

Received June 22, 2020, accepted July 4, 2020, date of publication July 8, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007928

An Improved Marine Predators Algorithm With Fuzzy Entropy for Multi-Level Thresholding: Real World Example of COVID-19 CT Image Segmentation

MOHAMED ABD ELAZIZ^{®1}, AHMED A. EWEES^{®2}, DALIA YOUSRI^{®3}, HUSEIN S. NAJI ALWERFALI^{®4}, QAMAR A. AWAD^{®1}, SONGFENG LU^{®4,5}, AND MOHAMMED A. A. AL-QANESS^{®6}

¹Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

³Electrical Engineering Department, Faculty of Engineering, Fayoum University, Faiyum 63514, Egypt

⁴School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
⁵Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong university of Science and Technology, Wuhan

430074, China

⁶State Key Laboratory for Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China

Corresponding authors: Mohammed A. A. Al-qaness (alqaness@whu.edu.cn) and Songfeng Lu (lusongfeng@hust.edu.cn)

ABSTRACT Medical imaging techniques play a critical role in diagnosing diseases and patient healthcare. They help in treatment, diagnosis, and early detection. Image segmentation is one of the most important steps in processing medical images, and it has been widely used in many applications. Multi-level thresholding (MLT) is considered as one of the simplest and most effective image segmentation techniques. Traditional approaches apply histogram methods; however, these methods face some challenges. In recent years, swarm intelligence methods have been leveraged in MLT, which is considered an NP-hard problem. One of the main drawbacks of the SI methods is when searching for optimum solutions, and some may get stuck in local optima. This because during the run of SI methods, they create random sequences among different operators. In this study, we propose a hybrid SI based approach that combines the features of two SI methods, marine predators algorithm (MPA) and moth-?ame optimization (MFO). The proposed approach is called MPAMFO, in which, the MFO is utilized as a local search method for MPA to avoid trapping at local optima. The MPAMFO is proposed as an MLT approach for image segmentation, which showed excellent performance in all experiments. To test the performance of MPAMFO, two experiments were carried out. The first one is to segment ten natural gray-scale images. The second experiment tested the MPAMFO for a real-world application, such as CT images of COVID-19. Therefore, thirteen CT images were used to test the performance of MPAMFO. Furthermore, extensive comparisons with several SI methods have been implemented to examine the quality and the performance of the MPAMFO. Overall experimental results confirm that the MPAMFO is an efficient MLT approach that approved its superiority over other existing methods.

INDEX TERMS Image segmentation, multi-level thresholding, moth-?ame optimization (MFO), marine predators algorithm (MPA), COVID-19, swarm intelligence.

I. INTRODUCTION

With the fast spread of the new coronavirus, COVID-19, researchers are trying to address different aspects related to this new virus. One of the most important issues is diagnosing COVID-19 using different tests, including the real-time

polymerase chain reaction (RTPCR), and chest CT. The RT-PCR is a time-consuming test, and also it faces false-negative diagnosing [1]. Therefore, chest CT scans may play an important role in diagnosing COVID-19. Medical imaging technologies have been implemented in different diseases diagnosing. Image segmentation is an essential technique in image processing, and it is an important procedure in various image and vision applications, which can efficiently

²Department of Computer, Damietta University, Damietta 34511, Egypt

The associate editor coordinating the review of this manuscript and approving it for publication was Shuhan Shen.

detect a region of interest (ROI) form other outsides. It is applied to classify image pixels into different classes which contain similar properties, such as brightness, gray level, contrast, texture, and color. Also, it is able to extract important features, such as texture and shape of tissues [2]

The segmentation process has been applied in various fields and applications, for instance, medical image [3], remote sensing [4], video surveillance [5] and other applications [6], [7]. Several types of image segmentation techniques have been proposed and applied, such as clustering [8], thresholding [9], edge detection [10], and edge detection [10].

Thresholding is considered one of the most important image segmentation techniques, which is implemented to segment images depended on the information in the global gray values of the image histogram [11]. In general, there are two types of thresholding, called bi-level thresholding (BLT) and multi-level thresholding (MLT). For BLT, an image is divided into two classes, in which one class contains pixels with gray levels above a threshold, and the other class contains the rest [11]. However, the BLT faces a challenge in case of a given image has more than two classes. Therefore, the MLT can solve this challenge by implementing the subdivision of a given image into more classes.

Traditional MLT segmentation methods are based on the image grey-level histogram [12] by minimizing or maximizing the fitness functions, for example, entropy [13] and Otsu [14]. However, there are certain limitations and short-comings in the performance of traditional MLT techniques. For example, they are time-consuming, especially when the number of threshold levels is increased. In addition, they easily stuck at a local point. Therefore, optimization methods have been widely employed to enhance MLT since MLT can be considered as NP-hard problem. In the recent decade, several optimization methods have been used to improve MLT, such as MFO [15], cuckoo search (CS) [16], [17], ant colony optimizer (ACO) [18], chaotic bat algorithm (CBA) [19], WOA [20], and firefly algorithm (FA) [21]–[24].

Although the optimization algorithms mentioned above showed good performances in MLT since they can find the optimal threshold value, they face some challenges, such as getting stuck at local optima or suffer from slow convergence [25]–[30]. In general, according to the NFL (No free lunch) theorems, no optimization method can be the best for solving all problems. In general, some optimization methods have good exploitation ability, and some have good exploration ability [31]. To address these issues, various hybrid optimization methods have been proposed. For example, a hybrid of FA and social spider optimization (SSO) was proposed by [32] for MLT image segmentation. The new hybrid optimization method achieved better results than individual optimization methods. In [33], an MLT image segmentation method based on a hybrid of PSO and BFO is proposed. Eight images were used to test the hybrid model and reached good results for both MLT and BLT. More so, MLT and optimization methods have been applied for different medical image

VOLUME 8, 2020

segmentation, such as CT images [34]–[36], MR images [37], [38], MRI image [20], [39].

Following the hybridization concepts, in this study, we propose an efficient MLT method based on an improved marine predators algorithm (MPA) for image segmentation. The MFO is employed as a local search for the MPA to improve its performance. The proposed method, MPAMFO, is an efficient hybrid optimization method for MLT that overcomes the shortcomings of individual optimization methods using the power of both MPA and MFO. The MPA is a new nature-inspired optimization algorithm proposed by Faramarzi et al. [40]. It is inspired by the movements of Lévy and Brownian in ocean predators. Twenty-nine engineering problems were used to test its performance, and it showed high performances in various optimization problems. MPA has some merits, such as its requirement for the least number of tunable parameters, its simplicity in the implementation, and flexibility in modifying the basic MPA version that attracted Yousri et al. [41] to apply basic MPA for photovoltaic reconfiguration. Whereas, the shortage of the MPA while the exploration stage for the search space motivated Abdel-Basset et al. [42] to modify the MPA by using ranking-based diversity reduction (RDR) methodology to discover better solutions while applied with for COVID-19 Detection Model. Accordingly, proposing a robust MPA variant is a challenged door to tackle its shortage.

The MFO is a nature-inspired optimization method proposed by [43], which simulates the behaviors of the moth for path navigation. In recent years, it has been applied to solve various optimization problems. Kotary and Nanda [44] applied MFO to improve distributed data clustering in wireless sensor networks (WSN). The main function of the diffusion MFO is by minimizing intracluster distance, which results in determining the optimal partition of each sensor node. Ewees et al. [45] used the MFO to improve Arabic handwritten letters recognition. They applied the MFO as a feature selector, which achieved a high accuracy rate compared to previous approaches. In [46], MFO was applied to enhance ANFIS model to forecast the number of confirmed cases of the new coronavirus (COVID-19). In [47], a feature selection mechanism based on differential evolution and MFO is proposed. They tested the proposed hybrid model with different CEC2005 benchmark problems, and they found that the proposed method outperformed several existing methods. Zhao et al. [48] applied MFO to optimize the grey model (1,1) with a rolling mechanism for forecasting electricity consumption in Inner Mongolia. The evaluation results showed that MFO improved forecasting performance. It has also been applied for solving different mathematical problems, for example, multi-objective problems [49], binary problems [50], and and other applications [51], [52]. By inspecting the literature, one can observe that implementing the logarithmic spiral function in MFO in the phase of the moths update their position concerning the flame strengthened the searching ability of the algorithm. Moreover, MFO

simplicity and flexibility motivated numerous researchers have been working on it.

Motivated by the merits of the MFO of its ability to discover the search space efficiently and demerit of MPA in detecting better solutions in the exploration phase, in this work, a new hybrid version of MPA is based on MFO has been introduced. The main idea of the proposed hybrid MPA version by MFO (MPAMFO) is to enhance the exploration ability of the MPA using the operators of the MFO algorithm. This achieved by making the agents/solutions be competitive in the exploration phase by using the probability of the fitness value of each solution to determine either the operators of MPA or MFO will be used to update the value of the current agent, while the exploitation phase is performed similarly to the traditional MPA.

In this paper, we evaluate the MPAMFO using two experiments series. In the first experiment series, we used a group of ten images. These images were widely used in previous studies to test various segmentation methods. Moreover, to implement MPAMFO in a real-world application, we test it to segment chest CT images of COVID-19 [53]. The performance of both experiment series showed that the MPAMFO is an efficient segmentation method that can be applied in various segmentation applications including medical images.

The main contributions of this study can be summarized as:

- 1) We propose an MLT method for image segmentation based on a modified version of the new optimization method, called MPA.
- 2) The MFO operators are employed to improve the exploitation ability of the MPA.
- We test the performance of the proposed method in two experiment series, using ten gray-scale popular images and thirteen CT images of COVID-19. Moreover, we compared it to several state-of-art methods.

The rest of this paper is organized as follows. Section II presents some of the existing works of the MLT and optimization methods in image segmentation, including medical images. In Section III, we present the problem definition and the preliminaries of MPA and MFO. The proposed method is described in Section V. The experimental evaluation and comparisons are presented in Section VI. In Section VII, we conclude the paper.

II. RELATED WORK

Mousavirad and Ebrahimpour-Komleh [54] proposed an MLT approach using Human Mental Search (HMS). They applied Kapur and Otsu as objective functions. The HMS was compared to several optimization methods, and it showed significant performance. In [55], several MH algorithms are used for MLT, such as WOA, GWO, CS, biogeography-based optimization, cuckoo optimization algorithm, teaching–learning-based optimization, imperialist competitive algorithm, and gravitational search algorithm. In the same context, the authors in [56] applied different optimization algorithms for MLT. Monisha *et al.* [57]

employed Social Group Optimization for MLT for RGB images. Also, Bhandari [58] presented a new beta differential evolution (BDE) for color image MLT.

