopimelic acid (PGN-Dap). This
molecular pattern is attached by the PRGP-LC (peptidoglycan
recognition protein LC) receptor on the surface of the cells of the
fat body (Liu et al., 2020); PRGP-LC is the first protein in the Imd
pathway. Its dimerization gives rise to a signal cascade (Wang Q.
et al., 2019), resulting in the attaching of the Imd protein
homologous to the RIP (receptor-interacting protein) in
mammals. The dFADD kinase is then bound to the Dredd
caspase, which is homologous to caspase 8 in mammals. This
complex activates the kinases TAK1 (TGF-beta activated kinase
1) and MAPK, which in turn transfer the signal to the IKK (IκB
kinase) complex, which includes Ird5 and Kenny. The complex
cleaves the N-terminal part of the Relish protein (Goto et al., 2018).
The active form of this protein enters the cell nucleus, where it
regulates the transcription of genes encoding antimicrobial peptides
(De Gregorio et al., 2002).

Literature data indicates that both the Toll and Imd pathways
have the potential to be initialized in L. migratoria in response to
M. acridum infection, and that Toll/IMD genes demonstrate
different expression in the locust fat body and hemocytes
(Zhang et al., 2015). Moreover, the locust Toll pathway can be
activated before fungal penetration as a result of fungus β-1,3-
glucan detection (Zheng et al., 2020). Drosophila Toll pathway
mutants were found to be more susceptible to infection by B.
bassiana and M. anisopliae (entomopathogenic fungi) or by the
opportunistic pathogen Aspergillus fumigatus compared to wild
type flies (Lemaitre et al., 1997; Rutschmann et al., 2000; Tauszig-
Delamasure et al., 2002). In addition, infection studies with B.
bassiana showed that Persephone’s protease was very important
for Toll receptor activation in response to fungal infection
(Levitin and Whiteway, 2008). Mutant GNBP-3 defective
Drosophila flies were unable to effectively induce drosomycin
expression following challenge with fungal cell wall components
such as β1-3 glucans, as well as heat-killed C. albicans cells and
Aspergillus nidulans cell extracts (Gottar et al., 2006). The lethal
effect, influenced in the Toll pathway, was observed also after
injection into Drosophila human pathogens, like A. fumigatus, C.
albicans and Cryptococcus neoformans (Lemaitre et al., 1996;
Alarco et al., 2004; Apidianakis et al., 2004). In S. exigua,
infection with B. bassiana and Metarhizium rileyi activated
the eicosanoid biosynthesis via the Toll signal pathway, but
not Imd (Park and Kim, 2012a; Roy and Kim, 2022).

One of the best understood signal transduction cascades is the
JAK-STAT pathway. Upon infection, the extracellular cytokine
Unpaired (Upd) binds to the cellular Domeless (Dome) receptor,
thus activating the Jak/Stat pathway. Domeless is phosphorylated by
Hopscotch (Hop). This recruits Stat, which is then dimerized and
translocated to the nucleus. This results in the activation of
antimicrobial gene transcription such as nitric oxide synthase
(Trivedi and Starz-Gaiano, 2018; Moore et al., 2020). The JAK/
STAT pathway is crucial during viral infection, but the molecular
mechanisms observed in Bombyx mori and Aedes aegypti following
challenge with B. bassiana suggests that it may have a supplemental
role in antifungal response (Geng et al., 2016). Differences in JAK-
STAT gene expression have also been detected in Colorado potato
beetles during Metarhizium robertsii infection (Kryukov et al.,
2021).

