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Smart health surveillance technology has attracted wide attention between patients and professionals or specialists to provide early
detection of critical abnormal situations without the need to be in direct contact with the patient. *is paper presents a secure smart
monitoring portable multivital signal system based on Internet-of-*ings (IoT) technology. *e implemented system is designed to
measure the key health parameters: heart rate (HR), blood oxygen saturation (SpO2), and body temperature, simultaneously. *e
captured physiological signals are processed and encrypted using the Advanced Encryption Standard (AES) algorithm before sending
them to the cloud. An ESP8266 integrated unit is used for processing, encryption, and providing connectivity to the cloud overWi-Fi.
On the other side, trusted medical organization servers receive and decrypt the measurements and display the values on the
monitoring dashboard for the authorized specialists. *e proposed system measurements are compared with a number of com-
mercial medical devices. Results demonstrate that the measurements of the proposed system are within the 95% confidence interval.
Moreover, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) for the proposed
system are calculated as 1.44, 1.12, and 0.012, respectively, for HR, 1.13, 0.92, and 0.009, respectively, for SpO2, and 0.13, 0.11, and
0.003, respectively, for body temperature. *ese results demonstrate the high accuracy and reliability of the proposed system.

1. Introduction

Many inventors and researchers have competed to create new
systems that help specialists to diagnose and possibly treat some
diseases. Diseases are usually associated with changes in some
physiological parameters in the human body (e.g., heart rate,
oxygen saturation, body temperature, blood pressure, etc.).*e
diagnosis of such diseases requires making some checks in the
hospital to measure how a physiological parameter is away

from the normal rates and then determine the positive or
negative presence of those diseases. More deviations from
normal rates are strong markers of death for a wide range of
patients [1]. However, many people cannot go to the hospital
continuously because they may not have enough time to go to
the hospital from time to time, they have a chronic illness, or
the coordinating specialist is abroad. In addition, medical care
at hospitals may cost a lot. For those people, personal health
devices are reliable solutions to monitor and track vital signs at
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home and also can call for medical help in case of emergency
[2–6]. Personal health devices have an increasing interest and
have become commercially available [7–9].

With recent advances in IoT and wireless sensor networks
[10], many attempts have been made to deliver patient data
remotely without going to the hospital [11]. *is helps spe-
cialists to determine the appropriate action ahead or to send a
specific equipped medical help. In emergency cases, the
transmission of critical patient data can significantly impact
patient life [12]. With cloud computing, which is a paradigm
shift in computing and storage, IoT-based health monitoring
systems found newways of innovation [13, 14].*e cloud is the
place where patient data is processed and stored, allowing vital
signs of a patient to be monitored in real time or stored for
historical reviews. Storing patient data in the cloud provides
several benefits, including availability, reliability, and conve-
nience at a relatively low cost [15, 16]. Various researchers
[17–19] have addressed the opportunities and challenges of
using cloud computing in the healthcare field. However,
communication and storage of patient data within most cloud-
based healthcare systems are in plain form, which puts the
patient personality and privacy at stake [20]. Yi et al. [21]
addressed some security threats regarding sensitive physio-
logical data transmitted over the public channels and stored in
the backend systems. *us, an approach for delivering critical
patient data to relevant healthcare providers without com-
promising patient privacy is needed.

*e proposed system provides a secure and real-time
solution for private health data records stored in the cloud.
IoT biosensors are used to capture key biological parameters
(heart rate, blood oxygen saturation (SpO2), and body
temperature) from a patient at a comfortable home.*en, an
IoT-based microcontroller encrypts, processes, and delivers
secure health records to the public cloud. On the other side,
only specialists at trusted healthcare centers can monitor the
biological parameters of the patient in real time. Also, they
can review historical records to predict any unusual activities
and also can assign precautions to prevent any emergency
cases.*e proposed healthmonitoring system targets several
patients with medical issues, such as patients in accidents or
emergency places, patients with motion disabilities, patients
with chronic illness, patients whose doctors are abroad, or
elders who need continuous monitoring.

Securing patient data is achieved using the AES algo-
rithm, which is a symmetric encryption algorithm that offers
an excellent compromise between encryption speed and
security [22]. AES algorithm is employed in the proposed
system to secure patient data before storing it in the cloud.
*is ensures data integrity and privacy and the secure
distribution of patient data in public networks.

Although there are plenty of researches and papers on
the topic of health monitoring, our research, unlike most
monitoring systems, adds some key contributions in the field
that are as follows:

(i) A low cost and accurate health monitoring system is
implemented to monitor the heart rate, blood oxygen
saturation, and body temperature of patients without
the need to be in direct contact with specialists

(ii) Multiple medical sensors are incorporated with a
compact and powerful microcontroller chip in a
small-sized device with the help of IoT infrastruc-
ture. So, the implementation is simple and, at the
same time, effective

(iii) Medical measurements are encrypted before
transmission to cloud storage. So, the proposed
framework keeps the privacy and integrity of patient
data

(iv) End-to-end security for medical records is ensured
between the patient node and the healthcare center

(v) *e proposed system relies on a Wi-Fi-based
connection, which provides fast communication
between the patient module and the specialists
module with low power consumption compared to
other technologies

*e rest of this paper is organized as follows. Section 2
discusses some preliminaries in the context of the research
work. Section 3 gives the previous studies related to the
proposed system. Section 4 presents the proposed health
monitoring system, layers, and actors of the system. System
implementation is introduced in Section 5. In Section 6, the
experimental results are discussed. Finally, the paper con-
clusion is given in Section 7.