Huang and Wang [59] proposed an MLT method based on the quantum particle swarms algorithm (QPSO) algorithm for image segmentation. They used Otsu's fitness function. They concluded that compared to traditional methods, the QPSO improved both accuracy and speed. Qin et al. [60] employed the subspace elimination optimization (SSEO) for MLT image segmentation. They applied the SSEO for four different images, and they compared it to the particle swarm optimization (PSO). They found that SSEO has better performance in all tested images. Both moth-flame optimization (MFO) algorithm and whale optimization algorithm (WOA) were used for MLT in [61]. The authors used Otsu's was used as the fitness function, and they test both WOA and MFO using several images. They concluded that MFO had better performance than WOA. Farshi [62] proposed an MLT method based on animal migration optimization (AMO) algorithm. Different images were used to test the performance of the AMO algorithm, and it was compared to several optimization methods, such as PSO, bacterial foraging algorithm (BFA), and genetic algorithm (GA). As the author mentioned, the AMO algorithm provided better results. In [63], an MLT method based on electromagnetismlike mechanism optimization (EMO) and Renyi's entropy is proposed for image segmentation. The evaluation results showed that EMO could find the optimal threshold value better than several existing optimization methods.

Tuba et al. [64] proposed an MLT method based on the fireworks algorithm for image segmentation. They evaluated the proposed method using several images, and it showed good performance in all tested images. In [9], an MLT method based on PSO and maximum entropy is proposed. The PSO showed good performances in several tested images compared to traditional methods. Ali et al. [65] proposed an improved differential evolution (DE) called synergetic DE (SDE) for MLT image segmentation. Their evaluation outcomes showed that the SED could perform better than other MLT methods in terms of reaching the optimal threshold value. The galaxy-based search algorithm (GbSA) was applied by [66]for MLT maximizing Otsu's fitness function, and it approved its good performance to determine the optimal thresholding value. Ewees et al. [67] proposed a hybrid of the artificial bee colony (ABC) and sine cosine algorithm (SCA) for MLT image segmentation. The SCA is employed as a local search for the ABC to enhance its performance. The hybrid model was applied for MLT using several images and showed good performances compared to several existing MH methods. In [68], an MLT method based on fuzzy entropy and a hybrid of the salp swarm optimizer (SSO) and the MFO was proposed. It was evaluated using different images, and it showed better performance compared to individual optimization algorithms. Furthermore, a hybrid of gravitational search algorithm and GA was proposed by [69] for MLT image segmentation using the entropy fitness

function. Also, a hybrid of the spherical search optimizer (SSO) and SCA is proposed by [70]. Fuzzy entropy is applied as the fitness function. The proposed model also confirms its performance using different images and by comparing it to several state-of-art models.

Moreover, MLT also has been used for medical image segmentation; for example, Li et al. [34] proposed a dynamic-context cooperative quantum-behaved PSO based on MLT for CT image segmentation. They used six different CT images to test the performance of the improved PSO, which showed significant performance. Also, Li et al. [71] proposed an MLT for medical image segmentation based on a partitioned and cooperative quantum-behaved PSO. They test the improved PSO with four stomach CT images, and they compared it to two modified PSO algorithms. Chatterjee et al. [35] proposed an MLT method with three-level thresholding for human head CT image segmentation. They applied an improved biogeography based optimization (BBO) and fuzzy entropy to segment fifteen CT images. The improved BBO was compared to PSO, GA, and it showed better performance. Also, in [36], an MLT method with PSO is applied for lung high-resolution CT image segmentation.

Panda et al. [37] proposed an MLT approach for brain MR image segmentation based on an evolutionary gray gradient algorithm (EGGA). They also applied an adaptive swallow swarm optimization (ASSO) algorithm to optimize the fitness function. They used twenty-five MR images to evaluate the ASSO, which showed better performance than the original SSO. Wang et al. [72] presented an MLT approach to segment medical images based on an improved FPA algorithm. They applied Otsu's as an objective function. They used Eight CT images to evaluate the proposed approach, which outperformed several MH algorithms, including the original FPA, PSO, GA, and DE. Mostafa et al. [20] applied the WOA for liver MRI image segmentation. They used several measures to evaluate the WOA, including structural similarity index measure (SSIM) and similarity index (SI). The WOA achieved high accuracy rates in both measures. Ladgham et al. [38] proposed an enhanced Shuffled Frog Leaping Algorithm (SFLA) for MR brain image segmentation. They compared it to the original SFLA and the GA, and it showed significant performance. Raja et al. [39] applied the bat algorithm (BA) to enhance the segmentation process of the MRI images. In [73], the FA is used to optimize SVM classifier to classify lung CT images. Also, the gray wolf optimizer (GWO) was used with the artificial neural network (ANN) to classify MRI images [74]. Also, in [75] the FA is applied for brain MRI segmentation.

III. METHODOLOGY

A. PROBLEM DEFINITION

The problem formulation of MLT is presented in this section. Assume we have a gray-scale image I, which has K + 1 classes. To divide a given image I into classes, the values of k thresholds $\{t_k, k = 1, 2, K\}$ are needed, which can be defined as:

$$C_{0} = \{I_{ij} \mid 0 \leq I_{ij} \leq t_{1} - 1\},\$$

$$C_{1} = \{I_{ij} \mid t_{1} \leq I_{ij} \leq t_{2} - 1\},\$$

$$\dots$$

$$C_{K} = \{I_{ij} \mid t_{K} \leq I_{ij} \leq L - 1\}$$
(1)

where *L* represents the maximum gray levels, C_K is the *k*th class of the image, t_k is the *k*-th threshold, and I_{ij} represents gray levels at (i, j)-th pixel. Where the problem of the MLT can be defined as a maximization problem which is applied to find an optimal threshold value as:

$$t_1^*, t_2^*, \dots, t_K^* = \arg \max_{t_1, \dots, t_K} Fit(t_1, \dots, t_K)$$
 (2)

where *Fit* is the objective function. Here, the Fuzzy entropy [14] is applied as an objective function. Fuzzy entropy is a popular technology [76]–[78], which has been applied in many multi-level threshold segmentation applications, such as color images [79], brain tumor images [80], MRI images [81] and others [82], [83]. It can be defined as:

$$Fit(t_1, \dots, t_K) = \sum_{k=1}^K H_i$$
(3)

$$H_{k} = -\sum_{i=0}^{L-1} \frac{p_{i} \times \mu_{k}(i)}{P_{k}} \times \ln(\frac{p_{i} \times \mu_{k}(i)}{P_{k}}), \quad (4)$$

$$P_k = \sum_{i=0}^{L-1} p_i \times \mu_k(i) \tag{5}$$

$$\mu_1(l) = \begin{cases} 1 & l \le a_1 \\ \frac{l-c_1}{a_1-c_1} & a_1 \le l \le c_1 \\ 0 & l > c_1 \end{cases}$$
(6)

$$\mu_{K}(l) = \begin{cases} 1 & l \le a_{K-1} \\ \frac{l-a_{K}}{c_{K}-a_{K}} & a_{K-1} < l \le c_{K-1} \\ 0 & l > c_{K-1} \end{cases}$$
(7)

In Eq. (7), p_i is the probability distribution which is computed as $p_i = h(i)/N_p$ (0 < i < L - 1); where h(i) and N_p are the number of pixels for the corresponding gray level L and total number of pixels in I.

 $a_1, c_1, \ldots, a_{k-1}, c_{k-1}$ are the fuzzy parameters, where $0 \le a_1 \le c_1 \le \ldots \le a_{K-1} \le c_{K-1}$. Then $t_1 = \frac{a_1 + c_1}{2}, t_2 = \frac{a_2 + c_2}{2}, \ldots, t_{K-1} = \frac{a_{K-1} + c_{K-1}}{2}$.

IV. MARINE PREDATORS ALGORITHM

Faramarzi *et al.* [40] introduced a novel meta-heuristic (MH) optimization algorithm inspired by the prey and predator characteristics in nature. The developed algorithm named Marine Predators Algorithm (MPA). The creatures usually aimed to find their foods and continuously searching for them. Hence, the predator is searching for its food as well

as the prey is looking for its food. Based on this concept, Faramarzi *et al.* [40] designed the MPA algorithm.

At the first stage, the predator/prey stats discovering the search space to detect their food location, then they convergence for its position to catch it from this principle the MHs are established. MPA started by discovering the search space via a random set of solutions as an initialization. Then those solutions are updates based on the mainframe of the technique.

The initialization stage can be given based on the search space boundaries as below;

$$U_{ij} = lb_j + r_1 \times (ub_j - lb_j),$$

$$j = 1, 2, \dots, D, \ i = 1, 2, \dots, N$$
(8)

where the lb_j and ub_j are the lower and upper boundaries in the search space at dimension j, r_1 is a random number withdrawn from a uniform distribution in the interval of [0,1].

As mentioned earlier both the prey and predator are searching for their foods; therefore, there are two main matrices should be defined, the Elite matrix (matrix of the fittest predators) and the prey matrix that can be defined as below:

$$Elite = \begin{bmatrix} U_{11}^{1} & U_{12}^{1} & \dots & U_{1d}^{1} \\ U_{21}^{1} & U_{22}^{1} & \dots & U_{2d}^{1} \\ \dots & \dots & \dots & \dots \\ U_{n1}^{1} & U_{n2}^{1} & \dots & U_{nd}^{1} \end{bmatrix}, \qquad (9)$$
$$U = \begin{bmatrix} U_{11} & U_{12} & \dots & U_{1d} \\ U_{21} & U_{22} & \dots & U_{2d} \\ \dots & \dots & \dots & \dots \\ U_{n1} & U_{n2} & \dots & U_{nd} \end{bmatrix},$$

where U_{ij} refers to the value of the *i*th solution at *j*th dimension. To catch the global optimum solutions, the initial solutions should be modified based on the main structure of the MPA. MPA maintains three stages for adjusting the initial solutions. The followed steps have relied on the velocity ratio between prey and predator. The first phase can be regarded once the velocity ratio between predator and prey is high. In contrast, the unit and low-velocity rates are measurable for the second and third stages. Details of each step are addressed below.