4 Role of lipids in the insect immune
mechanisms

One of the regulating factors of the insect immune system are
lipids, that enter the organism from the environment (e.g., with
food) and those produced by the body through various pathways.
For example, feeding on a lipid diet (linseed oil) increased mortality
in Manduca sexta after Serratia marcescens infection (Adamo et al.,
2007), and the peanut oil, which contains mostly TAGs, induced
melanin formation in B. mori (Li et al., 2022). Although the effect of
lipids on various elements of the immune response of mammals is
well understood and widely described in the literature, their effects
on insects are less studied. Most research has described the effect of
arachidonic acid (ARA) application. For example, 4%ARA, supplied
with the diet, reduced mortality in honeybees Apis mellifera infected
with E. coli and increased phenoloxidase, antitrypsin, and lysozyme
acticvity; they also elevated the mRNA expression of the defensin-2,
toll, myd88, and dorsal genes associated with the immune system
(Yu et al., 2021). ARA injection significantly increased the humoral
and cellular immune responses in Spodoptera exigua (Hasan et al.,
2019) and increased adhesion of G. mellonella hemocytes without
significant effect on cytoplasmic cAMP levels, suggesting that the
ARA may stimulate an alternative non-cAMP pathway of adhesion
in the wax moth (Marin et al., 2005). ARA injection reverses the
inhibition of Rhodnius prolixus hemocyte phagocytosis caused by
Trypanosoma rangeli infection (Figueiredo et al., 2008) and induces
the expression of the cecropin and lysozyme genes in B. mori
(Morishima et al., 1997). 10-Hydroxy-2-decenoic acid (10-HDA),
a fatty acid present in high amounts in royal jelly, inhibits the
secretion of extracellular polymeric substances, reducing the
adhesion and aggregation of S. aureus and disrupting biofilm
architecture (Gao et al., 2022). Octanoic acid, a short fatty acid,
deforms hemocytes, disorders networking, activates apoptosis and/
or necrosis, activates caspases 1–9 and elevates the 8-hydroxy-2’
-deoxyguanosine (8-OHdG) level inG. mellonella hemocytes after in
vivo and in vitro application (Kaczmarek et al., 2022). Compared to
flies reared on a standard diet, Drosophila reared on diets with
higher cholesterol, Wolbachia strains exhibited lower pathogen
blockage and 2- to 5-day earlier viral-induced mortality
(Caragata et al., 2013). Peanut triacylglycerol injection induced
melanin formation in B. mori (Li et al., 2022).

A supply of cholesterol is needed in the diet to maintain the
immune system during infection, as this cannot be synthesized by
insects. This compound is a precursor of steroid hormones, of which
ecdysone is the most important for the immune system. Ecdysone
(also called α-ecdysone) is produced in the prothoracic gland in the
form of a prohormone with low biological activity, from which the
active form 20E (also called β-ecdysone) is biosynthesized in
peripheral tissues. The 20E biosynthetic pathway in insects is
shown in Figure 3. As ecdysone secretion is primarily responsible
for determining the timing of moulting, it has been classified as a
“moulting hormone.” However, developmental profiling of 20E
responses indicate that the hormone also regulates other
physiological processes, including those associated with
metabolism, stress response and immunity. In D. melanogaster,
20E is involved in increasing the phagocytic activity of hemocytes
and lymph gland development and hematopoiesis. In the flesh fly,
Neobellieria bullata, nodulation is stimulated by laminarin, a β-1,3-
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glucan major component of fungal cell walls; this process is
conjugated with the level of eicosanoids, the metabolites of some
polyunsaturated fatty acids, and is stimulated by 20E (Franssens
et al., 2006). In addition, 20E has been found to regulate the PPO
(prophenoloxidase) system to resist fungal (M. anisopliae) invasion
by modulating the pattern recognition receptor GNBP-2 in the
global pest L. migratoria (Han et al., 2020).

Some entomopathogenic fungi have developed mechanisms to
target ecdysone as an infection facilitator. Beauveria bassiana
appears to produce ecdysteroid 22-oxidase (MrE22O), which
inactivates ecdysone in G. mellonella. MrE22O deletion results in
impaired virulence compared to the wild-type strain; the hosts
demonstrated increases in both ecdysone and antimicrobial gene
expression (Zhu et al., 2021). 20-Hydroxyecdysone binds to the
nuclear ecdysone receptor (EcR), affecting gene transcription. EcR
knockdown significantly inhibited locust mortality when infected
with M. anisopliae (Han et al., 2020).

5 The role of the fat body in immunity

In the insect, the fat body plays an analogous role to the adipose
tissue and liver in vertebrates. It plays a key role in regulating various
processes, such as larval growth, immunology and courtship
behavior, by regulating hormone and nutrition signals and that
influence the brain (Arrese and Soulages, 2010).

The fat body undergoes significant changes in the insect life
cycle, undergoing changes in form in the embryonic stage, growth in
the larval stage and remodeling in the pupal stages; it also affects
adult reproduction, a process regulated by hormones and nutrients,
including lipids. The fat body is made up of five main types of cells
(trophocytes, oenocytes, mycetocytes, chromatocytes, and urocytes)
which vary in composition, size, and function during the different
stages of growth (Skowronek et al., 2021).

