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Tumor-infiltrating immune cells are capable of effective cancer surveillance, and their abundance is linked to better prognosis in
numerous tumor types. However, in uveal melanoma (UM), extensive immune infiltrate is associated with poor survival. This
study aims to decipher the role of different tumor-infiltrating cell subsets in UM in order to identify potential targets for future
immunotherapeutic treatment. We have chosen the TCGA-UVM cohort as a training dataset and GSE22138 as a testing dataset
by mining publicly available databases. The abundance of 22 immune cell types was estimated using CIBERSORTx. Then, to
determine the significance of tumor-infiltrating cell subsets in UM, we built a multicell type prognostic signature, which was
validated in the testing cohort. The created signature was built upon the negative prognostic role of CD8+ T cells and MO
macrophages and the positive role of neutrophils. Based on the created signature score, we divided the patients into low- and
high-risk groups. Kaplan-Meier, Cox, and ROC analyses demonstrated superior performance of our risk score compared to
either clinical or pathologic characteristics of both cohorts. Further, we found the molecular pathways associated with cancer
immunoevasion and metastasis to be enriched in the high-risk group, explaining both the lack of adequate immune surveillance
despite increased infiltration of CD8+ T cells as well as the higher metastatic potential. Genes associated with tryptophan
metabolism (IDO1 and KYNU) and metalloproteinases were among the most differentially expressed between the high- and
low-risk groups. Our correlation analyses interpreted in context of published in vitro data strongly suggest the central role of
CD8+ T cells in shifting the UM tumor microenvironment towards suppressive and metastasis-promoting. Therefore, we
propose further investigations of IDO1 and metalloproteinases as novel targets for immunotherapy in lymphocyte-rich
metastatic UM patients.

1. Introduction

Uveal melanoma (UM) is the most common primary eye can-
cer in adults and the second most common type of melanoma.
The mainstay of current treatment based on either enucle-
ation or brachytherapy can achieve local disease control in

most patients. However, despite excellent local management,
~50% of the patients still develop distant metastases, with the
liver being the most common site [1-4]. Current treatment
regimens are ineffective in increasing overall survival in met-
astatic UM with a median of 12 months, creating an urgent
demand for novel and effective therapies [2, 3, 5]. Strikingly,
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for the last 40 years, the survival times did not improve,
reflecting a lack of progress in developing novel treatment
strategies [3, 4].

Infiltration of immune cells is linked with improved
prognosis in numerous different cancer types [6, 7]. Immune
cells present in the tumor milieu can suppress tumor growth
and induce disease regression, primarily through cell-
mediated cytotoxicity [6, 8, 9]. CD8+ T cells and natural
killer (NK) cells are primary effector cells in antitumor
response, capable of inducing cancer cell death and mount-
ing a robust immune response against the tumor [6, 10].
However, in the course of cancer microevolution, neoplastic
cells undergo a series of adjustments adapting the cells to
increased proliferation and selective pressure from the
immune system [11, 12]. These changes induce the forma-
tion of a hostile tumor microenvironment (TME) capable
of inhibiting the immune cell effector function [11-13]. Hyp-
oxia, immunosuppressive cytokines, metabolites, and other
factors present in the TME can effectively dampen antitumor
response, allowing for unrestricted tumor growth [12-16].
Therefore, novel strategies emerging in cancer research are
aimed at targeting the TME in order to restore proper immu-
nosurveillance. Checkpoint inhibition representing such an
approach has been proven effective in the treatment of sev-
eral cancers, achieving spectacular success in the therapy of
cutaneous melanoma (CM) [17].

Even though both uveal and cutaneous melanoma arise
from melanocytes, they have distinct clinical and biological
characteristics due to differences in the transformation pro-
cess, oncogenic drivers, and anatomical location [18-20].
While CM exhibits the highest somatic mutation rate across
all the cancers, UM is characterized by a low mutational
burden, partially explaining the discrepancy between the
outcomes of checkpoint inhibitor-based therapies [18-24].
Other targeted treatments, such as antiangiogenic therapies,
have also failed to provide substantial antitumor effects in
clinical trials [24-26]. Moreover, the prognostic role of
immune infiltrating cells in UM appears to be different
compared to CM. Paradoxically, increased abundancy of
tumor-infiltrating cells, particularly T cells, is associated
with poor prognosis and increased metastatic potential in
UM [8, 27-29].

UM has the benefit of growing in the immune privilege
site. The eye is protected from the immune system’s overac-
tivation by numerous immunosuppressive mechanisms such
as the blood-eye barrier limiting the influx of immune cells
and other mechanisms including high expression of TGF-
and IDOL1 in aqueous humor [14, 30-32]. While beneficial
in physiological settings, these characteristics are unfavor-
able in intraocular neoplastic disease due to suppressing
the antitumor immune response and potentiating tumor
growth [30, 32].

The negative prognostic role of immune infiltrating cells
in UM, first discovered nearly 30 years ago, remains an
unexplained phenomenon. We perform comprehensive
mining of the TCGA and GEO database to determine the
role of different immune cell subsets in the prognosis of
UM patients. By employing the primal-dual active set-
based covariate selection algorithm “BeSS,” we create a 3-
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cell type model associated with poor prognosis. Further, we
compare the composition of tumor-infiltrating cells between
high- and low-risk groups, evaluate differentially expressed
genes (DEGs) and enriched pathways, and integrate our data
with the current state of knowledge to delineate the molecu-
lar mechanisms of UM immunosuppressive milieu as well as
immune cells’ protumorigenic activity in UM.