A. STAGE 1: EXPLORATION PHASE (HIGH-VELOCITY RATIO)

For the first third of the total number of iterations, i.e., $\frac{1}{3}t_{max}$) in MPA, the search agents start to discover the search space where the exploration stage is accomplished. The prey hurries to search for its food while the predator waits to monitor its motion. That is why the high-velocity ratio among the prey and predator is the primary feature of this stage. Accordingly, the prey location is modifying using the following equations.

$$S_i = R_B \bigotimes (Elite_i - R_B \bigotimes U_i), \quad i = 1, 2, \dots, n \quad (10)$$

$$U_i = U_i + P.R \bigotimes S_i \tag{11}$$

where $R \in [0, 1]$ is a random vector withdrawn from a uniform distribution, and P = 0.5 is a constant number. The

symbol of R_B refers to Brownian motion. \bigotimes indicates the process of element-wise multiplications.

B. STAGE 2: TRANSITION AMONG THE EXPLORATION AND EXPLOITATION (UNIT VELOCITY RATIO)

After detecting the closest position for the foods, the prey/predator starts to exploit this location; therefore, this stage is considered as the transmission phase among the exploration and exploitation capabilities. This stage is the middle stage of the algorithm when $\frac{1}{3}t_{max} < t < \frac{2}{3}t_{max}$ where both the prey and predator move with the nearly same velocity. The predator follows Brownian motion while the prey follows the lévy flight sequentially Faramarzi *et al.* [40] divided the population for two halves and implemented Eqs. (12)-(13) to model the motion of the first half of the population and Eq. (14)-(15) for the second half as represented below.

$$S_i = R_L \bigotimes (Elite_i - R_L \bigotimes U_i), \quad i = 1, 2, \dots, n72$$
 (12)

$$U_i = U_i + P.R \bigotimes S_i \tag{13}$$

where R_L has random numbers that follow Lévy distribution. Eqs. (12)-(13) are applied to the first half of the agents that represents the exploitation. While the second half of the agents perform the following equations.

$$S_i = R_B \bigotimes (R_B \bigotimes Elite_i - U_i), \quad i = 1, 2, \dots, n/2 \quad (14)$$

$$U_i = Elite_i + P.CF \bigotimes S_i, \ CF = (1 - \frac{t}{t_{max}})^2 \frac{t}{t_{max}}$$
(15)

where *CF* is the parameter that controls the step size of movement for predator.

C. STAGE 3: EXPLOITATION STAGE (LOW-VELOCITY RATIO) This stage is the last stage in the optimization process as the predator exploits the detected location of the prey and move very fast to catch it. This stage executed on the last third of the iteration numbers ($t > \frac{2}{3}t_{max}$) where the predator follows Lévy during updates its position based on the following formula:

$$S_i = R_L \bigotimes (R_L \bigotimes Elite_i - U_i), \quad i = 1, 2, \dots, n \quad (16)$$

$$U_i = Elite_i + P.CF \bigotimes S_i, \ CF = (1 - \frac{t}{t_{max}})^2 \frac{t}{t_{max}}$$
(17)

D. EDDY FORMATION AND FISH AGGREGATING DEVICES' EFFECT (FADS)

In the purpose of avoiding the local optimum solutions, Faramarzi *et al.* [40] considered the external impacts from the environment such as the eddy formation or Fish Aggregating Devices (FADs) effects that can be mathematically formulated as below:

$$U_{i} = \begin{cases} U_{i} + CF[U_{min} + R \otimes (UDif)] \otimes W & r_{5} < FAD \\ U_{i} + [FAD(1 - r) + r](U_{r1} - U_{r2}) & r_{5} > FAD \end{cases}$$
(18)

In Eq. (18), $UDif = U_{max} - U_{min} FAD = 0.2$, and W is a binary solution 0 or 1 that corresponded to random solutions. If the random solution is less than 0.2, it converted to 0 while the random solution becomes 1 when the solutions are greater than 0.2. The symbol of $r \in [0, 1]$ represents a random number. r_1 and r_2 are the random index of the prey.

E. MARINE MEMORY

The marine predators have a feature that helps in catching the optimal solution very fast and avoid the local solutions is that memorizing the location of the high production foraging. Faramarzi *et al.* [40] implement this feature in his algorithm via saving the previous best solutions of a prior iteration and compared with the current ones. The solutions are modified based on the best one during the comparison stage. The pseudo-code of MPA is presented below 1.

Algorithm 1 Steps of MPA

1 2 3

4

5

6

7

8

9

10

11

12 13

14

١g	orithm I Steps of MPA
:	Set the initial value for a set of <i>N</i> agents <i>U</i> .
2:	while termination criteria are not met do
:	Compute the fitness value and build in Elite matrix.
:	if $t < t_{max}/3$ then
i:	Update value of agent using Eq. (11).
) :	
:	For the first half of the agents $(i = 1,, N/2)$.
3:	Update value of agent using Eq. (13).
):	For the second half of the agents $(i = 1,, N/2)$.
):	Update value of agent using Eq. (15).
:	else if $t > 2 \times t_{max}/3$ then
2:	Update value of agent using Eq. (17).
:	end if
l:	Using FADs effect and Eq. (18) to update current
	agent.

- 15: Update memory and Elite.
- 16: end while

F. MOTH-FLAME OPTIMIZER

Mirjalili [84] proposed the moth-flam optimizer based on the navigation behavior of moths at night that known by transverse orientation methodology. The moth utilized a fixed angle with the moon during its fly that helps it to reach for its goal, especially when the light is far. In contrast, the moths follow spirally flying around the near source of the light. Mirjalili [84] addressed another feature in MFO algorithm as the moths search around the flame and continually update this flame; therefore, not only the moths are the solutions but also the flames. Both the moths and flames locations are modified across the iterations number whereas with following diff rent control equations. The moths are the search agents, while flames are the best obtained moths location so far. Mirjalili [84] modeled these behaviors for mathematical equations to form his techniques MFO algorithm. MFO as all the MHs starts with random solutions, initialization phase then the solutions are modified based on the main equations of the algorithm, and at the end, the algorithm

is stopped based on its termination criteria as presented as follows [84]:

$$MFO = (Init, Main, Ter), \tag{19}$$

where *Init* is the initialization phase that is responsible for creating the first random solutions as bellow

$$U(i, j) = (ub(i) - lb(i)) * rand() + lb(i),$$
(20)

$$OM = SAE = FitnessFunction(U),$$
 (21)

where *lb*, *ub* are the lower and upper bounds of the variables, respectively.

The *Main* function in Eq. 19 includes the main structure of the MFO where the MFO motions are modeled and updated based on the logarithmic spiral function to emulate the transverse orientation of moths as below [84]:

$$S(U_i, F_j) = |F_j - U_i| e^{bd} \cos(2\pi d) + F_j,$$
(22)

where U_i , F_j refer to the *i*-th, *j*-th moth and flame, respectively. The symbol of *S* denotes the spiral function, *b* is a control parameter for the shape of the logarithmic spiral, and $d \in [r, 1]$ is a random number. The *r* values are linearly decreased from -1 to -2 in order to accelerate the convergence speed of MFO where the smaller *d*, the closer the distance to the flame.

In MFO, Mirjalili [84] adaptively update the number of flames across the iterations to balance between the diversification and intensification phases, as in equation. (23). The equations reveal on decreasing for the number of the flames across the iteration numbers thereby at the last iterations the moths update their locations only with respect to the best flame [84]:

flame no = round
$$\left(N_f - t * \frac{N_f - 1}{t_{max}}\right)$$
, (23)

where *t* is the current number of iteration, N_f is the maximum number of flames, and t_{max} is the maximum number of iterations.

The final steps of the MFO are illustrated in Algorithm 2.

Algorithm 2 Steps of MFO

- 1: Producing the initial population U.
- 2: set t = 1.
- 3: **while** $(t < t_{max})$ **do**
- 4: calculate objective value for U_i .
- 5: Sort U and determine the best solution (U_b) .
- 6: Using Eq. (23) to update $Flames_N$.
- 7: **for** i = 1 : N **do**
- 8: Using Eq. (22) to update U_i .
- 9: end for
- 10: end while
- 11: Return U_b .

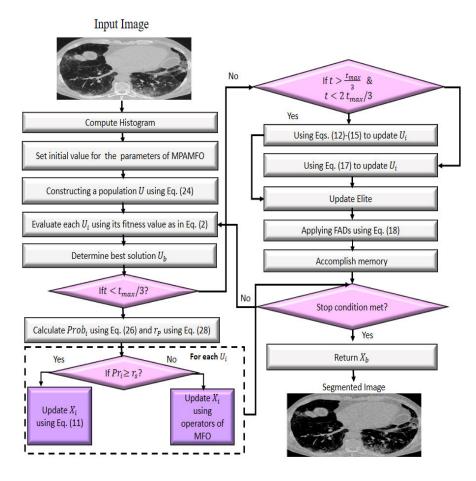


FIGURE 1. The steps of MPAMFO approach.

V. PROPOSED IMAGE SEGMENTATION METHOD

In this section, the steps of the proposed multi-level threshold approach are introduced, as in Figure 1. The developed model depends on improving the performance of the Marine Predators Algorithm (MPA) using the operators of moth-flame optimization (MFO). This achieved by using the operators of MFO to make the agents are competitive during the exploration phase since it has been found that the main weakness of MPA is its ability to explore the search space. In general, the modified MPA is called MPAMFO starts by setting initial value for a set of N agents X. This performed by using the following equation:

$$U_{i,j} = I_{min,j} + r_1 \times (I_{max,j} - I_{min,j}), \quad j = 1, 2, \dots, D,$$
 (24)

In Eq. 24, $I_{min,j}$ and $I_{max,j}$ are the minimum and maximum gray value of I at *j*th dimension, respectively. In addition, D = 2K where K is the threshold level that needs to segment the image at it. The next process is to compute the fitness value *Fit* for each agent using Eq. (2). Then determine the agent that has the best *Fit* and used it as best agent U_b . Thereafter, the agent will update their values using either the operators of exploration or exploitation, as discussed in section IV. However, during the exploration, the probability (Pr_i) of each agent depends on its fitness value, is computed using Eq. (25).

$$Pr_i = \frac{Fit_i}{\sum_{i=1}^{N} Fit_i}$$
(25)

Thereafter, the agents in the exploration phase are updated using the following equation:

$$U_{i} = \begin{cases} operators of MPA & Pr_{i} > r1\\ operators of MFO & otherwise \end{cases}$$
(26)

where

$$r_s = \min(Pr_i) + rand \times (\max(Pr_i) - \min(Pr_i)), \ rand \in [0, 1]$$
(27)

From Eq. (26), when the value of $Pr \ge r1$, then the operators of MPA are used, otherwise the operators of MFO are used. In addition, we applied Eq. (27) to avoid the problem of fixing it to a specified value, so the value of r1 is automatically updated depends on the value of Pr.