In adipocytes, lipids are mainly stored as triacylglycerols (TAG),
which are mobilized by the adipokinetic hormone depending on the
current metabolic needs of the body. TAGs store energy for the
flying muscles and egg cells, and are also used during the functioning
of the immune system. The exact mechanisms that cause lipid
mobilization during infection and the effect of mobilized lipids
are not yet known; however, it is known that lipids can be a source of
energy and/or for membrane biogenesis at sites of infection or in
hemocytes (Arrese and Soulages, 2010). The immune signaling
activation shifts anabolic lipid metabolism from triglyceride
storage to phospholipid synthesis to support immune function in
the fat body. The activation of Drosophila larvae fat body Toll
signaling leads to a tissue-autonomous reduction in triglyceride
storage which is paralleled by decreased transcript levels of the
DGAT homolog midway, which carries out the final step of
triglyceride synthesis. In contrast, Kennedy pathway enzymes
that synthesize membrane phospholipids are induced (Martinez
et al., 2020).

FIGURE 3
The ecdysteroid biosynthesis pathway in the prothoracic gland and the role of 20 dehydroecdysone in insect immunity. Cholesterol is converted
into 20-dehydroecdysone (20E) by several ecdysteroidogenic enzymes (red font). Ecdysteroid biosynthesis starts from the conversion of cholesterol to
7-dehydrocholesterol (7 dC). Then, 7 dC is converted to ketodiol via multiple steps with the participation of a group of enzymes called “Black Box.” In the
terminal catalytic steps of ecdysteroid biosynthesis, ketodiol is then sequentially hydroxylated at carbon 25, carbon 22, carbon 2, and lastly carbon
20, resulting in a conversion to the active steroid hormone 20E (based on the information in Niwa and Niwa (2014), Saito et al. (2016), Chanchay et al.
(2019); structural formulas of chemical compounds from PubChem database).
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A considerable increase in fatty acid methyl ester content
was noted in the fat body of Zophobas morio larvae on the fifth
day of Metarhizium flavoviride infection; this level then
decreased on day seven. However, the levels of other esters,
especially octanoic acid decyl ester/OADE, were lower days
5 and 7 after infection (Golebiowski et al., 2020).
Experiments on mosquitoes, Ae. aegypti, infected with Gram
(+) bacteria and fungi found a significant increase in the
expression of two fat body genes involved in lipid
metabolism, a lipid carrier protein lipophorin (Lp) and its
lipophorin receptor (LpRfb); however, no such increase was
noted for Gram (−) bacteria. In the fat body, immune
induction caused by pathogen and parasite infections found
both Lp and LpRfb gene expression to be regulated by the
Toll/REL1 pathway (Cheon et al., 2006).

The chronic activation of the IMD/NF-κB pathway in
Drosophila prevents gut bacteria-dependent sterol regulatory
element binding protein (SREBP) processing and thus lipid
metabolism. By restricting the diffusion of PGN to the fly
hemolymph, the PGRP-LBsec enzyme allows gut bacteria-
dependent lipogenesis in remote adipocytes and promote fly
survival. In the absence of such brake, lipid storages of orally
infected flies are rapidly depleted and life span is reduced
(Charroux and Royet, 2022). When bacteria such as
Mycobacterium marinum are injected into Drosophila body
cavity, the transcription factor Mef2, which activates
transcription of metabolic genes in non-infected individuals,
switches its activity to enhance transcription of immune genes.
As a result, anabolic transcripts are reduced and energy stores,
such as lipids, are lost. Toll and the IMD signaling pathways are
acting genetically upstream of Mef2 in this process (Clark et al.,
2013).

The production of antimicrobial peptides (AMPs) can be
considered as the main role of the fat body in the immune
response in insects. Both the innate humoral (innate level of
immune proteins, e.g., lysozyme) and acquired immune
responses induce the synthesis of antibacterial attacin and
defensin proteins. After contact with a pathogen, chemokines
stimulate the production of immune proteins and polypeptides in
the fat body; these relay information between the hemolymph and
the fat body. In addition, effectors are produced a few hours after
body cavity infection and these are then transferred to the
hemolymph (Salcedo-Porras et al., 2022).