2. Materials and Methods

2.1. Data Mining. The gene expression profiles of UM from
80 patients, together with their clinical and survival data,
were downloaded from TCGA Xena Hub (https://tcga
xenahubs.net) with cohort name: GDC TCGA-UVM for
htseq-counts type and TCGA-PANCAN filtered for
UVM/SKCM patients for harmonized TOIL RSEM TPM
type. The chromosome aberration status in TCGA-UVM
cohort was derived from the original TCGA-UVM manu-
script [33]. Further, we searched the GEO database by look-
ing for studies with (1) available gene expression profiling
data and (2) available survival data [34]. We chose a dataset
with the most cases, resulting in GSE22138 with 63 patients
being used in this study [35]. GSE22138 data was down-
loaded using “GEOquery” [36, 37]. TCGA-UVM was used
as the training cohort, and the GSE22138 was reserved for
testing the created model. TCGA-PANCAN TOIL RSEM
TPM data filtered for patients from the SKCM cohort was
used as a comparison against UM patients [38]. The harmo-
nized TCGA-PANCAN data filtered by cancer type was used
for deconvolution to enable direct comparisons between can-
cer types. “biomaRt” was used to annotate Ensembl/Affyme-
trix probe IDs with HGNC gene symbols [39]. Samples with
a censoring time of fewer than 60 days were excluded to
avoid introducing mixed factors.

2.2. Estimation of Immune Cell Type Abundance in Tumor
Tissue. We used CIBERSORTx (https://cibersortx.stanford
.edu/) to evaluate the relative abundance of predefined cell
types in mixed solid tissues [40]. Normalized and harmo-
nized RNA-seq TOIL RSEM TPM gene expression data from
tumor tissues in the TCGA-PANCAN cohort was filtered by
UVM/SKCM sample IDs and used for this analysis [41]. We
employed the LM22 leukocyte gene signature matrix down-
loaded from the CIBERSORTx website. LM22 contains 547
genes distinguishing 22 types of immune-related cells. As
recommended, we disabled quantile normalization for
deconvolution of RNA-seq data in the training and cutane-
ous melanoma cohort and enabled for microarray data in
the testing cohort. We set the number of permutations to
1000 for robust analysis. The B-mode of batch correction
supplied with LM22 GEP was used. CIBERSORTx enumer-
ated the abundance scores of the 22 infiltrating immune cells,
including B cells, dendritic cells, T cells, natural killer cells,
macrophages, and others. To simplify the text, we referred
to the cell type abundance estimates as “abundance” or “infil-
tration” alone. The results were filtered with a p value < 0.05
threshold. The Wilcoxon rank-sum test was applied to eval-
uate the differences in cell proportions between high- and
low-risk groups.
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2.3. Creation and Validation of Prognostic Immune Cell
Signature. We used “BeSS” R package utilizing the primal-
dual active set-based approach to select variables for the mul-
ticell type model [42]. Significantly, to minimize the risk of
model overfitting, the maximum number of predictors was
limited to 3 variables. All of the cell types were included in
the screening with CD8+ T cells being forced in the model
due to their established negative prognostic role and crucial
function in tumor immunology. In addition to CD8+ T cells,
MO0 macrophages and neutrophils were returned as best can-
didates, and after evaluation in multivariate Cox analysis,
they were used in establishing the final model. Each patient’s
risk score was calculated by a sum of the abundance estimate
of each immune cell type weighted by its multivariate Cox
regression coefficient. Using the median risk score as the
cutoff point, the patients in the training cohort were distrib-
uted to either high- or low-risk group. Kaplan-Meier analysis
and log-rank test were performed to evaluate the survival
difference between the two groups. Cox and ROC analyses
were further used to assess the immune cell type signature’s
prognostic value in the training cohort. The immune cell type
signature score in the testing and cutaneous melanoma
cohort was calculated using the same formula as in the train-
ing cohort.

2.4. Gene Expression Data Processing. The RNA-seq expres-
sion data was HTSeq-counts type. After assigning the sam-
ples to two groups based on risk score, we performed
differential gene expression analysis using “DESeq2” in R
[43]. To optimize power, we used Independent Hypothesis
Weighting (IHW) with an adjusted p value threshold < 0.05
for reporting DEGs and for further gene-set enrichment
analysis [44].

2.5. Gene Set Enrichment Analysis. Active subnetwork search
and enrichment analysis were done using the pathfindR
package in R, accordingly to the authors’ recommendations
[45]. MSigDB Hallmark (H) set was to obtain gene sets for
enrichment analysis [46]. DEGs obtained from DESeq2 with
additional THW were filtered for statistical significance
using adjusted p value < 0.05 as a threshold and used as
an input [44].

2.6. Statistical Analysis. Statistical calculations in this study
were performed using R [47]. “tidyverse” was used in prepa-
rations of all the figures [48]. Kaplan-Meier analysis was
used to examine the prognostic differences between the high-
and low-risk groups. The p value was assessed by the two-
sided log-rank test. Univariate Cox analysis was conducted
to illustrate the relationship between the immune cell type
signature risk score and UM prognosis. “survival” R package
was used in survival analyses [49]. The ROC curves were cal-
culated and plotted by the “pROC” package to evaluate the
risk score’s sensitivity and specificity for prognosis prediction
[50]. The area under the curve (AUC) was used as a measure-
ment of prognostic accuracy. Normality was assessed using
Shapiro-Wilk test. Because the expression of genes of inter-
ested did not follow normal distribution, we used Spearman’s
rank correlation to assess the relationship between gene

expression. The Wilcoxon rank-sum test was applied to eval-
uate the differences in cell proportions between high- and
low-risk groups. In all analyses, p < 0.05 was considered a
statistically significant threshold.