From Eq. (26), when the value of $Pr \ge r1$, then the operators of MPA are used, otherwise the operators of MFO are used. In addition, we applied Eq. (27) to avoid the problem of fixing it to a specific value, so the value of r1 is automatically updated depends on the value of Pr.

The next step is to check the stop conditions when they are met, then the best solution is considered the output. From the value of U_b that refers to the fuzzy parameters are used to form the threshold value as $t_k = \frac{U_b^k + U_b^{k+1}}{2}$, where k = 1:2: K - 1.

Computational Complexity: The computational complexity of MPAMFO depends on some factors such as number of fitness evaluation EF, number of solutions N, total number of iterations t_{max} , and the number of thresholds K. In addition, since MFO is one of main component of MPAMFO so its complexity also influence on the total complexity of MPAMFO. So, the complexity O(MPAMFO) of MPAMFO formulated as: In Best case:

$$O\left(N \times t_{max}\left((N+1)K + EF + (N-K_p) \times log(N)\right)\right) \quad (28)$$

In worst case:

$$O\left(N \times t_{max}\left((N+1)K + EF + (N-K_p) \times N^2\right)\right) \quad (29)$$

where K_p denotes the number of solution that using the operators of MPA to update their values.

VI. EXPERIMENTS AND RESULTS

In this section, two experiments are used to evaluate the performance of the MPAMFO. It is compared with eight algorithms namely, original MPA, harris hawks optimization (HHO) [85], cuckoo search (CS) [86], grey wolf optimization (GWO) [87], grasshopper optimization algorithm (GOA) [88], spherical search optimization (SSO) [89], particle swarm optimization (PSO) [90], and moth-flame optimization (MFO) [84]. Besides, using two sets of images. These algorithms established their quality as MLT image segmentation methods in literature.

A. PERFORMANCE MEASURES

In order to assess the quality of the segmented image, we used a set of performance metrics, including Peak Signal-to-Noise Ratio (PSNR) [91], [92], and the Structural Similarity Index (SSIM) [93]. PSNR and SSIM can be defined as:

$$PSNR = 20log_{10}(\frac{255}{RMSE}),$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N_r} \sum_{j=1}^{N_c} (I_{i,j} - I_S i, j)^2}{N_r \times N_c}}$$
(30)

here, the *RMSE* is the root mean-squared error. *I* and *I*_S refer to the original and segmented images with the size $N_r \times N_c$, respectively.

$$SSIM(I, I_S) = \frac{(2\mu_I \mu_{I_S} + c_1)(2\sigma_{I,I_S} + c_2)}{(\mu_I^2 + \mu_{I_S}^2 + c_1)(\sigma_I^2 + \sigma_{I_S}^2 + c_2)}$$
(31)

 $\mu_I(\sigma_I)$ and $\mu_{I_S}(\sigma_{I_S})$ refers to the images' mean intensity (standard deviation) of *I* and *I_S*, respectively. The σ_{I,I_S} is the covariance of *I* and *I_S*. The values of the constants c_1 and c_2 are set to 6.5025 and 58.52252, respectively following [61].

Furthermore, we use the fitness value to evaluate the quality of threshold values; also, we use the CPU time for each algorithm.

B. PARAMETERS SETTING

Table 1 lists the parameter settings for the algorithms that are applied in the following experiments. In addition, the general parameters are set as follows. The population number is set to 20, and the total number of iteration is 100. More so, 30 independent runs were performed for each method.

TABLE 1. Parameters setting.

Algorithm	Parameters setting
MPA	$FADs = 0.2, P = 0.5, \beta = 1.5$
MPAMFO	$FADs = 0.2, P = 0.5, \beta = 1.5, b = 1$
HHO	$E \in [0,2]$
CS	pa=0.25
GWO	$a \in [2,0]$
GOA	$c_{max} = 1, \ c_{min} = 0.00004$
SSO	$\omega \in [0, 2\pi], \ F \in [0, 1], \ \theta \in [0, \pi]$
PSO	$w_{Max} = 0.9, \ w_{Min} = 0.2, \ C1 = 2, \ C2 = 2$
MFO	b = 2

C. FIRST EXPERIMENT

In this experiment, a set of ten images has been used to compute the quality of the proposed method. As can we observed from Figure 2, these images have different characteristics according to their histogram. The MPAMFO aims to segment those images at different levels of thresholds, these levels equal to 6, 8, 15, 17, 19, and 25.

The results are introduced in Tables 2-4 and Figures 3-5. Table 2 shows the results of the PSNR measure for all images. In detail, at level 6, the performance of the MPAMFO is similar to the HHO algorithm; they achieved the best PSNR values in 5 images for each one followed by MPA, SSO, CS, GWO, PSO, and MFO, respectively. At level 8, the MPAMFO achieved the best PSNR in 4 images and is ranked first, followed by MPA, HHO, PSO, SSO, MFO, GWO, and CS, respectively. At level 15, the HHO algorithm obtained the highest PSNR value in 5 images followed by the MPAMFO. The PSO, MFO, and MPA achieved the third, forth, and fifth rank. However, the MPAMFO does not obtain the first rank, its performance is very close to the HHO algorithm in most of the images. At level 17, both MPAMFO and HHO algorithms obtained the highest PSNR value in 3 images followed by the PSO, CS, and MFO. At levels 19 and 25, the MPAMFO obtained the best PSNR values in 60% and 70%, respectively, of all images. The HHO algorithm came in the second rank with only two images for each level. The CS is ranked third, followed by PSO, SSO, MFO, and MPA. Whereas, the GOA algorithm recorded the worst results at all levels.

Table 3 shows the SSIM results for all images. From this table, we can see that, at levels 6 and 17, the MPAMFO achieved the highest SSIM values in 90% of images, while

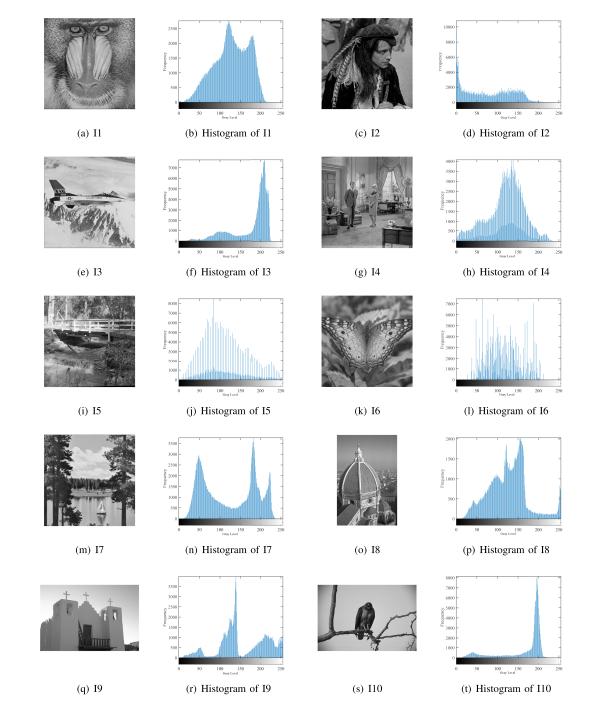


FIGURE 2. Histograms and original images.

The MPA and HHO performed equally, followed by GWO, CS, SSO, PSO, respectively. At levels 19, the MPAMFO is also ranked first and recorded the best SSIM values in 70% of the images. The HHO and MPA performed equally. Wheres, GWO is ranked fourth, followed by CS and SSO. At levels 25, the MPAMFO could also reach the highest SSIM values in 90% of the images, whereas, the second-best is the HHO algorithm followed by PSO, CS, and GWO. The MPA and SSO performed equally. Whereas,

the HHO is ranked second, followed by MPA and SSO, respectively. Whereas, the CS and GWO performed equally. At levels 8, the MPA obtained the best SSIM in 6 images whereas, the MPAMFO came in the second rank; however, the performance of both are similar to some extend. The HHO is ranked third. The PSO, MFO, and SSO came in the forth, fifth, and sixth ranks followed by the CS and GWO, respectively. At levels 15, the highest SSIM values are obtained by the MPAMFO in 80% of the images.

TABLE 2. PSNR results for the first experiments.