Antimicrobial peptides are produced in the fat body by the
activity of the Toll and Imd pathways. AMP expression is also
regulated by ecdysone, a hormone produced as a result of
biochemical transformation of cholesterol (Zanarotti et al., 2009;
Zheng et al., 2018; Huang et al., 2020; Kenney et al., 2020; Nunes
et al., 2021). Based on their structure and aa sequence, AMPs can be
classified into three groups: 1) cecropins—linear peptides with an α-
helix but lacking cysteine residues; 2) defensins—with six to eight
conserved cysteine residues, a stabilizing system of three or four
disulfide bridges, together with three other domains with a flexible
loop at the amino terminus; and 3) peptides—overrepresented with
proline or glycine residues (Makarova et al., 2018). The seven
families of these proteins identified in Drosophila (attacins,
cecropins, defensin, diptericins, drosocin, drosomycins, and
swordfish) have been most widely described (Lazzaro et al.,

2020). However, 18 such proteins have been characterized in G.
mellonella, five of which have been extensively studied (cecropins,
gallerimycin, galliomycin, morcin-like protein and gloverin-like
protein) (Sheehan et al., 2018).

Most AMP proteins are antibacterial, but there are also some
with antifungal properties, such as drozomycin from D.
melanogaster, helomycin from Heliothis virescens, thermicin from
Pseudocanthothermes spiniger, gallerimycin from G. mellonella
(Hegedus and Marx, 2013) and AP2 (anionic peptide 2) from G.
mellonella (Sowa-Jasilek et al., 2020). The AMPs are probably
involved in the initial recognition and destruction of fungal
structures in the outer layer of the cuticle (Butt et al., 2016). B.
mori cecropin A and gloverin showed high antifungal activity
against the entomopathogenic fungus B. bassiana in both in vitro
and in vivo research studies (Lu et al., 2016). The infection of
Anopheles stephensi with B. bassiana, an entomopathogen which
produces oosporein, can downregulate the expression of antifungal
peptide genes in the fat body (Feng et al., 2015; Wei et al., 2017).
Infection of G. mellonella larvae by the entomopathogenic B.
bassiana caused a time-dependent increase in the expression of
gallerimycin and defensin (galiomicin) at the mRNA level, but only
weak, transient expression of the gene for cecropin ((Wojda et al.,
2009). On the other hand, injection of filamentous fungus Fusarium
oxysporum resulted in elevated defensin, proline-rich peptide 2,
cecropin D-like peptide and anionic peptide 1 productoin in G.
mellonella (Mak et al., 2010). Infection ofD. melanogasterwith the B.
bassiana or M. anisopliae (fungi) resulted in elevated gene
expression for the antifungal peptide drosomycin and
metchnikowin; however, no increase was observed for the
antibacterial peptides diptericin or cecropin A. Various fungi can
also stimulate the antimicrobial peptide attacin A through the Imd
and Toll pathways, thus activating the transcription factors Relish
and/or Dif, as observed in the Dif and Relish mutants of D.
melanogaster. Interestingly, while attacin A expression required
Relish in response to Geotrichum candidum but Dif in response
to B. bassiana, indicating that the immune system can distinguish
between the two species (Hedengren-Olcott et al., 2004). Moreover,
D. melanogaster hemolymph demonstrated a number of changes in
protein expression following exposure to yeast Saccharomyces
cerevisiae, as indicated by proteomic analysis (Vierstraete et al.,
2004).

6 Lipid droplets and insect immunity

Lipid droplets (LDs) are found in almost all organisms from
bacteria to humans, and a wide range of cell types, including those
involved in the mammalian immune response. These specialized
lipid-storing organelles comprise a hydrophobic core with high
amounts of neutral lipids, e.g., triglyceride, cholesteryl ester or
retinyl ester, surrounded by a phospholipid or cholesterol
monolayer. It is also accompanied by a range of associated
proteins which play roles in cell homeostasis, metabolism and
signaling (Melo et al., 2011; Olzmann and Carvalho, 2019;
Lundquist et al., 2020). In insects, these organelles are found
mainly in the cells of the fat body, mainly the oenocytes (Wei
et al., 2019), in the intestine (gut) (Kuhnlein, 2012) and in hemocytes
(Shin et al., 2020).
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In mammals, LDs are ubiquitous organelles that modulate
immune and inflammatory responses. There are also literature
reports about the role of these organelles in the insect immune
response. Due to the diverse interactions between pathogens and
LDs, and the strong evolutionary pressure, LDs are key mediators of
the immune system. Drosophila LDs were found to sequester
histones via the Jabba receptor (Li et al., 2012) and release them
in response to bacterial infection (Anand et al., 2012).