2.7. Visualization. The flowchart was created in Lucidchart
(http://www.lucidchart.com/). The Kaplan-Meier plots were
created using “survmeier” R package and the ROC plots with
“pROC” R package [50, 51]. Correlation plots were created
with “ggpubr” and “corrplot” R packages [52, 53]. The heat
map was created with “ComplexHeatmap” R package [54].
The rest of the figures were created with “ggplot2” [48].

3. Results

3.1. Cohort Characteristics. A simplified flowchart of the
study is presented in Figure 1. After filtering by censor time
and CIBERSORTx deconvolution’s p value, 71 cases from
the TCGA-UVM dataset were used as a training dataset, 60
from GSE22138 as a testing dataset, and 442 patients from
the CM TCGA-SKCM dataset were used as a comparison
to TCGA-UVM. Chosen clinical and pathological character-
istics of training and testing cohorts are summarized in
Table 1.

3.2. Estimation of the Intratumoral Abundance of 22 Immune
Cell Subtypes. To enumerate the tumor-infiltrating immune
cells, we utilized the CIBERSORTX algorithm, which through
v-support vector regression (v-SVR) can accurately estimate
cell abundance based on the supplied gene expression profile
[40]. We used the previously validated LM22 gene signature,
consisting of 22 cell types and 547 genes to analyze the propor-
tions of tumor-infiltrating immune cells in all cohorts. A
visual summary of subset proportions in the training cohort
is presented in Supplementary Figure 1A. Additionally, we
calculated the correlation coefficients between all of the cell
subsets, which were taken into considerationduring model
design (Supplementary Figure 1B).

3.3. Prognostic Impact of Immune Cell Types in Uveal
Melanoma. Kaplan-Meier and univariate Cox regression
analysis were performed on the training cohort to assess the
significance of different immune cell types in UM as overall
survival (OS) predictors. Patients were split into two groups
based on the median abundance of each cell type. Nine
immune cell types were identified in a Kaplan-Meier analysis
as a significant determined by p value calculated with log —
rank test < 0.05. Cell types with positive prognostic value
included neutrophils, eosinophils, resting mast cells T
CD4+ memory resting, and activated dendritic cells, whereas
CD8+ T cells, regulatory T cells (Tregs), MO macrophages,
and activated mast cells were identified as negative prognos-
tic factors (Figure 2).

These findings were supported by Cox univariate anal-
ysis where CD8+ T cells were characterized by the highest
hazard ratio (HR =6.24, 95% CI=2.08-18.75, p=0.0011),
whereas resting Mast cell signature was the strongest fac-
tor associated with improved survival (HR =0.11, 95% CI
=0.03-0.36, p=0.0003) (Supplementary Table 1). The
unexpected negative prognostic role of CD8+ T cells, which
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FIGURE 1: A simplified flowchart of the study.

are the main effector cells in anticancer immune response,
prompted our further investigations.

3.4. Construction and Assessment of Prognostic Model Build
Based on Immune Cell Types. We utilized a primal-dual
active set-based approach implemented in the BeSS R pack-

age to select cell types for the prognostic model. Due to estab-
lished biological and prognostic significance, CD8+ T cells
were forced in the model as described in detail in Materials
and Methods. The three best variable candidates returned
by BeSS were further evaluated in a multivariate Cox regres-
sion analysis. The final cell types included in the model were
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TaBLe 1: Clinical and pathological characteristics of uveal
melanoma patients at the time of diagnosis. Missing data is
marked as NA (not available).

Training cohort
(TCGA-UVM, n="71)

Testing cohort

Characteristics (GSE22138, 1 = 60)

Age at diagnosis

(years)
Mean (SD) 61 (14) 61 (13)
Min-max 22-86 29-85
Gender
Female 31 (43.66%) 22 (36.67%)
Male 40 (56.34%) 38 (63.33%)
Clinical stage
I 0 (0.00%) NA
11 31 (43.66%) NA
111 36 (50.71%) NA
v 4 (5.63%) NA
T classification
Tl 0 (0.00%) NA
T2 3 (4.22%) NA
T3 32 (45.07%) NA
T4 34 (47.89%) NA
Tx 2 (2.82%) NA
N classification
NO 67 (94.37%) NA
N1 0 (0.00%) NA
Nx 4 (5.63%) NA
M classification
MO 64 (90.14%) NA
M1 3 (4.22%) NA
Mx 4 (5.63%) NA
Extrascleral
extension
No 60 (84.51%) 47 (78.33%)
Yes 7 (9.86%) 4 (6.67%)
Unknown 4 (5.63%) 9 (15.00%)
Tumor basal
diameter (mm)
Mean (SD) 17 (4) 15 (4)
Range 8-25 9-23
Tumor thickness
(mm)
Mean (SD) 11 (3) 12 (2)
Range 4-16 6-17

CD8+ T cells, MO macrophages, and neutrophils. Each
patient’s risk score was created by a sum of included immune
cell abundance estimates weighted by their coefficients. Then,
based on median score, the patients were assigned either to
high- or low-risk group.