Level (K)	Image	MPA	MPAMFO	ННО	CS	GWO	GOA	SSO	PSO	MFO
6	 I1	14.002	16.859	15.233	14.254	14.123	13.562	14.598	11.847	10.774
	I2	16.250	16.244	16.563	15.881	15.612	15.455	15.964	12.495	12.476
	I3	10.039	14.984	15.425	12.881	12.605	11.330	13.483	10.720	10.763
	I4	14.761	16.697	16.413	16.211	16.331	16.025	16.010	11.028	10.776
	I5	12.703	15.329	13.730	11.666	11.903	10.880	12.563	10.806	10.490
	I6	13.417	13.233	14.552	11.924	12.183	11.507	12.603	10.955	10.374
	17	11.744	14.805	14.062	11.983	11.822	11.687	12.334	12.451	11.852
	18 10	13.520	15.269	14.906	14.489	14.019	13.397	14.172	10.551	10.787
	I9	11.096	13.121	13.561	10.151	10.599	9.386	10.191	11.054	9.928
0	I10	10.716	15.815	16.429	14.212	14.424	13.073	14.702	13.122	12.049
8	I1 12	17.684	18.747	17.980	18.151	17.706	17.051	18.162	17.989	16.840
	12 13	20.117 11.852	21.272 16.635	18.227 17.173	16.894 15.720	16.539 15.964	15.643 14.909	17.067 16.561	17.825 16.278	15.266 16.175
	13 I4	11.852 18.522	18.419	17.249	17.698	13.904 17.064	14.909	17.736	18.241	17.185
	14 I5	16.222	17.311	16.168	16.013	16.157	15.748	15.723	16.431	16.054
	15 I6	18.006	17.873	17.727	15.184	15.585	14.066	15.741	17.116	16.225
	10 17	14.614	16.541	16.842	15.996	15.544	15.139	16.239	16.022	15.704
	18	17.222	17.029	16.336	15.153	16.899	14.709	15.062	16.833	16.423
	19	12.830	16.898	16.934	15.504	15.424	14.237	15.663	14.987	16.155
	I10	12.581	19.909	19.079	19.108	19.316	18.182	18.338	17.830	17.730
15	I1	22.285	22.327	23.361	23.013	21.509	20.835	22.868	21.847	20.842
	I2	23.519	23.664	23.141	22.437	22.187	20.035	22.457	23.379	20.748
	I3	16.773	17.613	22.895	21.528	19.667	19.299	21.927	23.026	17.105
	I4	22.004	21.866	22.179	21.667	21.685	19.882	22.547	22.977	21.057
	I5	21.389	21.348	22.851	21.165	21.295	18.609	21.149	20.250	20.888
	I6	21.956	22.574	23.204	21.151	20.510	17.751	21.951	23.115	22.510
	I7	20.257	20.146	21.458	21.324	20.229	18.422	21.547	19.913	20.495
	I8	22.289	22.282	22.649	21.823	21.299	18.722	21.601	21.748	22.505
	I9	18.935	21.348	21.457	20.969	18.096	17.775	19.950	19.989	21.206
17	I10	19.707	22.813	23.306	21.459	21.467	19.492	21.416	24.165	20.719
17	I1 12	23.596	24.544	24.427	24.529	23.075	22.315	24.233	23.525	21.207
	I2 I3	24.587 19.227	24.493 23.936	24.081 24.209	24.146 23.327	24.048 20.658	20.855 20.903	23.838 23.356	23.653 24.306	22.454 23.505
	15 I4	23.248	23.930	24.209 24.217	23.327	20.038	20.903	23.330	24.300 24.194	23.303
	14 I5	22.399	24.630 24.630	23.208	22.685	22.868	20.365	22.299	22.892	23.089
	15 I6	23.113	24.739	25.263	22.213	22.000	19.231	23.945	23.480	22.317
	10 I7	21.510	23.741	23.548	22.614	21.414	20.145	22.164	22.094	22.598
	18	23.485	23.242	23.294	22.681	22.887	19.943	23.237	22.843	23.474
	I9	20.607	22.078	22.632	22.704	19.356	18.916	21.635	21.320	22.526
	I10	21.697	23.547	23.991	23.155	21.930	20.542	23.026	23.223	22.035
19	I1	24.517	26.348	25.449	25.236	24.251	23.077	25.151	24.320	24.370
	I2	25.521	25.914	25.311	25.350	24.971	22.273	24.569	25.250	24.647
	I3	20.620	26.781	25.517	24.743	21.786	21.583	25.124	24.976	23.371
	I4	24.561	24.649	23.939	23.709	23.913	21.438	23.342	23.916	23.451
	15	23.384	25.425	24.976	24.154	23.857	21.752	23.178	24.064	23.724
	I6	24.401	25.414	26.355	24.851	23.623	20.327	24.041	24.136	24.216
	I7	23.339	24.646	24.137	24.532	22.666	21.274	24.273	24.346	23.158
	18 10	24.016	24.223	24.105	24.152	23.879	20.465	24.155	24.208	24.848
	I9	21.206	24.278	23.359	22.523	20.864	19.788	22.468	22.311	24.358
25	I10	22.093	24.479	25.254 27.710	24.317	22.756 26.732	21.452	24.126 27.409	23.108	23.434
25	I1 12	26.755	28.696		27.401		25.759		28.313	26.519
	12 13	27.586 24.424	28.751 28.127	27.851 28.267	28.227 26.803	28.058 23.930	26.214 23.908	27.747 27.446	27.481 27.545	27.394 26.903
	15 I4	24.424 26.553	28.127 29.200	27.601	26.803	25.950 26.257	23.908 24.955	26.336	27.343 28.649	26.903
	14 15	26.168	29.200	26.954	20.732 27.395	26.237	24.935	26.330	28.049	26.562
	15 I6	26.884	27.747	20.954 28.624	26.745	20.900	23.776	28.320	27.276	25.356
	10 17	25.663	28.684	27.453	27.406	25.971	24.731	26.792	26.051	25.698
	17	26.673	28.266	27.085	27.203	26.709	24.640	26.669	27.115	26.163
	10 19	24.804	27.881	26.439	26.565	24.435	23.307	25.730	27.285	25.832
	I10	26.179	28.727	28.032	27.664	25.956	24.661	27.600	26.258	25.700

TABLE 3. SSIM results for the first experiments.

Level (K)	Image	MPA	MPAMFO	HHO	CS	GWO	GOA	SSO	PSO	MFO
6	I1 12	0.5058	0.6032	0.5872	0.5235	0.5103	0.4897	0.5391	0.4156	0.3673
	I2	0.4192	0.4745	0.4585	0.4040	0.4023	0.3849	0.4089	0.2248	0.253
	13 14	0.5983	0.6828	0.6668 0.5734	0.6162	0.6072	0.6125	0.6366	0.6113	0.618
	I4	0.4835	0.5894		0.5448	0.5513	0.5386	0.5351	0.2871	0.272 0.226
	15 16	0.3767 0.4175	0.4511 0.5022	0.4351 0.4862	0.2994 0.3415	0.3153 0.3617	0.2469 0.3087	0.3557 0.3845	0.2370 0.2679	0.220
	10 17	0.4173	0.5022	0.4802	0.3413	0.3017	0.3087	0.3843	0.2079	0.230
	17 I8	0.4291	0.6422	0.6262	0.5921	0.4188	0.5410	0.4297	0.3885	0.393
	18 19	0.7189	0.7760	0.7600	0.5780	0.7024	0.5644	0.5437	0.5829	0.521
	ID I10	0.7303	0.7387	0.7227	0.6603	0.6614	0.6270	0.6831	0.7687	0.744
8	I10 I1	0.7303	0.7252	0.7092	0.7146	0.7044	0.6805	0.7059	0.6943	0.637
Ũ	12	0.5863	0.5495	0.5335	0.4540	0.4567	0.4037	0.4644	0.4283	0.481
	I3	0.7009	0.7957	0.7797	0.7611	0.7528	0.7520	0.7764	0.7745	0.777
	I4	0.6586	0.6186	0.6026	0.6005	0.5889	0.5731	0.6048	0.6188	0.583
	15	0.6353	0.5817	0.5657	0.5522	0.5653	0.5366	0.5337	0.5704	0.554
	I6	0.6475	0.6369	0.6209	0.5114	0.5342	0.4460	0.5323	0.5842	0.533
	I7	0.6379	0.6339	0.6179	0.5850	0.5685	0.5367	0.5896	0.5552	0.552
	18	0.7154	0.7142	0.6982	0.6480	0.7071	0.6364	0.6336	0.6730	0.667
	I9	0.7721	0.8313	0.8153	0.8056	0.8046	0.7806	0.8057	0.7995	0.810
	I10	0.8199	0.7925	0.7765	0.7771	0.7632	0.7384	0.7698	0.8345	0.821
15	I1	0.8352	0.8685	0.8525	0.8378	0.8128	0.7950	0.8357	0.8076	0.788
	I2	0.7222	0.7299	0.7139	0.6742	0.7036	0.5865	0.6641	0.6523	0.591
	13	0.7897	0.8697	0.8537	0.8541	0.8498	0.8265	0.8465	0.8287	0.789
	I4	0.7622	0.7760	0.7600	0.7395	0.7485	0.6808	0.7603	0.7743	0.717
	15	0.7980	0.8363	0.8203	0.7627	0.7845	0.6729	0.7626	0.7339	0.754
	I6	0.7568	0.8078	0.7918	0.7408	0.7220	0.6174	0.7558	0.7723	0.756
	I7	0.7858	0.7841	0.7681	0.7676	0.7929	0.6461	0.7642	0.6852	0.689
	18 10	0.8481	0.8554	0.8394	0.8248	0.8354	0.7664	0.8259	0.8275	0.837
	I9	0.8676	0.8864	0.8704	0.8489	0.8542	0.8248	0.8321	0.8429	0.843
17	I10	0.9152	0.8937	0.8777	0.8620	0.8462	0.8235	0.8452	0.8873	0.833
17	I1 12	0.8572	0.8866	0.8706	0.8716	0.8434	0.8306	0.8642	0.8465	0.795
	I2	0.7553	0.7619	0.7459	0.7345	0.7562	0.6155	0.7206	0.6523	0.685
	I3 14	0.8267	0.8914	0.8754	0.8687	0.8666	0.8503	0.8719	0.8463	0.809
	14 15	0.7927 0.8327	0.8250 0.8440	$0.8090 \\ 0.8280$	$0.7736 \\ 0.8101$	$0.7722 \\ 0.8275$	0.7264 0.7448	0.7722 0.8011	$0.7997 \\ 0.8201$	0.778
	15 I6	0.8327	0.8440	0.8280	0.8101	0.8273	0.7448 0.6767	0.8011	0.8201	0.823 0.753
	10 I7	0.7987	0.8256	0.8096	0.7876	0.8193	0.7288	0.3043	0.7550	0.755
	17 I8	0.8704	0.8725	0.8565	0.8414	0.8635	0.7238	0.8515	0.7350	0.851
	10 19	0.8728	0.8899	0.8739	0.8592	0.8549	0.8308	0.8550	0.8591	0.852
	I10	0.9240	0.9140	0.8980	0.8850	0.8550	0.8533	0.8783	0.8783	0.861
19	II	0.8761	0.9054	0.8894	0.8830	0.8653	0.8474	0.8806	0.8599	0.869
	I2	0.7815	0.7965	0.7805	0.7644	0.7881	0.6684	0.7417	0.7400	0.720
	13	0.8384	0.9053	0.8893	0.8762	0.8741	0.8577	0.8800	0.8401	0.835
	I4	0.8236	0.8199	0.8039	0.7928	0.8019	0.7343	0.7856	0.8036	0.789
	15	0.8438	0.8866	0.8706	0.8509	0.8525	0.7876	0.8245	0.8503	0.838
	I6	0.8147	0.8795	0.8635	0.8361	0.8093	0.7149	0.8149	0.7970	0.794
	I7	0.8303	0.8351	0.8191	0.8339	0.8400	0.7615	0.8206	0.8147	0.771
	I8	0.8784	0.8853	0.8693	0.8766	0.8809	0.8065	0.8693	0.8677	0.873
	I9	0.8833	0.8902	0.8742	0.8703	0.8711	0.8372	0.8699	0.8686	0.878
	I10	0.9283	0.9168	0.9008	0.9050	0.8870	0.8703	0.8788	0.8959	0.882
25	I1	0.9109	0.9381	0.9221	0.9151	0.9058	0.8951	0.9145	0.9320	0.904
	I2	0.8239	0.8554	0.8394	0.8372	0.8647	0.7923	0.8200	0.8106	0.820
	I3	0.8831	0.9221	0.9061	0.9041	0.9014	0.8830	0.8980	0.8916	0.872
	I4	0.8593	0.8944	0.8784	0.8606	0.8544	0.8226	0.8518	0.8885	0.867
	I5	0.9037	0.9235	0.9075	0.9126	0.9111	0.8664	0.8937	0.9106	0.894
	I6	0.8650	0.9142	0.8982	0.8747	0.8864	0.8223	0.8918	0.8704	0.831
	I7	0.8658	0.9016	0.8856	0.8798	0.8777	0.8439	0.8702	0.8571	0.856
	18	0.9142	0.9272	0.9112	0.9118	0.9145	0.8838	0.9036	0.9233	0.900
	I9	0.9016	0.9166	0.9006	0.9035	0.8934	0.8740	0.8932	0.9112	0.889
	I10	0.9173	0.9471	0.9311	0.9242	0.9223	0.9025	0.9262	0.9042	0.884

TABLE 4. Results of the fitness function value for all algorithms.