Ae. aegypti Aag2 immune response cells were found to
accumulate LDs following exposure to Enterobacter cloacae,
Sindbis and Dengue viruses. The LDs also accumulated in cells
in the midgut following S. marcescens and Sindbis virus challenge or
after a blood meal. These LD numbers were also increased by
constitutive activation of Toll and IMD pathways following
knockdown of Cactus and Caspar: their respective negative
modulators (Barletta et al., 2016). The fatty acids released as a
result of triglyceride breakdown are thought to have antibacterial
properties similar to detergents, weakening bacterial viability by
disrupting their membranes (Brasaemle et al., 2004).

In Drosophila, the LDs in the fat body exhibit different
morphological dynamics between transient and sustained
bacterial infection. More specifically, perilipin1 (plin1), a core
gene regulating LDs metabolism, is suppressed by the IMD
pathway via the Martik (MRT)/Putzig (PZG) complex. During
transient activation, plin1 is reduced, resulting in the production
of large LDs, thus alleviating the oxidative stress caused by ROS
production during immune reactions (Wang et al., 2021).
Research of Harsh and co-workers pointed that Drosophila
LDs might play role of inflammation markers, and can dictate
the outcome of the infection, depending on the nature of the
challenge. Authors pointed that the systemic infection of
Drosophila adult flies with non-pathogenic E. coli, the
extracellular bacterial pathogen Photorhabdus luminescens or
the facultative intracellular pathogen Photorhabdus
asymbiotica results in intestinal steatosis marked by lipid
accumulation in the midgut. Accumulation of LDs in the
midgut also correlates with increased whole-body lipid levels
characterized by increased expression of genes regulating
lipogenesis. The lipid-enriched midgut further displays
reduced expression of the enteroendocrine-secreted hormone,
Tachykinin. The observed lipid accumulation requires the Gram-
negative cell wall pattern recognition molecule, PGRP-LC, but
not PGRP-LE, for the humoral immune response (Harsh et al.,
2019). LDs are also involved in the social immunity of insects. In
the social aphid Nipponaphis monzeni, the soldier nymphs
possess large numbers of highly-differentiated large hemocytes
in the body cavity; these contain considerable amounts of LDs
and phenoloxidase (PO). In contrast, the hemolymph
accumulates large amounts of tyrosine and a unique repeat-
containing protein (RCP). The insects live in a nest made
from plants, a gal. Upon attack, the soldier nymphs erupt
from the gall and discharge fluid containing LDs from their
large hemocytes; they mix this fluid with their legs, and use it
to close the hold in the gall by forming a lipidic clot. At the same
time, the activated PO converts tyrosine to reactive quinones;
these link RCP and other macromolecules together, thus
reinforcing the clot and sealing the breach (Kutsukake et al.,
2019).

7 Fatty acid
metabolites—eicosanoids—in insect
immunity

In insects, lipids act on the immune system not only directly, but
also through their metabolites. The main group of metabolites with
immunomodulatory activity are eicosanoids and their biosynthesis
is well described in insects. The pathways (Kim and Stanley, 2021)
for the synthesis of eicosanoid groups from arachidonic acid are
shown in Figure 4.

Eicosanoids mediate hemocyte nodulation reactions to fungal
infections (Stanley, 2006). They have been found to be involved in
signal transduction in antimicrobial responses in M. sexta after
infection by the entomopathogenic fungi B. bassiana and M.
anisopliae (Dean et al., 2002; Lord et al., 2002). The M. rileyi
infection of beet armyworm, S. exigua, caused the activation of
PLA2 and phenoloxidase (PO) enzymes; moreover, the increase of
expression by genes encoding cecropin, gallerimycin, and hemolin,
the specific antimicrobial peptides was detected (Roy and Kim,
2022). S. exigua PLA2 activation was also detected in the fat
body and hemocytes in response to infection of other
entomopathogen, B. bassiana (Park and Kim, 2012b). Infection
with the entomopathogenic fungus C. coronatus results also in
increased PLA2 activity in G. mellonella hemolymph (Wronska
et al., 2021). Eicosanoids such as prostaglandin E2 and 17-
hydroxyeicosatetraenoic acid, appear to be downregulated in B.
mori after B. bassiana infection. Prostaglandin E2 (PGE2)
mediates the cellular immune response by stimulating the spread
of hemocytes, thus enabling phagocytosis, nodulation and
encapsulation (Groen et al., 2012; Ahmed and Kim, 2021; Roy
et al., 2021). PGs also induce the release of prophenoloxidase
(PPO) from oenocytoids into the hemolymph; PPO is then
converted to the active form, phenoloxidase (PO) to enable the
formation of melanin around any nodules and capsules (Shrestha
and Kim, 2008). Furthermore, studies on S. exigua larvae found
that injection of eoxyoctadecamonoenoic acids (EpOMEs),
vernolic acid (12,13-EpOME) and coronaric acid (9,10-
EpOME) suppressed the cellular immune responses following
exposure to bacteria; In addition, EpOME treatment also
suppressed AMP gene the expression (Vatanparast et al.,
2020). PGs also reduced ovarian development of R. prolixus
after injection of the non-entomopathogenic fungus A. niger
into the hemocoel (Medeiros et al., 2009). Also, formosan
subterranean termites, Coptotermes formosanus, demonstrated
significantly increased mortality after treatment with Isaria
fumosorosea and ibuprofen sodium salt (eicosanoid
biosynthesis inhibitor) compared to insects treated with
fungus alone or untreated insects.