Kaplan-Meier survival analysis showed that the patients’
overall survival in the high-risk group was significantly

shorter than in low-risk groups (p <0.0001) (Figure 3(a)).
The unfavorable effect of the high-risk immune signature
was also observed in progression-free interval (PFI) in the
training cohort (p = 0.019). To validate the prognostic accu-
racy of the created immune score, we evaluated the immune
cell score in the testing cohort using the same method for
score calculation and group assignment. In agreement with
previous results, the high-risk group showed significantly
decreased metastasis-free survival (MFES) time (p =0.0072)
(Figure 3(a)). Unfortunately, the OS data was not available
in the testing dataset, whereas MFS data was not available
in the training cohort, making a direct comparison between
the training and testing cohort impossible. We found no
other publicly available UM transcriptomic datasets with
OS data and more than 30 patients. Nevertheless, develop-
ment of metastasis is the most critical event in the course of
UM [1, 3]. While metastatic disease is not equivalent to
death, almost no disease-specific death occurs without dis-
tant metastases, implicating a firm relationship between the
two outcomes in UM [55].

The distribution of risk scores and a survival time in a
function of risk score stratified by event occurrence (OS)
are shown in Figures 3(b) and 3(c) for both training and test-
ing cohort, respectively. We observed shorter survival time
and an increased number of events in the high-risk group
in both cohorts.

For an additional assessment of the model, we used
receiver operating characteristic (ROC) analysis and univar-
iate Cox regression to compare the created score against
multiple clinical and pathologic features, including patient’s
age at diagnosis, tumor diameter, tumor thickness, extra-
scleral extension of the tumor, and patient’s gender. In the
training cohort, Cox analysis showed superior performance
of created score compared to other variables based on strong
association with OS (HR =9.66731, 95% CI=2.60306-
35.90275, p=0.0007) and PFI (HR=2.7943, 95% CI=
1.1399-6.84985, p = 0.02469). Consistent with these results,
immune cell score displayed a close association with MFS
in testing cohort (HR =2.64739, 95% CI =1.26927-5.52181,
p =0.00944) (Figure 4(a)). Further, we performed ROC anal-
ysis with a 3-year cutoff as an assessment of the immune cell
score’s prognostic value. The area under the curve (AUC) in
the training cohort was 0.795 for OS and 0.755 for PFI, which
was superior to all the other parameters (Figure 4(b)). In the
ROC analysis in the testing cohort, the score exhibited mod-
erate performance with AUC = 0.601.

Nevertheless, it remained superior to other clinical and
pathologic parameters (Figure 4(b)). We speculate that the
decrease in prognostic value may be partially due to different
outcomes measured (OS/PFI vs. MFS) as well as the technical
differences between the data (RNA-seq vs. microarray).

Additionally, we assessed the correlation between created
risk score and commonly detected chromosomal aberrations
with significant prognostic value in UM - 8q segment gain
and chromosome 3 loss. We observed a modest correlation
between the risk score and both abnormalities (Supplemen-
tary Figure 3). Moreover, we divided the training cohort
into subgroups based on 8q segment and chromosome 3
status to reassess our model’s performance depending on
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by a statistically significant prognostic effect (p < 0.05) are displayed.

the genomic aberrations. In both subgroups associated
with poor prognosis, chromosome 3 monosomy, and 8q
segment gain, the model performed similarly as in the whole
cohort. At the same time, it lacked prognostic value in
tumors without the high-risk chromosomal abnormalities
(Supplementary Table 2).

3.5. Comparison of the Prognostic Value of Immune Cells
between Uveal and Cutaneous Melanoma. To get a broader
perspective of UM’s immunobiology, we have decided to
assess our immune cell signature’s performance and its
individual components (CD8+ T cells, MO macrophages,
neutrophils) on the CM cohort. Intriguingly, although not
statistically significant, the score tended to associate with
improved survival, and the trend was reversed. The prog-
nostic impact of all three cell types included in the genera-
tion of the score was reversed, with the effects of CD8+ T cells

and neutrophils being statistically significant (p < 0.0001 and
p =0.048, respectively) (Figure 5).

3.6. The Immune Architecture of the Tumors in High- and
Low-Risk Group. Comprehensive visualization of the TME’s
cellular architecture is presented in Figure 6. Immunosup-
pressive cells such as Tregs were enriched in the high-risk
group, while resting CD4+ memory T cells and activated
dendritic cells dominated in the low-risk patients (Figure 6
and Supplementary Figure 2).

In order to investigate the underlying immunological dif-
ferences between the high- and low-risk groups that could
explain the unusual negative prognostic value of the immune
cell type signature, we performed differential gene expression
analysis with DESeq2. After independent hypothesis weight-
ing (IHW) and filtering with an adjusted p value threshold
< 0.05, we obtained 722 DEGs. One of the top DEGs was
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metalloproteinases and genes associated with tryptophan
metabolism (IDO1, KYNU). Importantly, all of the statically
significant DEGs encoding metalloproteinases were upregu-
lated in the high-risk group (Table 2). To investigate the rea-
sons behind increased IDO1 expression in the high-risk
group, we have calculated the correlation between IDOI1
and IFN-y (IFNG), TNF-a (TNF), TGF-$1 (TGFB1), and
CD8+ T cells. We have observed stronger association of
CD8+ T cells, IFNG, and TNF with IDO1 compared to
TGEFBI, in both cohorts (Figure 7). Further, we assessed the
correlation between the most significantly enriched metallo-
proteinases (MMP9, MMP25, ADAMDECI, ADAMTS2)
and IDO1/TNF. Both IDO1 and TNF were strongly associ-
ated with metalloproteinase expression (Figure 8). Moreover,
we identified IDOL1 to be associated with poor prognosis in
the training cohort (Supplementary Figure 4).