Level (K)	Image	MPA	MPAMFO	ННО	CS	GWO	GOA	SSO	PSO	MFO
<u>6</u>	Intage I1	17.54	17.54	17.43	17.52	17.53	17.54	17.46	17.19	17.10
Ŭ	I2	17.54	17.54	17.17	17.29	17.29	17.32	17.27	17.47	17.09
	13	17.54	17.54	16.91	17.09	17.08	17.10	17.06	16.74	17.28
	I4	17.54	17.54	17.45	17.55	17.57	17.59	17.53	17.26	16.83
	I5	17.54	17.54	15.47	15.60	15.59	15.62	15.64	16.58	16.58
	I6	17.54	17.54	14.76	15.07	15.08	15.13	15.02	17.19	17.43
	I7	17.54	17.54	17.43	17.62	17.62	17.32	17.48	16.66	16.78
	I 8	17.53	17.54	17.43	17.57	17.59	17.60	17.54	17.01	16.84
	I9	17.54	17.54	17.28	17.48	17.51	17.54	17.47	17.54	16.71
	I10	17.54	17.54	16.59	16.77	16.78	16.80	16.77	17.15	17.00
8	I1	20.85	20.85	20.62	20.77	20.82	20.84	20.69	20.50	20.80
	I2	20.85	20.85	20.55	20.78	20.82	20.91	20.69	20.00	20.36
	I3	20.85	20.84	20.28	20.44	20.45	20.54	20.38	19.92	20.28
	I4	20.86	20.85	20.73	20.91	20.95	21.01	20.85	20.11	20.42
	15	20.85	20.86	18.17	18.26	18.32	18.38	18.26	20.54	20.32
	16	20.85	20.84	17.05	17.39	17.43	17.50	17.28	19.98	20.37
	I7	20.84	20.85	20.69	20.87	20.91	20.95	20.83	19.89	20.80
	I8 10	20.85	20.85	20.63	20.87	20.84	20.99	20.86	20.00	20.32
	19 110	20.84 20.84	20.85 20.85	20.64 19.82	20.98 19.98	21.04 20.02	21.06 20.06	20.99 19.92	20.16 20.73	19.92 20.51
15	II II	20.84 29.63	20.85 29.71	29.09	29.39	20.02	20.00 29.80	29.28	20.75	20.31
15	II I2	29.03 29.67	29.71	29.09	29.59	29.47 29.76	28.56	29.28	29.10	29.31
	IZ I3	29.59	29.71 29.71	29.39	29.08	29.26	28.50	29.09	29.01	29.29
	13 I4	29.68	29.70	29.22	29.53	29.63	30.02	29.55	29.63	28.98
	15	29.64	29.69	24.83	25.20	25.22	25.72	25.22	28.83	29.57
	16 I6	29.65	29.71	22.73	23.63	23.62	24.23	23.18	29.17	28.79
	I7	29.69	29.68	29.28	29.47	29.60	28.61	29.42	29.18	29.26
	18	29.68	29.67	29.73	30.07	30.14	28.64	30.04	28.69	29.40
	I9	29.70	29.69	29.33	29.75	30.01	28.52	29.90	29.00	29.02
	I10	29.69	29.70	28.47	28.87	28.95	29.28	28.86	29.60	29.49
17	I1	32.31	32.37	31.80	31.96	31.94	31.08	31.84	32.24	31.84
	I2	32.31	32.30	32.11	32.39	32.43	33.01	32.42	31.91	31.38
	I3	32.30	32.33	31.46	31.79	31.79	32.43	31.70	32.04	31.45
	I4	32.28	32.28	31.75	32.13	32.14	32.76	32.18	32.07	31.78
	15	32.33	32.36	26.62	27.16	27.21	27.74	27.22	31.95	32.26
	I6	32.28	32.36	24.19	25.28	25.29	26.12	24.64	31.72	32.24
	I7	32.33	32.29	31.83	32.11	32.19	32.63	32.10	31.70	31.57
	I8 10	32.34	32.30	32.28	32.68	32.71	33.34	32.66	32.11	31.81
	I9	32.29	32.34	32.11 31.14	32.44	32.53 31.58	30.99 31.07	32.46 31.50	32.30	31.42
19	I10 I1	32.31 34.87	32.30 34.86	31.14 34.21	31.46 34.36	34.23	33.28	34.22	31.56 34.54	31.77 34.68
19	II I2	34.8 7	34.80	34.72	34.98	34.23 34.97	33.31	34.22 35.07	34.34 34.26	34.08
	I2 I3	34.78	34.79	33.74	34.22	34.14	35.07	34.10	34.70	34.52
	13 I4	34.82	34.88	34.30	34.67	34.65	35.39	34.68	34.35	34.37
	15	34.83	34.89	28.34	29.00	29.04	29.68	29.15	34.45	34.00
	16	34.83	34.83	25.47	26.75	26.54	27.54	25.98	34.43	34.00
	17	34.86	34.87	34.31	34.64	34.73	35.32	34.56	34.63	34.63
	I8	34.80	34.87	34.85	35.20	35.23	35.98	35.27	34.77	33.91
	I9	34.84	34.87	34.52	34.96	35.02	33.32	35.06	34.64	34.28
	I10	34.85	34.81	33.58	33.92	34.02	33.32	34.02	34.15	34.16
25	I1	41.66	41.77	40.65	41.07	40.64	39.56	40.96	41.69	40.85
	I2	41.73	41.75	41.83	42.19	41.87	42.92	42.13	41.16	40.92
	I3	41.76	41.72	40.03	40.61	40.25	41.68	40.42	41.54	41.47
	I4	41.80	41.81	40.99	41.56	41.22	42.46	41.69	41.75	41.29
	15	41.72	41.78	33.14	33.84	33.72	34.75	33.99	41.73	41.25
	I6	41.72	41.70	29.27	30.47	29.62	32.05	29.29	41.20	41.53
	I7	41.67	41.73	41.17	41.59	41.49	39.55	41.55	41.38	41.62
	I8 10	41.67	41.78	41.89	42.34	42.11	39.73	42.35	41.00	41.30
	I9	41.65	41.79	41.52	41.89	41.99	39.56	42.13	41.60	41.30
	I10	41.79	41.70	40.22	40.82	40.50	39.77	40.77	41.16	40.88

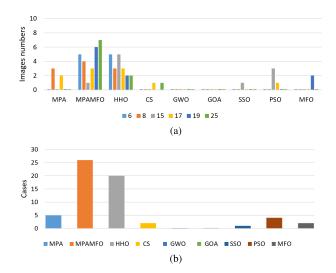


FIGURE 3. Summary of the PSNR results for the first experiment. (a) illustrates the performance of each algorithm at thresholds levels. (b) illustrates the numbers of the best cases obtained by each algorithm.

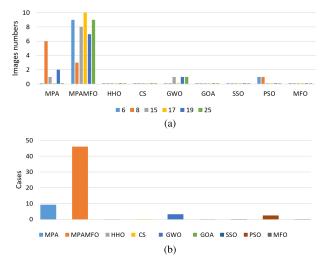


FIGURE 4. Summary of the SSIM results for the first experiment. (a) illustrates the performance of each algorithm at thresholds levels. (b) illustrates the numbers of the best cases obtained by each algorithm.

the GOA algorithm showed bad performance in all thresholds levels.

Table 4 records the fitness function values for all algorithms. In this measure, the MPAMFO achieved the best values in 5 images at level 6, followed by the GOA, MPA, and GWO, respectively. At levels 8, 17, and 19, the GOA achieved the highest values in 5, 5, and 4 images, respectively, followed by the MPAMFO. Whereas, the rest of the algorithms are ordered in the following sequence: MPA, GWO, CS, SSO, PSO, and MFO. At level 15, the MPAMFO reported the highest fitness values in 40% of the images followed by MPA and GWO, respectively. At level 25, The MPAMFO and MPA performed equally and obtained the best fitness values in 30% of the images for each one. Whereas, the SSO and GOA achieved the best fitness values in 20% of the images.

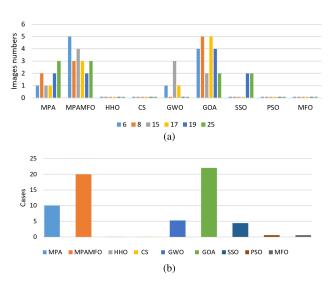


FIGURE 5. Summary of the fitness value results for the first experiment. (a) illustrates the performance of each algorithm at thresholds levels. (b) illustrates the numbers of the best cases obtained by each algorithm.

However, the GOA outperformed the proposed method in some images, and other measures showed the bad performance of the GOA. Therefore, the proposed method is considered the best method among the compared algorithms in image segmentation.

In general, the MPAMFO obtained the best PSNR values in 42% of the experiment, followed by the HHO with 32%. In terms of SSIM measure, the MPAMFO obtained the best values in 78% of the experiment, whereas, the MPA is ranked second with 15%. In the fitness values, the GOA showed the highest values in 35% of the experiment, followed by the MPAMFO with 32%. However, the performance of the GOA is the worst one in the other measures; it increases the fitness value without saving the qualities of the images.

Figure 6 depicts the threshold values obtained by each algorithm to segmented images at threshold level 19.

From the above discussion in Tables 2-4, it can be seen that the developed MPAMFO has a high ability to obtain the suitable threshold values that can be used to segment the images. However, other MH techniques used in this study fail to provide the optimal threshold values. The main reason is that most of them can stagnation at the local optimal point since they have high exploration ability with weak exploitation ability. Also, by analyzing the behavior of HHO, we see that it avoids this problem so it can provide results better than other MH algorithm since its exploitation is better than its exploration ability. Meanwhile, the proposed MPAMFO can balance between two these phases.

1) ROBUSTNESS OF THE DEVELOPED MPAMFO

To validate the robustness of MPAMFO, a set of experiments are performed using the same previous ten images under variants of three values of Gaussian noise (i.e., 0.03, 0.05, and 0.1); and at five images (I1, I3, I7, I8, and I9).