2. Preliminaries

2.1. Blood Oxygen Saturation. Body cells and tissues need
oxygen to live. Oxygen is carried from the lungs and
absorbed into the Red Blood Cells (RBCs). Hemoglobin is
the protein that carries oxygen in the RBCs and transports it
throughout the body. *e heart pumps oxygenated blood
from the left ventricle to the whole body cells and tissues
through the circularity system. It receives the deoxygenated
blood and pumps it towards the lungs again to be oxy-
genated during the inhalation process. Blood oxygen satu-
ration, termed SpO2, is an estimation of the amount of
oxygen dissolved in the blood, which is described as the
percentage of oxygenated hemoglobin to the total amount of
hemoglobin, expressed as

SpO2(%) �
HbO2

HbO2 + Hb
× 100. (1)

SpO2 is one of the clinical vitals preferably measured by
specialists to determine howmuch oxygen is saturated in the
blood. Normal oxygen saturation for most healthy persons is
94% to 100% at sea level. SpO2 is a key indicator for the
effectiveness of the respiratory system, and it can aid in the
detection of hypoxemia. Furthermore, SpO2 level can help in
the early detection of COVID-19 pneumonia [23, 24], which
may cause initially unnoticeable low arterial oxygen satu-
ration. *e author in [23] reported that COVID-19 pneu-
monia patients have oxygen saturations as low as 50%.

*e SpO2 level is commonly measured by a pulse oxi-
meter, which has a Light Emitting Diode (LED) to shine the
light through the fingertip and a photodetector (PD) to
measure the amount of the reflected light. *e structure of
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the pulse oximeter is depicted in Figure 1. When the light is
emitted from the LED through the fingertip, some of the
light is absorbed by the blood and the other amount is
reflected to the PD. Figure 2 describes the resulting wave-
form of the output of the PD, which has a pulsatile waveform
due to the periodic change of the amount of the blood
underneath the sensor due to the periodic pumping of the
blood from the heart, which affects the amount of the re-
flected light. *e more the amount of blood is, the more
absorbed light and less reflected light arriving at the PD.*e
Direct Current (DC) component in the resulting waveform
is due to the reflectance of light on bones, tissues, and other
stationary parts, while the Alternating Current (AC) com-
ponent represents the pulsatile change of the arterial blood
that forms the photoplethysmography (PPG) signal [25–27].

With two light beams with different wavelengths, typi-
cally Red (660 nm) and Infrared (IR) (880 nm), it is reported
that HbO2 and Hb absorb the two different wavelengths with
different amounts (Figure 3). Hb has a higher absorption at
660 nm, while HbO2 has a higher absorption at 880 nm.*is
characteristic reveals that the amount of absorbed light at
660 and 880 nm can be used to estimate the amount of
dissolved oxygen in the blood (SpO2). *e two separate PPG
signals determined from the Red and IR LEDs are used to
find the ratio R, which is used to calculate the SpO2 level [28].

R �
(AC/DC)Red

(AC/DC)IR
. (2)

*e accurate estimation of SpO2 is based on empirical
calibration with the ratio R for the specific device. Equation
(3) is often used in the literature to approximate the SpO2
value based on R [28].

SpO2[%] � 110 − 25(R). (3)

Another approximation to find the value of SpO2 using
the ratio R is developed by Maxim Integrated based on
empirical calibration for their medical products and is de-
fined as [29]:

SpO2(%) � 104 − 17(R). (4)

In our study, the MAX30102 sensor, a product ofMaxim
Integrated, is adopted to measure the SpO2 level and the
heart rate.

2.2.Heart Rate. *e heart rate is denoted as the frequency at
which the heart pumps blood to the arteries, and it is
measured by the number of contractions of the heart per
minute. *e heart rate is a reflection of the physical and
mental state of the body. It varies conditionally according to
the body physical needs, as in the case in which the oxygen
saturation level is low.

Pulse oximeters can determine the frequency of the
heartbeats by calculating the time between consecutive peaks
in the PPG signal using a single light source (e.g., Red LED), as
shown in Figure 2.*e heart rate is typically measured in beats
per minute (bpm). *e normal heart rate of healthy adult
persons is between 60 and 100 bpm, while they are at rest.

2.3. AES Algorithm. Data security is an essential target in
everything in our lives on all applications. Data is required
to be protected from assaults and intruders. Due to the
great revolution of the Internet and its applications, there
is a critical need to employ security techniques to
secure the transmitted information. Authorized users can
transmit and receive data from a distance with commu-
nication networks. To be reliable, data needs to be
safeguarded from unapproved change (integrity),
hidden from unlicensed access (confidentiality), and ac-
cessible to an approved entity when required (availabil-
ity). Not only should the data be trusted when it is stored
in a computer, but there should also be a way to preserve
its privacy when it is transmitted over a communication
network.

*e AES ciphering algorithm is cost-effective, and it is
based on the Rijndael procedure [22], which is an iterated
block ciphering process with variable key size and variable
block size. *e key size and block size can be autonomously
192, 128, or 256 bits. *e cipher key is a rectangular array
with four rows and a number of columns equal to the key
size divided by 32. In addition, the intermediate resulting
ciphertext describes a state and it is in the shape of a
rectangular array of four rows, and a number of columns
equal to the block size divided by 32. *e number of rounds
performed on the intermediate state is related to the key size.
For key sizes of 192, 128, and 256 bits, the numbers of
rounds are 10, 12, and 14, respectively. Every round com-
prises a fixed sequence of transformations, except the last
and the first rounds.