Although arachidonic acid (ARA) is a precursor to the synthesis
of eicosanoids, its concentration in the body of insects is kept at a
low level. Stanley and Kim propose that terrestrial insects limit ARA
levels to minimize oxidative stress. Compared to other animals, they
have developed a relatively high metabolic rate and a highly-
developed tracheal system that directly supplies the correct
amount of oxygen needed for the proper functioning of active
tissues, such as flight muscles; this may make them more
susceptible to reactive oxygen species (ROS) generated by high
oxidative catabolism. Long-chain PUFAs, including ARA, react
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with ROS and undergo peroxidation, which in turn leads to various
forms of cellular damage (Stanley and Kim, 2020).

8 Apolipoproteins

Apolipoproteins (Apo) act as carrier proteins; they bind lipids to
form called lipophorins, a form of lipoprotein particle. In insects,
Apo constitute the main components of insect lipophorin particles,
being referred to as apolipophorins (ApoLp). Lipophorin (Lp) is
present in the hemolymph of various insects, where it shuttles lipids
such as diacylglycerol, phospholipids, sterols and hydrocarbons
between tissues (Ryan and van der Horst, 2000). Insect
lipophorin comprises two non-exchangeable apolipophorins,
apolipophorin I (ApoLp-I, ~240 kDa) and apolipophorin II
(ApoLp-II, ~80 kDa), as well as apolipophorin III, an
exchangeable protein (ApoLp-III, ~18 kDa). ApoLp-I and
ApoLp-II are formed from the common precursor apolipophorin
II/I (ApoLp-II/I) by post-translational cleavage. ApoLp-II/I is
homologous to the mammalian apoB and ApoLp-III to
mammalian apoE (Van der Horst and Rodenburg, 2010).

ApoLp-III plays an important role in the innate immune system,
where it appears to modulate the insect cellular response. It is

considered to be a pathogen recognition receptor (PRR) because
it binds microbial cell wall components, such as lipopolysaccharide
(LPS) in Gram-negative bacteria, lipoteichoic acids (LTA) in Gram-
positive bacteria, and β-1,3-glucan in fungi, thus stimulating
phagocytosis and nodulation by insect hemocytes (Whitten et al.,
2004; Maravilla et al., 2020). In G. mellonella, ApoLp-III supports
the phagocytosis of yeast cells by insect plasmatocytes: it affects the
adherent properties of hemocytes and, after binding with lipids,
enhances the process of encapsulation and nodulation (Gotz et al.,
1997; Zakarian et al., 2002; Whitten et al., 2004). ApoLp-III exerts its
antibacterial properties by inter alia stimulating lysozyme
production, and increasing its concentration in the hemolymph
(Zdybicka-Barabas et al., 2013). In addition to directly inhibiting B.
bassiana, silkworm B. mori apolipophorin-III (BmApoLp-III) also
influences various genes related to the Toll and Jak/STAT immune
signaling pathways; it also promotes immune effector expression,
and indirectly inhibits B. bassiana reproduction (Wu et al., 2021).
ApoLP-III has been found to be an LTA neutralizing protein, since
in G. mellonella, ApoLp-III was found to bind to LTAs produced by
B. subtilis, thus preventing the loss of plasmatocytes, suggesting that
it may protect the insect against the toxin (Halwani et al., 2000).
Apolipophorin III is an antibacterial agent against human pathogens
(Fallon et al., 2011). The growth of Legionella dumoffii can be