IEEE Access

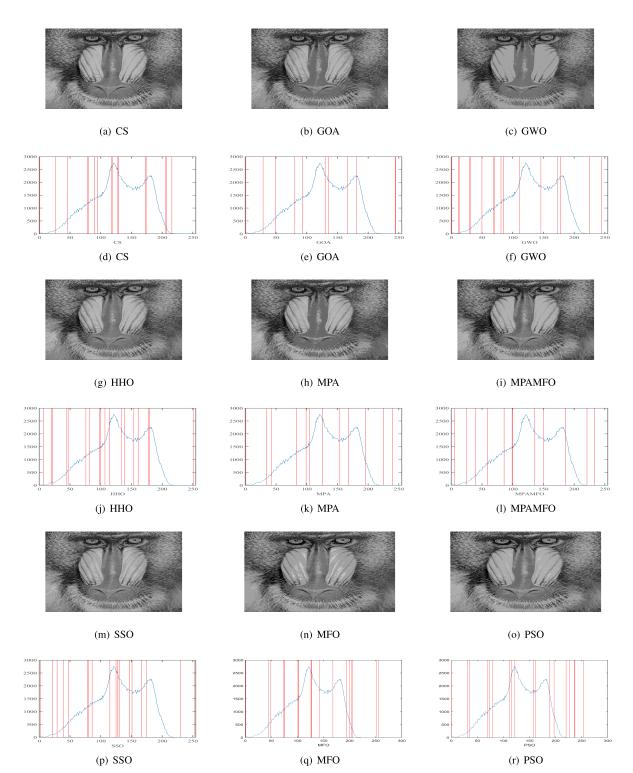


FIGURE 6. Threshold values obtained by each algorithm over the histogram of image 11.

Table 5 illustrates the average of SSIM, and PSNR values for the traditional MPA and proposed MPAMFO at threshold levels 6, 16, and 19. One can be seen from these results that the proposed MPAMFO provides better results than traditional MPA in most of the tested cases, especially with increasing the level of noise. In addition, it can be observed that the performance of

the two algorithms is decreased by increasing the noise level.

D. SECOND EXPERIMENT: REAL-WORLD APPLICATION OF COVID-19 CT IMAGES

To assess the quality of the segmentation method for COVID-19 CT images, a set of thirteen images is used

			0.	03			0.	05			0	.1	
Level (K)	Img]	PSNR		SSIM]	PSNR		SSIM]	PSNR		SSIM
		MPA	MPAMFO										
	I1	13.42	14.11	0.480	0.528	13.76	14.61	0.490	0.544	13.90	14.64	0.496	0.561
	13	9.32	10.19	0.295	0.297	9.47	10.20	0.362	0.350	9.72	10.28	0.414	0.401
6	I7	11.26	12.19	0.311	0.327	11.42	12.21	0.349	0.345	11.61	12.41	0.364	0.354
	18	11.76	14.30	0.461	0.465	13.30	14.43	0.489	0.505	13.45	14.70	0.520	0.559
	19	11.00	11.82	0.411	0.398	11.03	11.85	0.457	0.452	11.07	11.90	0.468	0.458
	I1	20.81	21.44	0.819	0.806	20.85	21.80	0.821	0.820	21.88	22.04	0.829	0.821
	13	16.18	16.28	0.669	0.650	16.37	16.74	0.671	0.720	16.54	16.97	0.741	0.793
15	I7	18.91	19.69	0.719	0.724	19.13	19.39	0.762	0.752	20.13	19.98	0.775	0.769
	18	20.90	20.76	0.785	0.801	21.13	21.58	0.807	0.818	21.43	21.81	0.833	0.842
	19	17.48	19.43	0.663	0.642	17.70	21.16	0.746	0.778	18.57	20.68	0.848	0.876
	I1	19.24	23.84	0.832	0.872	23.60	23.85	0.853	0.888	23.80	24.45	0.864	0.894
	13	18.18	21.70	0.721	0.748	19.23	22.35	0.766	0.847	20.29	22.75	0.827	0.874
19	I7	21.70	22.70	0.807	0.814	21.77	23.55	0.818	0.817	22.90	23.66	0.826	0.829
	18	20.03	23.69	0.827	0.823	22.91	23.72	0.851	0.859	23.96	23.53	0.869	0.879
	19	18.06	22.57	0.734	0.733	20.10	23.03	0.809	0.828	20.70	23.28	0.832	0.873

TABLE 5. Results of study the influence of noise on the quality of MPAMFO.

from [53] as in Figure 7. These images are collected from different datasets such as CheX aka CheXpert [94], OpenI [95], Google [96], PC aka PadChest [97], NIH aka Chest X-ray14 [98], and MIMIC-CXR [99]. The images are resized to 224×224 pixels [53]. Each of which is segmented using five thresholds's levels (i.e. 6, 8, 15, 17, and 19). The results are recorded in Tables 6-8 and 8-10.

Table 6 shows the results of the PSNR measure for the images. The results indicate that the MPAMFO obtained the best PSNR values in 11 images at the threshold level 6 whereas, the SSO and PSO got the best results in only one image for each one and they are ranked second and third, respectively. The HHO and CS obtained the fourth and fifth rank. The MPAMFO outperformed all other algorithms at level 8, and it obtained the best PSNR values in 69% of the images. The MFO is ranked second, followed by PSO, SSO, HHO, CS, GWO, and MPA, respectively. At levels 15 and 19, the MFO got the second rank after the MPAMFO then the CS came third. The rest of the algorithms were ordered as follows, SSO, HHO, PSO, MPA, then GWO, while the GOA showed the worst performance in all images. At level 17, the MPAMFO produced the best results in 9 images, whereas, the HHO and SSO performed equally with two images for each one. The CS was ranked fourth. While the MFO and MPA showed the same performance in most images. The GOA showed the worst performance in all images at all threshold levels. At all levels, the MPAMFO obtained the best values in 46 out of 65 cases (13 images and five threshold levels), as shown in Figure 8.

To analyze the SSIM results, Table 7 and Figure 9 report that the MPAMFO is ranked first at all thresholds levels. It recorded the best SSIM values in 13, 7, 5, 7, and 8 images at thresholds levels 6, 8, 15, 17, and 19, respectively, and achieved the best SSIM in 61% of all cases. The HHO is ranked second at levels 17 and 19. In these levels, the CS and GWO obtained the third and fourth rank, followed by SSO and PSO, respectively. At level 8, the HHO showed the best performance after the MPAMFO, followed by CS and

PSO, respectively. At level 15, the GWO produced the best SSIM values in three images, whereas, the HHO showed the best results in one image. The rest of the algorithms showed similar performance except GOA.

The fitness function value is also analyzed and the results are listed in Table 8 and Figure 10. These results show that the MPAMFO obtained the highest fitness values at levels 6, 15, and 17 while the GOA came second, followed by HHO, MPA, and GWO. At levels 8 and 19, the MPAMFO performed similarly as MPA; however, the average of the fitness values for the MPAMFO is lightly higher than those of the MPA. The GWO and HHO were ranked third and fourth, respectively, followed by GOA, CS, PSO, and MFO.

In general, the MPAMFO obtained the best PSNR values in 70% of the experiment, followed by the HHO with 9% of the images. In terms of SSIM measure, the MPAMFO obtained the best values in 61% of the images followed by the HHO and GWO with 12% and 8% of the images, respectively. The MPAMFO also achieved the highest values in the fitness values in 36% of all images, whereas, GOA obtained the second-best in 25% of the images followed by HHO.

Figure 12 depicts the threshold values obtained by each algorithm to segmented image I1 for COVID-19.

E. STATISTICAL RESULTS

In this section, we applied Friedman test to study the robustness of all algorithms in the experiments. The Friedman test statistically ranks the algorithms. In this rank, the highest value is the best. The results of first and second experiments are listed in Table 9 and 10, respectively.

From Table 9, the MPAMFO algorithm obtained the highest mean rank among the two measures (i.e., PSNR and SSIM), followed by the HHO, CS, SSO, PSO, MPA, and MFO, respectively, in the PSNR measure; and the HHO, MPA, CS, GWO, SSO, PSO, and MFO, respectively, in the SSIM measure. For the second experiment, Table 10 shows that the MPAMFO algorithm also has the highest rank in both measures, followed by SSO and HHO. Whereas, CS, MFO,

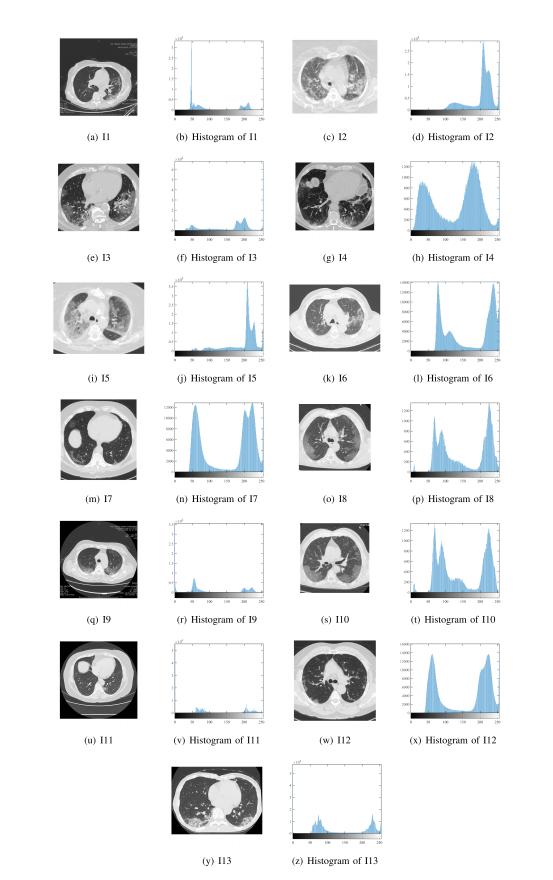


FIGURE 7. Histograms and original COVID-19 images.

TABLE 6. Results of the PSNR measure for all algorithms for the second experiment.