*e AES comprises a number of rounds. Any round,
except the final one, involves ShiftRows, SubBytes,
AddRoundKey, andMixColumns functions. In the SubBytes
step, a linear substitution for every byte is performed
according to Figure 4. In the final round, no MixColumns
operation is executed. Every byte in the array is updated
using an 8-bit S-box, which provides nonlinearity in
the cipher system. *e S-box is derived from the multipli-
cative inverse over the finite Galois Field GF (28), known to
have good nonlinearity characteristics. *e S-box is selected
to prevent fixed-point as well as opposite-fixed-point
attacks.

*e step of ShiftRows operates on the rows of the state.
It cyclically shifts the bytes in every row. For the AES
process, the first row is left unaffected. Every byte of the
second row is shifted a single byte to the left. Also, the third
and fourth rows are shifted by offsets of two and three
bytes, respectively. For the blocks of size 192 bits or 128
bits, the shifting patterns are the same. In this manner,
every column of the output state of the ShiftRows step is
composed of bytes from every column of the input state. In

LED PD

Figure 1: Pulse oximeter structure.
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the state of the 256-bit blocks, the first row is unaffected and
the shiftings for the second, third, and fourth rows are
1 byte, 3 bytes, and 4 bytes, respectively, as demonstrated in
Figure 5.

In the MixColumns step, the four bytes of every
column of the state are merged with a linear invertible
transformation. *e MixColumns function requires four
bytes as input and outputs four bytes, where every input
byte involves all four output bytes. With ShiftRows,
MixColumns delivers diffusion in the cipher system.
Every column is treated as a polynomial over GF(28) and is
subsequently multiplied with a fixed polynomial
c(x) � 3x3 + x2 + x + 2. *e MixColumns step can also be
considered as multiplication by a particular matrix, as
demonstrated in Figure 6.

3. Related Studies

With recent advances in cloud computing and IoT, mobile
healthcare devices were developed to provide healthcare
services with more flexibility and speed at a lower cost. *is
helps patients receive healthcare and medical treatment
anytime and helps specialists to monitor their patients in real
time. From the perspective of healthcare providers, the IoT
has the potential to reduce device downtime through remote
provision. Besides, the IoT provides efficient scheduling of
the limited resources by ensuring their best use and serves
more patients [30].

In this context, several researchers have developed smart
medical and healthcare surveillance and monitoring archi-
tectures. Yi et al. [21] proposed a secure health monitoring

AC

DC

Time

Re
fle

ct
ed

 L
ig

ht
 In

te
ns

ity

Figure 2: Reflected light waveform for a single light source.
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Figure 3: Oxygenated and deoxygenated hemoglobin absorption graph for red and infrared wavelengths [27].
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system in which private health data is encrypted using AES
and split into three different servers to keep the privacy of
the data even if one server is compromised. *is approach
defends the system against both outside and inside attacks.
However, it requires more computational steps regarding
generating and distributing public keys among three data-
base servers. Ali et al. [31] implemented an IoTand Android-
based health monitoring system to measure the heart rate,
oxygen saturation, and body temperature of patients.
Measurements are sent via Bluetooth to a mobile application
and can be transmitted using Wi-Fi to the Internet. *ey

compared the results with those of a commercially available
product and reported a maximum deviation of 2%.

Mohammed et al. [32] integrated IoTand cloud computing
in building an ECGmobile application, which provides the end-
users with visualization for their ECG signals and logging data
uploaded to the specificmedical cloud. Amicrocontroller board
was used to capture the ECG signal from a patient and send it to
the mobile device in a wireless manner using Bluetooth tech-
nology. ECG data is saved as a binary file into the SD card of the
mobile phone, and the user has the ability to send this file to the
cloud to become available for specialist inspection.
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Figure 4: SubBytes step.
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Figure 5: ShiftRows step.
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Figure 6: MixColumns step.
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Al-khafajiy et al. [33] proposed a Smart Healthcare
Monitoring System (SW-SHMS) to monitor elderly people in
their homes in real time using a mobile application. It uses a
pulse sensor connected to an Arduino Uno to track the heart
rate and oxygen saturation of an elder. Data from a pulse
sensor is transferred to amobile device through Bluetooth.*e
mobile application collects vital data from wearable sensors
and sends the data to the cloud for processing and storage to
become available for relevant hospitals or specialists.

Gupta et al. [34] adopted IoT and a microcontroller to
monitor the vital signs of the patient. *ey considered only
one perspective, which is the ECG signal. Raspberry Pi was
used to collect data from wearable sensors and send it to a
MySQL database. *e authors also employed the GSM
wireless network to send alert messages to healthcare centers
in emergency cases. Ghosh et al. [35] implemented an IoT
sensing module to measure various vital signs (ECG, body
temperature, and patient position). *is module is con-
nected to a local web server via a COM connection for local
monitoring and it can send measurements to cloud storage
for remote monitoring.