FIGURE 4
Eicosanoid biosynthesis and degradation in insects. Phospholipase A2 (PLA2) catalyzes the hydrolysis of linoleic acid (LA) from membrane-
associated phospholipids (PLs); the resulting LA is elongated by long-chain fatty acid elongase (Elo) and then desaturated by desaturase (Des) to
arachidonic acid (ARA). ARA is then oxygenated by epoxidase (EPX) into epoxyeicosatrienoic acid (EET), lipoxygenase (LOX) into leukotriene (LT), or
cyclooxygenase-like peroxynectin (Pxt) to prostaglandin (PG). The EETs are degraded by soluble epoxide hydrolase (sEH). LTA4 is formed from 5-
hydroxyperoxide eicosatetraenoic acid (HpETE) and changed into LTB4 by LTA4 hydrolase (LTA4H) or into LTC4 by glutathione peroxidase (Gpx). Finally,
various PGs are formed from PGH2 by cell-specific enzymes, thromboxane A2 (TXA2) synthase (TXAS), PGD2 synthase (PGDS), PGE2 synthase (PGES),
and PGI2 synthase (PGIS); these PGs are degraded by PG dehydrogenase (PGDH) and PG reductase (based on the information in Kim and Stanley (2021);
structural formulas of chemical compounds from PubChem database; part of the figure were drawn by using pictures from Servier Medical Art. Servier
Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License).
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inhibited by ApoLp-III from G. mellonella (Staczek et al., 2018). On
the other hand, injection of E. coli, Bacillus thuringiensis or B.
bassiana induces ApoLp-III expression in Apis cerana fat body
(Kim and Jin, 2015). Gupta et al. also confirm that ApoLp-III
appears to participate in the midgut immune defense of
Anopheles gambiae against Plasmodium berghei (Gupta et al., 2010).

The influence of apolipoproteins on the immune system of insects
is related not only to antimicrobial activity. ApoLp-III may also
initiate the formation of low-density lipophorins (LDLp), in
response to infection; these are then taken up by granulocytes,
thus signalling infection to hemocytes (Dettloff et al., 2001; Niere
et al., 2001). Significant induction of ApoLp-III expression, correlating
with a strong nodulation response, was noted in both six- and eight-
instar Thitarodes pui larvae compared with saline-injected controls,
1 hour after B. bassiana conidial challenge (Sun et al., 2012). In
addition, G. mellonella plasmatocytes and granulocyte
subpopulations displayed impaired adhesion to glass slides after
ApoLp-III treatment in vitro and after injection of ApoLp-III into
the hemocoel of larvae. The authors also postulate that ApoLp-III may
downregulate nodule formation and/or phagocytosis (Zakarian et al.,
2002). In contrast, Whitten et al. (2004) report greater nodule
formation in vivo in G. mellonella larvae after injection of ApoLp-
III, which may suggest that ApoLp-III has a stimulating role in the
cellular response. Proteomic analysis showed that together with other
apolipoproteins, ApoLp-III was a component ofG. mellonella net-like
coagulation structures, which also include endogenous extracellular
nucleic acids. Furthermore, ApoLp-III was found to be a specific
RNA-binding protein, indicating that it may play a role in the
extracellular RNA-mediated immune response (Altincicek et al.,
2008). In addition, apolipophorin I and II (ApoLp-II/I) are
involved in the transport and deposition of surface-cuticular lipids
in L. migratoria (Zhao et al., 2020), and in locusts, ApoLp-III is one of
the elements activating the prophenoxidase cascade, which is a critical
step in the immune response in defense against pathogens (Mullen
and Goldsworthy, 2003).

In Gryllus texensis, immune function was found to be dependent
on the amount of free ApoLp-III in the hemolymph: a decrease in
the amount of free ApoLp-III in the hemolymph resulted in an
impaired immune response due to the action of adipokinetic
hormone. In addition, increasing post-flight ApoLp-III levels by
injecting purified ApoLp-III also reduced flight-induced
immunosuppression (Adamo et al., 2008). G. mellonella
hemolymph samples collected from larvae after injection with
ApoLp-III demonstrated strongly increased antibacterial activities
against E. coli as well as clearly enhanced lysozyme-like activities
(Niere et al., 1999). Also ApoLp-III lowered the adhesion of B.
subtilis to wax moth hemocytes and reduced the ability to remove
bacteria from the hemolymph (Zakarian et al., 2002).