We also performed pathway enrichment analysis with
pathfindR utilizing MSigDB Hallmark protein-protein inter-
action network. Interestingly, among the most significantly
enriched pathways were epithelial-mesenchymal transition

(EMT), glycolysis, and angiogenesis, all of which are associ-
ated with increased metastatic potential and worse prognosis
(Figure 9). Gene-sets associated with reactive oxygen species
(ROS), xenobiotic metabolism, and allograft rejection were
also enriched in the high-risk group.

4. Discussion

Despite all the recent advances in cancer research, including
immune checkpoint targeting and chimeric antigen receptors
(CARs), metastatic UM continues to elude the therapy [20,
23, 56, 57]. Curative treatments are scarce and can be rarely
achieved, urging for the development of novel therapies.
Failed attempts at translating therapies that were successfully
used in cutaneous melanoma underline the importance of a
comprehensive understanding of UM biology in designing
new treatment approaches. Another utterly important task
is identification of high-risk patients to allow for cost-
effective intensified screening and early metastasis detection.
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FIGURE 4: Forest plot summary of univariate Cox analysis of created score’s prognostic value (a) and receiver operating characteristic (ROC)
analysis of the sensitivity and specificity of the prognosis prediction score (b) in training cohort (overall survival), training cohort based
(progression-free interval), and testing cohort based (metastasis-free survival). Additional clinical and pathologic parameters such as age,
gender, tumor thickness, basal tumor diameter, and extrascleral extension were included as a comparison.

Immune cells infiltrating the tumor microenvironment
have emerged as an important factor determining the cancer
patient’s prognosis and response to specific therapies, also in
uveal melanoma [8, 27-29, 58, 59]. Therefore, understanding
the TME architecture and employing gained insights into
drug design have become a priority in modern cancer
research [24, 60]. The favorable prognostic role of CD8+ T
cells has been identified in a number of cancers due to their
potent antitumor activity [6, 8, 9]. However, immunosup-
pressive factors present in the TME can inhibit T cell-
mediated response and rewire their activity for the tumor’s
benefit [11, 12]. In UM, T cell infiltration is associated with
poor prognosis [1, 28, 29, 61]. Here, we show that the pre-
dominant subset of UM’s tumor-infiltrating lymphocytes
(TIL), CD8+ T cells, are indeed a negative prognostic factor,
as shown in both univariate analysis and in the created 3-cell
type prognostic model. Moreover, we lay out the molecular
mechanisms that explain the unusual role for CD8+ T cells
and propose targets for future preclinical studies in UM.

To gain insights into UM’s immunobiology, we investi-
gated the effects of different tumor-infiltrating immune cell
subsets on prognosis through a comprehensive analysis of
TCGA and GEO databases. Using CIBERSORTX, we esti-
mated the abundance of immune cell subsets in the TME
from bulk RNA-seq and microarray data. Then, through a

primal-dual active set-based algorithm implemented in BeSS
in the training cohort, we have built a prognostic model
based on CD8+ T cell, MO macrophage, and neutrophil
abundance scores. T cells and macrophages were associated
with a worse prognosis. On the contrary, neutrophils were
associated with a favorable outcome. The prognostic value
of the created model was assessed using Kaplan-Meier, Cox
regression, and ROC analysis. By applying our model to the
testing cohort, we have successfully validated its prognostic
value through the same evaluation scheme. Significantly, a
recently published study on 642 UM patients provided
evidence for the superior performance of TCGA-based UM
classification compared to standard American Joint Commit-
tee on Cancer (AJCC) criteria [33, 62]. While our results need
further verification in different experimental settings, the
CIBERSORTX algorithm we employed has been extensively
validated with techniques such as flow cytometry, mass
cytometry, immunohistochemistry, and single-cell RNA-seq
by multiple different groups, providing robust data confirm-
ing its accuracy [40, 63-65]. Nevertheless, others have
already created mRNA/miRNA/DNA-based scores with
strong prognostic values in UM tumors [33, 66-72]. Rather
than compete with them, our foremost motive for creating
the cell type-based prognostic score was to select the cell
types playing a prime role in the biology of UM progression
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Figure 5: Comparison of Kaplan-Meier overall survival (OS) analysis based on the 3-cell type signature and each individual cell type
separately between uveal (a) and cutaneous (b) melanoma. Differences between the groups were detected by log-rank test.

to investigate the molecular mechanisms standing behind
their prognostic effects and to identify potential future ther-
apeutic targets.

Previous research has identified extensive lymphocyte
infiltration as a negative prognostic factor in UM; however,
the prognostic role of individual subsets was not assessed
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TAaBLE 2: Selected differentially expressed genes (DEGs) between high- and low-risk groups in the training cohort. The genes were selected

based on the biological function.