Lloret et al. [36] presented a framework to improve the life
of elders that depends on several types of communication to
ease their daily affairs. *ey proposed Ambient Assisted Living
(AAL) based wireless communication sensors, which help el-
ders to avoid dangerous situations. Elsts et al. [37] proposed a
Sensing Platform for HEalthcare in a Residential Environment
(SPHERE) based on IoT technology. *ey presented SPHERE
IoT network infrastructure for healthcare in a home environ-
ment with low power wireless network performance. Moustafa
et al. [38] introduced a remote monitoring solution for de-
veloping real-time control of medical devices in eHealth ap-
plications. *ey presented a secure, scalable, unified, and real-
time infrastructure based on sensors and IoT to remotely
monitor patients. Park et al. [39] presented an emergency alert
and an elderly health monitoring system that encompasses
active capturing of brain and body movement signals, com-
munication signal analysis, warning, and detection processes.

Khan et al. [40] presented a healthcaremodel to employ IoT
technology within the field of crafty wellness care. *ey in-
troduced a complete and effective healthcare monitoring
framework planned based on the IoT and RFID tags. Mighali
et al. [41] described a reliable and smart remote monitoring
system with low cost for controlling the body motility and the
position of elderly people. Tuli et al. [42] suggested a novel
model named HealthFog for incorporating deep learning in
edge computing devices and implementing it for automatic
heart disease analysis. *is model delivers healthcare as a fog
service through IoTdevices and proficientlymanages the data of
heart patients. *e presented model is adaptive to a variety of
operation modes of quality of service (QoS) and prediction
accuracy based on user demands. Sodhro et al. [43] presented an
efficient and intelligent monitoring andmeasurement approach
for medical healthcare applications by transmitting critical
patient data with good QoS through wireless networks. Alab-
dulatif et al. [44] discussed the main concept of a smart health
IoT surveillance system in real time for cloud medium.

Table 1 summarizes the different features adopted
with different healthcare-monitoring-related studies in the

literature. Generally, there are few contributions in the
literature on medical emergency applications adopting IoT
and cloud computing technologies. Some of those intro-
duced techniques have critical problems with medical data
security and real-time communication. *e traditional
health monitoring systems are believed not to achieve ad-
equate security, and they are not recommended for real-time
communication. In addition, they have low robustness and
require more computations in medical data processing and
transmission. Hence, they increase the computational
overhead. Taking into account the limitations of the state-of-
the-art works, an efficient IoT and cloud-computing-based
secure and real-time health monitoring communication
system for medical emergency applications is the main
contribution of this paper. *is framework consists of IoT
biosensors, an IoT-based microcontroller, an AES mecha-
nism, and cloud storage to efficiently monitor, process,
protect, store, and transmit patient medical data. Moreover,
the proposed system achieves real-time communication of
transmitted medical data with high quality, high robustness,
and low computational complexity compared to the tradi-
tional related systems.

4. Proposed IoT and Cloud-Computing-Based
Secure Health Monitoring System

*e proposed health monitoring system aims to monitor
vital data from patients or elderly people, secure it, transmit
it to a public cloud database, and provide a real-time
monitoring dashboard for authorized caregivers or health-
care centers at any time and anywhere. *e implementation
of the proposed system involves a three-layer structure of
different technologies. *e layers of the proposed system are
the patient layer, the cloud layer, and the doctor layer. *e
system architecture of the proposed model with the three
layers is shown in Figure 7 and described as follows.

4.1. Patient Layer. *e patient layer consists of the patient and
an IoT module. *e IoT module acquires vital data from
medical sensors attached to the patient body, encrypts that
data, and sends ciphered data to the cloud database (i.e., second
layer). *e IoT module consists of a number of biomedical
sensors that measure the key vital data, (heart rate, blood
oxygen saturation, and body temperature), and a Wi-Fi-based
microcontroller that processes this vital data, encrypts it using
AES algorithm and sends it directly to the cloud database over
Wi-Fi without the need to a local server or an intermediate
mobile application. *is procedure is performed automatically
without patient interaction, making it more convenient for
patients with motion disabilities and elderly people.

MAX30102 [53], shown in Figure 8(a), is a high sensi-
tivity pulse oximeter employed to measure the heart rate and
blood oxygen saturation of a patient through his fingertip.
DS18B20 sensor [54], shown in Figure 8(b), is used to
measure body temperature. *ese sensors are connected to
the ESP8266 NodeMCU [55] microcontroller, which con-
trols the whole system and provides the processing and
transmission functionalities (Figure 8(c)). ESP8266
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NodeMCU is an emerging IoT chip with a small-size, low-
cost, self-contained Wi-Fi module, high processing speed,
and capability of running self-contained applications.

*e ESP8266 Crypto library [56] is adopted to provide
the AES implementation for the ESP8266 module. Vital data
is encrypted with a 128-bit key using Cipher Block Chaining
(CBC) mode, and then encoded with Base64 format. After
that, it is sent to the cloud.

AES algorithm is selected to encrypt the sensor readings,
because it is simple to be implemented within the hardware
using the appropriate software library, unlike other encryption
algorithms, which may not be supported to be implemented in
the hardware devices. In addition, it provides a good com-
promise between the speed of computations and the complexity.

4.2. Cloud Layer. *e cloud layer is responsible for providing
a safe place for private health data. Cloud receives sensitive
data from the patient layer and stores it in a ciphered form,
which makes the system more robust against not only external
attacks but also internal attacks that can be initiated by the cloud

service provider [57]. *e cloud layer is not charged in any
processing of data, but it delivers data as it is to the next layer.