Although most research indicates that ApoLp-III may have a
role in the antifungal defense mechanism, some data suggests that
apolipoproteins I/II (ApoLp-II/I) may also have an important role
(Wang X. et al., 2019). ApoLp-II/I and ApoB are homologues, and
the latter plays a key role in innate immunity in mammals.
Kamareddine et al. found that silencing Apo-II/I modulates the
immune response by increasing resistance to bacterial (E. coli) and
fungal (B. bassiana) infections in A. gambiae in a TEP1 (thioester 1-
containing protein) dependent manner, via the JNK pathway
(Kamareddine et al., 2016). Enhanced TEP1-dependent resistance

to Plasmodium infection was observed in Apo-II/I knockout
mosquitoes, suggesting that Apo-I and II are key components the
immunological system in this insect. (Rono et al., 2010). B. mori
ApoLp-II/I is capable of binding S. aureus via lipoteichoic acids on
the cell surface and by repressing hemolysin gene expression
(Hanada et al., 2011; Omae et al., 2013). A recent study on
ApoLp-II/I in Antheraea pernyi found this protein to have a
negative role in prophenoloxidase activation (Wen et al., 2017).

9 Lipid peroxidation as a stress/
inflammatory marker

An imbalance between ROS (reactive oxygen species) and
antioxidant levels contributes to oxidative stress. ROS arise
naturally from metabolic activity and during an immune response,
and can cause damage to lipids, proteins and DNA, (Azzi, 2022). One
of the most widely-studied physiologically significant effects of ROS is
lipid peroxidation; the process induces cellular injury and is an
accurate indicator of oxidative stress. The resulting lipid peroxides
are unstable, and decompose to form various compounds via
initiation, propagation and termination processes (Leuti et al.,
2019; Bahja and Dymond, 2021). In the cell membrane, ROS
primarily induce lipid peroxidation by their reacting with
polyunsaturated fatty acids (Wen et al., 2017).

In insects, lipid oxidation is correlated with the inflammatory
processes that occur during infection. The entomopathogenic fungi I.
fumosoroseus and Hirsutella thompsonaii are capable of causing
mortality in cockroaches (Periplaneta americana) by inducing
oxidative stress (Chaurasia et al., 2016) C. coronatus infection also
induced oxidative stress, autophagy and apoptosis response in G.
mellonella (Kazek et al., 2020; Wronska et al., 2021). The significant
change in the level of lipid peroxidation was detected in Dysdercus
koenigii hemocytes after A. niger infection (Kumar et al., 2019).
Another fungus, A. flavus induced oxidative stress and
immunosuppressive activity in S. litura (Kaur et al., 2021), and the
entomopathogenic B bassiana was found to kill the rice-striped stem
borer, Chilo suppressalis, by causing lipid peroxidation (Shamakhi
et al., 2020). In mosquito larvae (Aedes caspius), Bacillus
thuringiensis Kurstaki (Btk) infection induced significantly higher
levels of two key markers of oxidative stress: lipid peroxidation and
protein oxidation. In imago mosquitoes, significantly higher lipid
peroxidation compared to controls was observed 12 and 24 h after
Btk inoculation, but only after 12 h following E. coli inoculation
(Ahmed, 2011). Herrera-Ortiz et al. report that H2O2 treatment
appears to activate the anti-malarial immune response in a malaria-
refractory strain of A. gambiae following a meal on infected blood,
compared to a susceptible strain (Herrera-Ortiz et al., 2011).

Malpigian tubules of Pectobacterium carotovora infected
Drosphila excrete hemolymphatic lipids mediated by a stress-
induced lipid binding protein, materazzi. Lack of materazzi
results in raised hemolymph levels of reactive oxygen species
(ROS) and elevated lipid peroxidation in flies. It is speculated
that such excretion of hemolymphatic lipids is a physiological
adaptation protecting host tissues from excessive ROS response
to microbial infection (Li et al., 2020). Suppression of humoral and
cellular immune responses of B. mori invaded by the dipteran
endoparasitoid Exorista bombycis is accompanied by increased
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H2O2 concentration in hemocytes, cytotoxicity, lipid peroxidation
and membrane porosity (Pooja et al., 2017).

The lipid oxidation process is also indirectly related to the
immune response. Works on the Drosophila lymph gland
performing the function of hematopoietic organ, have provided
evidence that fatty acid oxidation (FAO) is indispensable for the
differentiation of hemocyte progenitors as in the absence of FAO, the
progenitors were unable to differentiate, and exhibited altered histone
acetylation, while supplementation of acetate restored these defects.
Jun-Kinase (JNK), involved in the differentiation of hemocyte
progenitors, regulates transcription of CPT1/whd (withered), the
rate-limiting enzyme of FAO. For the proper functioning of the
insect immune system the proper differentiation and maturation of
hemocytes is decisive (Tiwari et al., 2020).
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