Gene symbol Gene name Fold change (log2) Adjusted p value
KYNU Kynureninase -1.755 0.00786
IDO1 Indoleamine 2,3-dioxygenase 1 2.326 0.01879
MMP9 Matrix metalloproteinase 9 2.745 <0.0001
MMPI Matrix metalloproteinase 1 1.761 0.029
MMPI2 Matrix metalloproteinase 12 4.562 0.00065
MMP25 Matrix metalloproteinase 25 1.690 0.00054
ADAMTS2 ADAM metallopeptidase with thrombospondin type 1 motif 2 1.696 0.00251
ADAMDEC]I ADAM like decysin 1 2.863 0.005
ADAMI11 ADAM metallopeptidase domain 11 0.975 0.0476
ADAMTSS8 ADAM metallopeptidase with thrombospondin type 1 motif 8 0.931 0.0207
ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 motif 4 0.928 0.0047
ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif 9 0.962 0.0064
ADAMTSI15 ADAM metallopeptidase with thrombospondin type 1 motif 15 0.969 0.0056

[1, 28, 29, 61]. The most predominant lymphocyte popula-
tion infiltrating the UM TME are CD8+ T cells, while Treg
infiltration is observed in 11% of UM samples T [27, 28, 61,
73-76]. It has been shown that despite the presence of
clonally expanded T cells capable of recognizing UM
neoantigens, they cannot mediate an effective antitumor
response [73].

Another dominant subset of tumor-infiltrating immune
cells is macrophages. Their infiltration is associated with a
worse prognosis, higher microvascular density, and the pres-
ence of epithelioid cells [1, 76-78]. Similar to primary
tumors, T cells and macrophages are also predominant infil-
trating cell types in UM liver metastases [79, 80].

One of the factors associated with an increased immune
infiltrate is chromosome 3 monosomy, widely recognized as

a negative prognostic factor [76]. The mechanism of
observed neutrophil’s positive prognostic role is unclear;
however, their role in tumor immunity has recently been
challenged with an increasing number of papers reporting
their antitumor potential [81, 82].

Phase II clinical trial of IL-2-expanded TILs in UM treat-
ment reported partial response in 6 out of 20 patients (30%)
and a complete response in one (5%), demonstrating that a
subset of patients can potentially benefit from immune-
based therapy [83]. Notably, TIL growth from UM samples
had a significantly lower success rate compared to CM, indi-
cating the presence of a robust UM-mediated suppression
that could not be reverted with cytokine stimulation, partially
explaining the overall low treatment efficacy with IL-2
expanded TILs [84].



Journal of Immunology Research

11

R=0.71, p=6.5e-12 R=0.72,p=11e-12 R=0.77, p=32e-15 R =049, p=1.5e-05
6 1 6 1 6 1 6 1
. ° o ° ° ° °®
L] L] [ ]
4 1 4 1 4 1 4 1
— o o o —_ o o® — ° [} ° —_ o8 o
° . i ° .
g 2 ° . . g 2 ° K 8 2 ° e 8 2 ° o
[} o o0 ° °
0% (] X 4 i o %%
0 {goe e 0] g " & o 01 wl 0 oge
oo o0 © o ° %o,
-2 {8 -2 F’ -2 -2 L
i’ e o * Yt~
-2 -2 -2 -3 2 -1 0 1 0.0 05 1.0 0 2 4 6
IFNG TNF T cells CD8 TGFB1
(a)
R=0.81, p<22e-16 R=0.34, p=0.0073 R=0.35, p=0.0054 R=0.074, p=0.57
10 A 10 1 10 1 10 1
® ° ®e ° ® o®
8 1 8 1 8 1 8 1
) . S . 1) . ) .
g 61 8 61 8 61 8 61
[ ] [ ] [ ] [ ]
[ 4 L) o ® ° °
47 ° 47 e 41 . 41 °
[} L ] oo [ 14
- camid © o ° @ o ® ofnocee o o °
2 A T T T T 24 T T T 2 T T T 2 A T T T
2.5 3.0 3.5 4.0 2.05 2.10 2.15 2.20 0.0 0.5 1.0 1.5 3.0 32 34
IENG TNF T cells CD8 TGFB1
(b)

FiGure 7: Correlation between IDO1 expression and IFNG, TNF, CD8+ T cell score and TGFBI (left to right) in training cohort (a) and
testing cohort (b). Displayed values are log transformed (log2(x +0.1)).

6 1 R=055, p="7.9e-07 R=0.63, p = 5.4-09 4 | R=078p=63e16 R=0.61, p=1.8e-08
° 1 ° ° ° ° o ®
4 oo . o ° *  501e o . .
@ ° ° ¢ = 2 ° * o el . YV
o . o 1 07 o, . Q . ° 1% [3
a2 1 [ ° | ° 4 &) ° ° E251e o goe
= oo & o S ] o . S | . ° g E es Peo°
= 008 o S7e o ‘e =0 . S |e ewe
0 1 e ° o ° ° ° Eé o % ° < 0.0 1% g0° . °
R Ll 2 .
° 31e &>, ¢ ’ o o
-2 0 2 4 6 -2 0 2 4 6 -2 0 2 4 6 -2 0 2 4 6
IDO1 IDO1 IDO1 IDO1
(@
R=051, p=4.6e-06 2 | R=0.64, p=19¢-09 4 | R=066p=28e10 6 1 R=0.56, p=4.7¢-07
° ° 1 ¢ ’ °* o *
5.0 1 T ° [ ]
* e®% o . e ° . . 41 e : co o .
¢ o 327 ~ &% %% o
o . o v 01 ° o0 5 o ® 2] 8o ¢ o
g 25 1 s © a . . a ° o Z 21 egp 0 .
= 2 S ]e * =04 %o e o% Z oS
= ° ¢ . = ! @° oo0 =0 ° ) “ °
0.0 1 ° . o 00 2 0% ® < 0 1
® ° 2] ®e @ oo e °® ° o ° J
° 21 %% @& °, o
- 1 ° & -2
25 ° 3 1% a2 i
-3 2 -1 0 1 -3 -2 -1 0 1 -3 -2 -1 0 1 -3 -2 -1 0 1
TNF TNF TNF TNF
(b)

FiGure 8: Correlation between IDO1 (a) or TNF (b) expression with MMP9, MMP25, ADAMDECI, and ADAMTS2 (left to right) in the
training cohort. Displayed values are log transformed (log2(x +0.1)).