Firebase [58] is employed in this work. It is a real-time
cloud database, acquired by Google, and intended for IoT
solutions. Figure 9 shows a screenshot of the created real-
time database on Firebase, showing encoded values for heart
rate, SpO2, and body temperature.

4.3. Doctor Layer. *is layer enables doctors at trusted
healthcare centers to monitor and track vital data in real time.
*is enables doctors to predict any unusual activity and it can
assign precautions to prevent any emergency case. *is layer is
synchronized with the cloud layer to receive updates of patient
data in real time, which is in a ciphered form. A backend
mechanism is used to fetch and decrypt received data and
deliver it to the monitoring dashboard. First, doctors should log
in via a web interface to be authenticated to prevent fraud
access; and then, they are directed to themonitoring dashboard.
*e web interface is developed using HTML5, JavaScript,
BootStrap, and ASP.NET.

Patient Layer Cloud Layer Doctor Layer

Patient

IoT module

NodeMCU
Microcontroller

10110100... 10110100...BFbHeo7H... BFbHeo7H...

Cloud database Local server Monitoring 
dashboard

Doctor

Figure 7: Architecture of the proposed model.

Table 1: Summary of different features in healthcare monitoring studies.

Feature Type Sample studies

Monitoring mode Local [31–33, 35]
Remote [12, 21, 34]

Transmission type Cloud-based [21, 31, 33, 34]
Device-to-Device [12, 32, 35]

Communication protocol

Wi-Fi [31, 34]
Bluetooth [31–33]

Mobile cellular network [34]
Zigbee [12]

Is secured Yes [12, 21, 45]
No [32–35]

Monitored sign

Respiration [46–50]
Heart rate & SpO2 [31, 33]
Body temperature [31, 35]

ECG [12, 32, 34, 35]
Blood pressure [51, 52]
Patient position [35, 41]
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5. System Design and Implementation

*e proposed system uses the MAX30102 pulse oximeter to
measure the heart rate and the blood oxygen saturation by
calculating the ratio of oxygenated hemoglobin to deoxygenated
hemoglobin, which is then used to calculate the percentage of
oxygenated blood levels (SpO2), as discussed in Sections 2.1 and
2.2. For the heart rate and SpO2 measurements, the patient is
asked to put his fingertip on the finger probe shown in Fig-
ure 10. *e finger probe consists of a plastic holder with a soft
contact surface, which is used to fit the fingertip on the sensor.

*e other end of the finger probe is connected to the device
circuit board. *e temperature sensor is placed under the
armpit of the patient, whereas this position is recommended by
specialists tomeasure the body temperature. Also, the other end
of the sensor is connected to the specified socket in the circuit
board. *e block diagrams describing the procedures for
measuring the heart rate, SpO2, and body temperature are
shown in Figures 11 and 12. *e device is powered by a 3.7V
rechargeable battery, which is a good choice for small size and
long-time operation. *e proposed device sends the measured
medical data every five seconds, periodically. So, this is an

Figure 9: Screenshot of the real-time cloud-based database.

(a) (b)

(c)

Figure 8: (a) MAX30102 sensor, (b) DS18B20 sensor, and (c) ESP8266 NodeMCU WiFi Devkit.
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important factor that guarantees the achievement of acceptable
QoS of delivering the proposed device measurements. Figure 13
shows the complete hardware implementation of the IoT
module with relevant sensors and the microcontroller being
connected. *e complete system flowchart is depicted in Fig-
ure 14, indicating basic actors and their roles, whereas each
actor has its own functionality to achieve the system goal, as
follows.

5.1. Sensor Module. *is module involves capturing raw
physiological data from the patient’s body, and sends this
data to a Microcontroller Unit (MCU) for processing. *is
module comprises two sensor types: pulse oximeter sensor
and body temperature sensor. *e MAX30102 pulse oxi-
meter sensor, shown in Figure 8(a), is involved in this study
to measure the heart rate and the blood oxygen saturation.
*e MAX30102 is a reflective pulse oximeter that includes
internal LEDs, photodetectors, optical elements, and low-
noise electronics with ambient light cancellation. *e

communication between the MAX30102 sensor and the
MCU is through the I2C interface. DS18B20 temperature
sensor, shown in Figure 8(b), is used to sense the patient skin
temperature. *e DS18B20 digital thermometer provides 9-
bit to 12-bit Celsius temperature measurements and com-
municates with the MCU through the 1-Wire interface.
Table 2 shows a summary of the technical specifications for
the utilized sensors.

5.2. IoT Module. *e IoT module is the coordinator of the
whole patient layer. *e process flow along this module
includes the following steps:

(1) Receive raw physiological data from sensors through
an appropriate interface (I2C or 1-Wire).

(2) Process the received data and convert it into nu-
merical values (heart rate, blood oxygen saturation,
and body temperature).

(3) Encrypt vital signs using the AES algorithm with a
128-bit key.

Figure 10: Finger probe used to fit the fingertip on the MAX30102 sensor. *e sensor is placed inside the plastic holder.

Patient Finger

Light MAX30102 NodeMCU

Heart
Rate

SpO2

Figure 11: Heart rate and SpO2 monitoring block diagram.

TemperatureNodeMCUDS18B20

Figure 12: Block diagram of body temperature monitoring.
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Figure 14: Complete system implementation flowchart.

Figure 13: Hardware implementation of the IoT module.

Table 2: Summary of technical specifications for the utilized sensors [53, 54].

Sensor Accuracy Resolution Current

MAX30102 — 18 bits
Standby: 600 μA
IR LED: 20mA
RED LED: 20mA

DS18B20 ±0.5°C 0.0625°C 1mA
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(4) Establish a connection to the cloud database over a
Wi-Fi link.

(5) Send ciphered data to cloud storage.

*ese tasks are accomplished using the ESP8266
NodeMCU developing kit, shown in Figure 8(c). ESP8266 is
an Arduino-like board with extra beneficial features, such as
802.11 b/g/n Wi-Fi support, integrated TCP/IP protocol
stack, 3.3 V operating voltage, low current consumption
(10 μA∼170mA), attachable flashmemory (16MB), and high
processor speed (80∼160MHz). ESP8266 is programmed
using the open-source Arduino IDE in order to accomplish
its commissioned tasks.

5.3.Cloud. *e cloud is the place where patient data is stored.
Firebase cloud database server is adopted in this work to store
patient data, so that the IoT module can communicate with
the medical organization to allow the specialist to access and
diagnose patient vital signs from anywhere at any time.

5.4. Hospital Local Server. *is entity is responsible for
receiving data from cloud storage, decrypting it with the
appropriate decryption key, and then delivering it to the
doctor’s terminal. It also holds a SQL database comprising a
table for patient information and another table for login
credentials in order to control access to the system and
provide authorization for users according to granted
permissions.

5.5.DoctorTerminal. It is the last destination of patient data,
where vital data of the patient is examined by a specialist to
determine any health issues associated with this data and
assign precautions to prevent any emergency cases. First, the
specialist is asked to provide his credentials to determine his
roles, after which he can proceed to the monitoring dash-
board to view and interact with patient data in real time.*e
monitoring dashboard is updated automatically with every
update in the cloud database.

6. Experimental Results

*e proposed system provides a way to keep an eye on key
biological indicators of a patient on a secure and real-time
basis. With the proposed system, securing patient data is
assured by encrypting the data to ensure data privacy and
secure distribution of patient data in public networks. *e
proposed system initiates the encryption process on the
IoTmodule, as illustrated in Figure 14, and then sends the
ciphered data to the cloud. *e server at the trusted
healthcare center is synchronized with the cloud storage,
and it is notified when the cloud storage is updated. After
that, the healthcare center server fetches the new data
from the cloud, which is in ciphered form. *en, the
healthcare center server deciphers the data using the
decryption key, which is kept secret between the system
and the healthcare center. Hence, if a non-trusted user
tries to sniff the outgoing data or gain access to the cloud
storage, he will get ciphered data that cannot be

deciphered except by using the correct decryption key.
Moreover, the decryption key is unique for each module,
and it is hard-coded on the microprocessor program and
it cannot be inferred by an attacker.

*e monitoring dashboard is shown in Figure 15. It
displays the received patient data in cipher form and the
decrypted values.

To evaluate the accuracy and effectiveness of the pro-
posed health monitoring system, the measurements are
compared to those of a number of commercial devices: High
Care heart rate monitor, pulse oximeter, and a medical
thermometer to measure the heart rate, SpO2, and the body
temperature. *e reference devices used in the comparison
are shown in Figure 16.

*e two statistical analysis tools, namely, linear corre-
lation and Bland-Altman plot, are adopted to validate the
proposed system accuracy.*e measurement setup is shown
in Figure 17, indicating that the proposed system values
appear on the laptop screen, and the reference measure-
ments are shown in the reference device.

A number of measurement points (50 heart rate points,
50 oxygen saturation level points, and 40 body temperature
points) are taken from 20 different individuals (8 males and
12 females) of different ages (4–60 years) at different times.
*e data points are collected and compared against the
reference measurements.

*e experimental and actual measurements with error
for heart rate sensor are shown in Table 3. *e results reveal
high agreement with the reference measurements, as shown
in Figure 18, demonstrating that the proposed device is
highly accurate.

Similarly, the results for the SpO2 and body temperature
sensors are shown in Table 4, Figure 19, Table 5, and
Figure 20.

Moreover, the RMSE, MAE, and MRE are computed for
the proposed system as follows:

RMSE �

��������������������

􏽐
K
i�1 HRrefi

− HRmesi
􏼐 􏼑

2

K

􏽳

,
(5)

MAE �
1
K

􏽘

K

i�1
HRrefi

− HRmesi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (6)

MRE �
1
K

􏽘

K

i�1

HRrefi
− HRmesi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

HRrefi

, (7)

where HRref is the reference measurement from the com-
mercial device, HRmes is the measurement from the pro-
posed device, and K is the number of measurements.

*e coefficient of determination, denoted as R2, is a
measure of the correlation between two variables. It ranges
from 0, which indicates no correlation, to 1, which indi-
cates a perfect match. Table 6 summarizes the results of the
proposed system for the three monitored health
parameters.

In addition, Tables 7–9 compare the error rates for the
proposed system against those of a number of solutions in
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the literature. *is demonstrates the high accuracy and
reliability of the proposed system against the solutions in the
literature and the feasibility of applying the proposed device
for clinical use.