To delineate the molecular mechanisms shaping the
hostile TME in UM and gain insights into the unusual role
of immune cells incorporated in the model, we performed
differential gene expression and pathway enrichment analy-
sis. We have found that genes associated with suppressing
the immune response were enriched in the high-risk group,

possibly explaining the lack of positive prognostic effect of
CD8+ T cells due to inhibition of their antitumor activity.
The enzyme indoleamine 2,3-dioxygenase (IDO) catalyzes
tryptophan degradation, an essential amino acid required for
lymphocyte activation and proliferation, while producing
highly suppressive kynurenine, resulting in suppression of
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NK and CD8+ T cell antitumor function [13, 85]. Notably, the
IDO expression can be induced by an immunosuppressive
cytokine TGF-f8 as well as proinflammatory IFN-y [86].
TGE-f3 is physiologically enriched in the aqueous humor and
contributes to sustaining the local immune privilege, explain-
ing the omnipresence of TGF-f in UM [87]. Through MHC I
downregulation, TGF-f3 was shown to increase UM suscepti-
bility to NK cells, concomitantly increasing their resistance
to CD8+ T cells [88]. Low MHC class I levels correlate with
improved prognosis in UM patients but also with the scarce
lymphocytic infiltrate [75, 89]. Since NK cells are the key
effectors in limiting the hematogenous spread of tumor cells,
their antimetastatic activity may contribute to positive prog-
nostic effect of the low MHC expression in UM [10, 90].
Triozzi et al. compared the gene expression profile
between high- and low-TIL groups in 57 uveal melanoma
samples. They found increased expression of IDO1, IENG,
PDL1, CTLA4, and LAG3 in the TIL-rich group and specu-
lated that these changes might be due to the TGF-f3-Treg axis
[91]. Hereby, we show that IFNG, TNF, and CD8+ T cells are
more closely correlated with IDO1 than TGFBI. By interpret-
ing our data in the context of available studies on regulation of
tryptophan metabolism in UM, we suggest that the primary
mechanism is more likely to IFN-y- and TNF-a-dependent,

both of which are produced by tumor-infiltrating cytotoxic
lymphocytes. This is supported by in vitro studies on UM cell
lines, which have identified both TNF-a and IFN-y as potent
inducers of the IDO1 expression, synergistic in their action
[92]. Another group has also reported a strong correlation
between IDO1 and IFNG mRNA in UM [93]. In UM, the
IDO1 expression is not constitutive and requires prior stim-
ulation, explaining the low expression in the low-risk CD8+
T cell-depleted group [85]. IDO1 expression correlates with
the expression of checkpoint molecules, CTLA-4 and PD-
L1 [93]. Significantly, metastatic UM samples are character-
ized by the high IDOI expression, implicating that altering
the tryptophan metabolism is an intrinsic immunoevasion
mechanism characteristic for advanced UM [94].

The prognostic role of IDO1 is not fully understood.
Liang et al. conducted an extensive bioinformatic analysis
of GSE22138 and GSE27831 to evaluate the prognostic role
of the IDO1 expression, and no simple associations were dis-
covered [93]. Notably, the authors used the occurrence of
metastasis as a primary endpoint, while no association with
OS was investigated. We show that the IDO1 expression is
strongly associated with poor overall survival, prompting
turther investigations of IDO’s possible prognostic role.
IDO1 and CD8+ T cell signature prognostic roles were also
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identified by other groups in the analysis of the same datasets
[70, 71]. Moreover, IDO1 was among the most highly
expressed genes in UM with chromosome 3 monosomy, a
group characterized by an increased metastatic risk [33].

We have also identified kynureninase (KYNU), an
enzyme involved in kynurenine degradation, as a novel
player in UM TME. We found expression of KYNU to be
downregulated in the high-risk group, and we speculate that
its decreased activity allows maintaining higher kynurenine
concentration, thus more profound immunosuppression.
Moreover, 3-hydroxyanthranilic acid (3-HAA) produced by
KYNU through kynurenine degradation was shown to
increase proinflammatory cytokine synthesis in keratino-
cytes, endothelial cells, and decrease Foxp3 expression in T
cells, augmenting the inflammatory response [95]. Thus, a
decrease in KYNU increases the concentration of suppressive
kynurenine and decreases proinflammatory 3-HAA. Inter-
estingly, KYNU/IDO mRNA ratio was found to be specific
for different groups of diseases. Inflammatory and infectious
diseases are characterized by a higher ratio (above 1) than
neoplastic diseases [95]. Altogether, we show that UM can
rewire the tryptophan metabolism at multiple levels, sup-
pressing the immune response.