*e linear correlation analysis measures the degree of the
linear relationship between two variables. *e linear rela-
tionship between two variables x and y is defined as;

y � ax + b, (8)
where a and b are the slope and the intercept of the line,
respectively.

*e line of the perfect match has slope� 1 and inter-
cept� 0, i.e.,

y � x. (9)

Figure 15: Monitoring dashboard, indicating the ciphered and decrypted values for heart rate, SpO2, and body temperature readings.

(a) (b) (c)

Figure 16: Reference devices. (a) Heart rate measuring device, (b) SpO2 measuring device, and (c) temperature measuring device.

Figure 17: Reading from the proposed system versus high care reading.
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Figures 21–23 show the linear correlation plots for heart
rate, SpO2, and body temperature results, respectively. As
shown in the figures, most of the measurements are close to
the line of the perfect match. *e statistical analysis results
indicate that the fit line for measurement points closely
coincides with the line of the perfect match.

Figures 24–26 show the corresponding Bland-Altman plots
of the difference between measurements versus the average for
the three health parameters, respectively.*e plots indicate that

all difference points are within the 95% limits of agreement,
where the upper 95% limit of the agreement is defined as:

95%upper � mean + 1.96 × SD, (10)

and the lower 95% limit of the agreement is defined as:

95%lower � mean − 1.96 × SD, (11)

where SD is the standard deviation for the differences.

Table 3: Proposed system readings versus commercial device (High Care) readings for HR.

Reading no. Proposed system reading Reference reading Error (%)
1 88 88 0.00
2 107 104 2.88
3 78 78 0.00
4 100 99 1.01
5 68 67 1.49
6 107 108 0.93
7 83 82 1.22
8 88 85 3.53
9 93 91 2.20
10 78 78 0.00
11 75 76 1.32
12 78 76 2.63
13 83 81 2.47
14 65 66 1.52
15 83 84 1.19
16 78 79 1.27
17 75 75 0.00
18 83 83 0.00
19 93 95 2.11
20 65 65 0.00
21 78 77 1.30
22 125 124 0.81
23 125 127 1.57
24 88 85 3.53
25 83 85 2.35
26 88 89 1.12
27 75 75 0.00
28 107 109 1.83
29 71 71 0.00
30 75 75 0.00
31 78 77 1.30
32 83 82 1.22
33 115 117 1.71
34 116 115 0.87
35 107 107 0.00
36 115 112 2.68
37 93 92 1.09
38 100 101 0.99
39 93 93 0.00
40 115 117 1.71
41 93 91 2.20
42 78 79 1.27
43 88 88 0.00
44 109 107 1.87
45 100 100 0.00
46 107 107 0.00
47 100 99 1.01
48 83 82 1.22
49 93 92 1.09
50 107 109 1.83
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Figure 18: Heart rate comparison.

Table 4: Proposed system readings versus commercial device (Oximeter) readings for SpO2 levels.

Reading no. Proposed system reading Reference reading Error (%)
1 99 98 1.02
2 98 97 1.03
3 100 98 2.04
4 99 99 0.00
5 100 99 1.01
6 97 98 1.02
7 98 99 1.01
8 99 98 1.02
9 98 98 0.00
10 99 99 0.00
11 99 99 0.00
12 99 99 0.00
13 99 100 1.00
14 100 98 2.04
15 99 100 1.00
16 99 97 2.06
17 100 99 1.01
18 99 98 1.02
19 100 99 1.01
20 99 98 1.02
21 98 97 1.03
22 100 100 0.00
23 99 99 0.00
24 100 98 2.04
25 98 99 1.01
26 99 97 2.06
27 99 100 1.00
28 98 98 0.00
29 97 99 2.02
30 98 99 1.01
31 99 98 1.02
32 98 98 0.00
33 99 97 2.06
34 100 99 1.01
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Table 4: Continued.

Reading no. Proposed system reading Reference reading Error (%)
35 99 98 1.02
36 98 97 1.03
37 98 100 2.00
38 98 99 1.01
39 98 98 0.00
40 99 98 1.02
41 97 98 1.02
42 100 100 0.00
43 100 99 1.01
44 97 99 2.02
45 97 97 0.00
46 98 99 1.01
47 100 99 1.01
48 99 99 0.00
49 98 97 1.03
50 99 100 1.00
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Figure 19: SpO2 level comparison.

Table 5: Proposed system readings versus commercial device (medical thermometer) readings for body temperature.

Reading no. Proposed system reading Reference reading Error (%)
1 34.75 34.6 0.43
2 35.5 35.4 0.28
3 33 32.9 0.30
4 35.13 35.1 0.09
5 33.5 33.7 0.59
6 35.63 35.6 0.08
7 36.63 36.5 0.36
8 35.5 35.6 0.28
9 36.5 36.4 0.27
10 35.75 35.9 0.42
11 35.25 35.4 0.42
12 35.63 35.8 0.47
13 34.75 34.8 0.14
14 35.75 35.9 0.42
15 34.5 34.5 0.00
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Table 5: Continued.

Reading no. Proposed system reading Reference reading Error (%)
16 32.9 32.8 0.30
17 34.75 34.7 0.14
18 33.63 33.6 0.09
19 36 36.1 0.28
20 35.5 35.5 0.00
21 33.5 33.3 0.60
22 35.5 35.4 0.28
23 34.33 34.2 0.38
24 33.25 33.2 0.15
25 35.13 35 0.37
26 35.5 35.5 0.00
27 33.75 33.9 0.44
28 36.13 36.2 0.19
29 35.63 35.6 0.08
30 34.88 34.8 0.23
31 33.88 34.1 0.65
32 35.8 36.1 0.83
33 34.75 34.8 0.14
34 35.75 36 0.69
35 35.63 35.7 0.20
36 36.13 36.1 0.08
37 35.25 35 0.71
38 35.38 35.3 0.23
39 35.25 35.1 0.43
40 35.88 36.1 0.61
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Table 7: Comparison of HR error rates for the proposed and other solutions.

Work RMSE MAE MRE (%)
[59] 2.34 2.17 2.93
[31] 3.87 3.4 4.93
Proposed 1.44 1.12 1.20

Table 8: Comparison of SpO2 error rates for the proposed and other solutions.

Work RMSE MAE MRE (%)
[31] 1.41 1.2 1.24
Proposed 1.13 0.92 0.93

Table 9: Comparison of body temperature error rates for the proposed and other solutions.

Work RMSE MAE MRE (%)
[59] 0.70 0.65 0.66
[31] 0.61 0.50 1.66
Proposed 0.13 0.11 0.31
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Figure 21: Linear relationship between measured and reference HR measurements.

Table 6: Summary of the proposed system results for different health parameters.

Parameter RMSE MAE MRE R2

HR 1.44 1.12 0.012 0.992
SpO2 1.13 0.92 0.009 0.074
Body temperature 0.13 0.11 0.003 0.982
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*e above results indicate that the measurements of the
proposed system closely coincide with the reference mea-
surements of the commercial products.

7. Conclusions and Future Works

Health monitoring systems play a crucial role in the field of
health care, diagnosis and early predicting issues regarding
one’s health. In addition, these systems are a means of
cutting medical costs regarding periodical hospital checks
and doctor visits. *us, developing a system that delivers
health data from the patient place to a relative or a medical
specialist became a necessity with the increasing demand.

*e main outcomes of this paper are as follows:

(i) *is paper presented a secure, low-cost, real-time,
and trustable health monitoring system that pro-
vides a real-time monitoring dashboard for bio-
logical indicators within a secure environment using
IoT and cloud computing.

(ii) *e proposed system adopts the AES algorithm to
encrypt vital signals captured from sensors before
sending them to the cloud for storage.

(iii) An ESP8266 microcontroller is utilized to carry out
the processing and encryption functions and con-
nectivity to the cloud over Wi-Fi.

(iv) *e proposed system measurements are compared
with those of a commercially available High Care
medical device.

(v) *e results have revealed high agreement with the
reference measurements.

(vi) *e RMSE, MAE, and MRE between the reference
and the measured readings are computed as 1.44,
1.12, and 0.012, respectively, for HR, 1.13, 0.92, and

0.009, respectively, for SpO2, and 0.13, 0.11, and
0.003, respectively, for body temperature. *is in-
dicates the high accuracy of the proposed system
and its reliability to monitor the health and vital
signs of patients and elders at home.

We have tried to guarantee an acceptable computational
complexity for the proposed system by adopting the fol-
lowing approaches:

(i) AES algorithm is selected to encrypt the sensor data,
because it is simple to be implemented within the
hardware using the appropriate software library,
unlike other encryption algorithms, which may not
be supported to be implemented in the hardware
devices. In addition, it provides a good compromise
between the speed of computations and the
complexity.

(ii) Wi-Fi technology is adopted in this solution, be-
cause it is faster and more reliable.

(iii) We rely on the cloud servers as a backend for our
solution as they are characterized by their super
computational power, unlimited storage, high re-
source utilization, and low cost.

(iv) Messages are sent from the device every 2 seconds.
Each message contains a single read. Moreover, data
transmission is based on TCP. So, there is no need for
a retransmission mechanism, because the packets are
automatically retransmitted if the transmission fails.

(v) *e solution has three layers: patient layer, cloud
layer, and doctor layer. In real cases, where many
patients are enrolled into the system, each patient
will have his own IoT module to connect to the
cloud server. Each patient will be located inside a
different patient layer. In this case, the architecture
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Figure 26: Bland–Altman plot of body temperature.
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involves multiple instances of the patient layer,
while the cloud layer and the doctor layer remain as
single instances. *e cloud and the doctor layers are
constructed with high processing and large storage
capabilities to support processing of a huge amount
of data that could be received from the patient
layers.

(vi) In this work, we employed the Firebase cloud server,
and a real-time cloud database acquired by Google
and intended for IoT solutions.

However, some limitations of the proposed solution may
be encountered, which may make the device fail. *e failure
cases include the following:

(i) Loss of Internet connectivity
(ii) Loss of the direct Wi-Fi link between the node and

the local access point (e.g., wrong credentials)
(iii) Loss or drop of the power source, such that the

nodes or the sensors cannot be powered up
(iv) Misconfiguration or utilization of the sensors in a

wrong way
(v) Operation at exceeded limits for sensors that are

defined in the datasheet

Future research directions may include further devel-
opment of the proposed system to monitor more biomedical
aspects such as heart activity, blood pressure, and blood
glucose by integrating appropriate sensors. In addition, au-
tomated diagnosis for common diseases may be integrated
with the proposed device. Moreover, a framework to process
encrypted data may be developed to provide decision-making
about the status of individuals, while data is encrypted.
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