Metalloproteinases are again emerging as targets in cancer
therapy [96]. Their role goes beyond being simple effectors of
angiogenesis and metastasis as they have been proposed to
play a role in regulating immune response [97-100]. We have
identified MMP-1, MMP-9, MMP-12, MMP-25, ADAMTS2,
ADAMDECI, and others to be enriched in the high-risk sub-
set of UM patients. The prognostic role of MMP-2, MMP-9,
and MMP-14 in UM was recognized in several studies due
to their crucial role in promoting cancer cell motility and
angiogenesis, ultimately leading to the development of metas-
tases [101-108]. Furthermore, in an MMP-2-dependent man-
ner, TGF-f3 was shown to alter the adhesome of UM cells,
increasing their adhesive properties to hepatic endothelium,
implicating an essential role in the development of UM liver
metastases [109]. It is worth noting that the development of
metastasis is the most critical event in the UM course, deter-
mining the patient’s prognosis [1, 3]. Moreover, ADAMTS-2,
together with other ADAMTS protease family members, was
recently associated with UM stemness, endothelial-like phe-
notype, increased angiogenesis, and poor prognosis [110-
112]. Therefore, metalloproteinase pharmacological inhibi-
tion was recognized as a promising therapeutic intervention
in in vitro UM models [113, 114]. We show that the high-
risk group is associated with a substantially enhanced metal-
loproteinase profile, which likely plays a dominant role in
driving UM metastases.

Similarly to IDO1, the MMP expression can also be
induced by TILs in a TNF-a-dependent manner [115]. We
show that TNF correlates with the expression of MMP9,
MMP25, ADAMDECI, and ADAMTS2. In addition, IDO1
overexpression alone has been shown to increase the expres-
sion of MMP-1, MMP-3, and MMP-9 in in vitro studies,
providing a direct link between the two distinct groups of
genes [116-119]. Our findings support that by showing the
close positive association between IDO1 and metalloprotein-
ase expression. Based upon our findings and the published
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in vitro data, it is likely that coexpression of both gene groups
in the CD8+ T cell-rich group is causatively related.

The genomic landscape of UM has a significant impact
on tumor development. Chromosomal aberrations affecting
chromosome 3 and 8q regions, in particular, are linked to
poor prognosis [5, 24, 33, 120]. The amplification of 8q seg-
ment and loss of chromosome 3 were also shown to correlate
with increased infiltration of macrophages and T cells [24,
76, 121]. This, in turn, impedes the discrimination between
the protumorigenic effects of chromosomal aberrations and
tumor-infiltrating immune cells. In our study, 8q amplifica-
tion and chromosome 3 loss weakly correlate with the cre-
ated risk score (Supplementary Figure 3). However, when
we applied our model on the training cohort split into
subgroups based on chromosome 3 and 8q copy-number
status, we observed that our model retained its strong
prognostic value in the subgroups characterized by high-
risk chromosomal aberrations (Supplementary Table 2).
This implicates that, at least partially, the infiltration of
CD8+ T cells, M2 macrophages, and neutrophils exhibits
genomic-independent protumorigenic effects. Nevertheless,
it is currently impossible to precisely distinguish the
impact of genomic aberrations from the effects of tumor-
infiltrating cells on tumor development and prognosis.
Despite strong correlation and supporting in vitro data,
observed effects of immune cell signatures might still be
due to concomitance with other high-risk factors, urging
for further studies.

Additionally, because of the well-established immuno-
biology of cutaneous melanoma, we have assessed how our
model and its individual components are related to progno-
sis. Intriguingly, all the prognostic trends were reversed, with
the effects of CD8+ T cells and neutrophils being statistically
significant. Parallel tumor-infiltrating lymphocyte (TIL) pro-
filing of UM and CM samples revealed that despite a similar
extent of CD8+ T cell infiltration, the expression of PD1-PD-
L1 was much lower in UM samples what together with lower
mutational burden may explain the inefficacy of checkpoint
inhibition as a treatment [20, 21, 84]. We show that despite
a resembling cellular origin, from the immunobiological
point of view, uveal and cutaneous melanomas are two very
distinct tumor types and should be treated as such when
designing and testing novel immunotherapies. The immense
differences in their mutational burden and TME architecture
can serve as hints for planning new clinical trials [20, 25, 84].

5. Conclusions

In conclusion, we have identified three cell types crucial for
UM prognosis, utilizing an immune cell score based on the
negative role of CD8+ T cells and M0 macrophages and the
positive role of neutrophils in the UM TME. Then, by study-
ing the molecular mechanisms associated with the prognostic
role of included cell types, we identified altered tryptophan
metabolism and increased expression of metalloproteinases
to be the factors most likely accountable for the hampered
antitumor activity of CD8+ T cells as well as their apparent
tumor-promoting role in UM. We set out the hypothesis of
the central role of CD8+ T cells in TIL-rich UM progression.
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Through IFN-y and TNF-a, CD8+ T cells can trigger an
adaptative response in UM, altering the tryptophan metabo-
lism as an immunoevasion mechanism. Besides suppressing
the immune response, IDO1 together with T cell-derived
TNF-a lead to upregulation of metalloproteinases, which in
turn increase the metastatic potential of UM. Since the
immunological milieu of metastatic UM’s was shown to be
similar to primary UM’s, these findings emphasize that inhi-
bition of IDO1 and metalloproteinase activity might be a
beneficial approach to restore T cell-mediated immunosur-
veillance in TIL-rich UM patients.
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