T 1 /TZ>	-	MD	MDALEC	IIIIO	66	<u>awa</u>	001	000	DCO	
Level (K)	Image Cov1	MPA 15.07	MPAMFO 15.13	HHO 15.97	CS 15.49	GWO 15.37	GOA 15.08	SSO 16.85	PSO 15.59	MFO 14.28
0	Cov1 Cov2	11.86	13.13 19.63	17.36	12.61	12.86	11.38	18.80	13.39	14.28
	Cov2 Cov3	11.98	17.06	14.51	12.01	12.80	12.78	16.56	13.04	14.39
	Cov4	12.80	17.81	15.37	13.27	12.05	12.78	16.93	14.39	14.25
	Cov4 Cov5	11.07	18.07	16.23	11.44	11.83	11.64	17.64	14.55	14.44
	Cov6	12.58	18.55	13.93	13.05	12.09	12.97	16.77	12.89	13.62
	Cov0 Cov7	15.48	16.33	15.49	15.97	15.49	15.78	15.76	13.83	13.71
	Cov8	10.28	13.83	10.32	10.72	10.44	9.58	11.39	13.41	13.18
	Cov9	15.65	17.50	15.56	16.27	15.65	15.50	15.99	14.95	14.77
	Cov10	10.25	13.35	10.17	10.27	10.90	9.67	11.20	13.94	13.37
	Cov10	15.25	16.51	15.36	15.54	15.44	15.78	15.33	14.74	14.47
	Cov12	15.18	16.55	15.20	15.72	14.53	15.47	15.33	13.60	13.57
	Cov12	15.55	15.97	15.64	15.87	15.39	15.08	15.62	13.20	13.36
8	Cov1	16.84	22.73	20.11	17.55	18.14	17.40	19.95	19.18	18.87
Ũ	Cov2	17.09	22.41	20.52	18.57	17.65	17.01	19.64	20.75	19.57
	Cov3	16.46	20.37	17.32	17.29	16.32	16.00	18.30	18.49	19.06
	Cov4	16.12	21.08	17.69	16.56	16.60	15.69	19.08	19.50	20.71
	Cov5	16.93	21.85	18.96	17.68	17.06	16.23	19.76	18.19	20.15
	Cov6	17.26	20.16	17.25	16.87	14.22	15.22	17.72	18.08	20.11
	Cov7	17.28	17.47	17.49	18.09	16.14	16.76	17.86	17.25	16.48
	Cov8	14.79	16.20	13.80	14.34	14.07	13.50	15.41	13.93	13.71
	Cov9	16.35	18.49	16.67	17.10	17.25	17.01	17.09	16.71	15.85
	Cov10	13.58	17.09	14.59	14.99	13.97	12.76	14.84	16.78	14.49
	Cov11	15.18	18.14	15.22	15.49	15.80	15.35	15.24	21.88	23.46
	Cov12	17.25	17.46	17.12	17.62	15.81	16.87	17.69	17.05	15.27
	Cov13	17.07	17.63	16.33	17.60	18.50	15.85	18.08	16.04	16.45
15	Cov1	24.06	24.24	24.02	24.39	24.10	23.29	23.89	22.54	21.80
	Cov2	22.72	24.49	26.47	24.86	22.52	21.47	24.99	22.00	23.38
	Cov3	20.58	23.77	21.89	21.16	20.86	18.87	23.28	21.21	22.75
	Cov4	20.54	23.68	21.87	21.36	21.49	18.89	22.16	22.95	22.72
	Cov5	21.70	24.27	24.89	23.63	21.68	20.15	23.31	22.81	23.36
	Cov6	18.81	23.76	18.91	20.19	17.34	16.24	21.93	21.92	22.00
	Cov7	18.19	21.20	18.59	19.72	17.87	16.61	18.73	18.17	17.25
	Cov8	19.00	21.44	19.32	20.74	19.77	17.88	20.39	16.16	17.92
	Cov9	22.05	22.40	22.53	20.84	21.92	22.03	22.36	20.13	20.04
	Cov10	19.81	22.39	19.29	20.78	19.40	18.98	21.01	17.68	18.42
	Cov11	22.19	21.36	21.67	21.60	19.22	20.89	21.40	20.06	20.82
	Cov12	18.09	20.20	18.72	19.49	17.54	16.68	18.82	21.53	22.54
	Cov13	20.00	19.90	20.61	20.41	19.50	19.83	21.93	18.44	17.48
17	Cov1	24.62	26.88	25.47	24.99	24.33	23.92	24.83	23.00	22.89
	Cov2	24.07	26.48	26.64	26.00	22.96	22.01	26.12	23.30	23.85
	Cov3	21.25	24.38	23.66	22.83	21.65	19.56	24.06	22.13	23.86
	Cov4	22.15	25.32	23.40	22.44	22.50	20.37	22.33	23.08	23.18
	Cov5	22.75	25.11	25.76	25.00	23.07	22.21	26.22	23.97	24.28
	Cov6	19.60	24.34	21.96	18.98	18.01	18.43	24.09	22.73	22.49
	Cov7	19.36	21.47	20.06	21.30	19.28	17.30	20.75	19.45	19.63
	Cov8	21.19	23.05	19.75	22.26	21.33	19.72	21.58	17.66	18.77
	Cov9	23.80	23.83	22.75	22.56	23.25	22.24	23.36	21.14	22.45
	Cov10	21.04	22.56	20.65	22.68	20.87	19.94	22.73	18.42	18.85
	Cov11	22.00	22.55	22.56	22.18	21.07	20.77	22.18	19.25	19.78
	Cov12	19.53	22.79	19.79	20.19	19.48	17.02	20.10	20.78	22.77
	Cov13	20.62	22.60	20.43	22.13	20.10	20.97	22.03	20.41	20.04
19	Cov1	25.50	27.49	26.58	26.80	25.15	24.45	26.10	26.06	26.18
	Cov2	24.75	28.42	27.29	26.39	24.12	23.50	26.37	26.47	26.78
	Cov3	22.04	26.68	24.75	23.43	23.22	20.28	25.16	26.11	26.30
	Cov4	23.60	26.08	24.95	23.64	24.05	21.48	25.06	25.86	25.31
	Cov5	23.95	26.39	26.41	26.26	23.66	22.92	26.36	25.24	25.82
	Cov6	20.51	26.35	22.26	19.89	19.30	18.72	25.59	24.15	26.46
	Cov7	20.77	23.33	20.97	19.68	20.00	18.23	22.05	20.67	22.56
	Cov8	22.59	24.20	22.52	24.07	22.28	21.18	23.18	20.14	20.85
	Cov9	23.82	25.94	24.17	25.02	24.36	23.25	23.54	22.94	22.13
	Cov10	22.42	24.70	21.33	24.00	21.99	21.85	23.52	20.30	20.41
	Cov11	23.05	23.82	23.30	22.45	22.89	21.59	22.79	20.78	20.24
	Cov12	20.35	23.95	20.29	20.06	21.74	17.65	22.20	20.82	23.06
	C0V12	20.55	25.75	20.27	20.00	21.74	17.05	22.20	20.82	25.00

TABLE 7. Results of the SSIM measure for all algorithms for the second experiment.

Level (K)	Image	MPA	MPAMFO	ННО	CS	GWO	GOA	SSO	PSO	MF
6	Cov1	0.399	0.496	0.473	0.447	0.447	0.481	0.415	0.483	0.45
	Cov2	0.653	0.757	0.745	0.669	0.670	0.629	0.647	0.716	0.72
	Cov3	0.510	0.665	0.618	0.551	0.508	0.529	0.509	0.502	0.45
	Cov4	0.243	0.585	0.453	0.259	0.249	0.243	0.243	0.348	0.36
	Cov5	0.661	0.764	0.732	0.663	0.686	0.652	0.657	0.746	0.74
	Cov6	0.529	0.551	0.499	0.536	0.485	0.545	0.530	0.477	0.48
	Cov7	0.443	0.468	0.440	0.453	0.454	0.441	0.455	0.364	0.35
	Cov8	0.405	0.518	0.409	0.433	0.414	0.339	0.444	0.426	0.50
	Cov9	0.558	0.579	0.571	0.571	0.575	0.567	0.555	0.480	0.47
	Cov10	0.383	0.525	0.374	0.412	0.441	0.333	0.437	0.505	0.50
	Cov11	0.527	0.556	0.530	0.528	0.528	0.537	0.523	0.543	0.51
	Cov12	0.428	0.484	0.431	0.438	0.421	0.429	0.442	0.356	0.35
	Cov13	0.464	0.527	0.462	0.472	0.434	0.461	0.483	0.454	0.49
8	Cov1	0.542	0.710	0.713	0.571	0.811	0.613	0.500	0.677	0.69
	Cov2	0.752	0.760	0.785	0.757	0.754	0.737	0.753	0.726	0.75
	Cov3	0.672	0.696	0.687	0.686	0.641	0.600	0.658	0.647	0.68
	Cov4	0.503	0.694	0.586	0.540	0.538	0.500	0.510	0.634	0.6
	Cov5	0.755	0.800	0.776	0.768	0.767	0.737	0.760	0.783	0.77
	Cov6	0.602	0.598	0.570	0.603	0.477	0.500	0.598	0.559	0.56
	Cov7	0.533	0.517	0.546	0.542	0.467	0.488	0.544	0.522	0.52
	Cov8	0.551	0.594	0.503	0.520	0.521	0.479	0.568	0.514	0.53
	Cov9	0.510	0.587	0.525	0.537	0.558	0.532	0.545	0.570	0.52
	Cov10	0.505	0.606	0.557	0.574	0.537	0.448	0.550	0.570	0.57
	Cov11	0.520	0.626	0.522	0.531	0.546	0.524	0.523	0.608	0.6
	Cov12	0.533	0.511	0.518	0.535	0.446	0.499	0.536	0.519	0.50
	Cov13	0.582	0.608	0.546	0.596	0.654	0.536	0.615	0.617	0.6
15	Cov1	0.863	0.846	0.855	0.856	0.866	0.836	0.865	0.817	0.8
	Cov2	0.814	0.832	0.842	0.818	0.818	0.779	0.807	0.797	0.73
	Cov3	0.692	0.782	0.737	0.720	0.702	0.643	0.709	0.696	0.72
	Cov4	0.763	0.816	0.806	0.785	0.814	0.691	0.773	0.748	0.7
	Cov5	0.817	0.819	0.814	0.828	0.829	0.777	0.820	0.803	0.79
	Cov6	0.625	0.720	0.646	0.675	0.574	0.523	0.587	0.740	0.7
	Cov7	0.554	0.679	0.580	0.621	0.528	0.483	0.572	0.646	0.6
	Cov8	0.674	0.737	0.679	0.712	0.714	0.622	0.707	0.721	0.7
	Cov9	0.739	0.747	0.751	0.709	0.756	0.731	0.741	0.765	0.7
	Cov10	0.724	0.761	0.707	0.737	0.735	0.697	0.751	0.720	0.72
	Cov11	0.771	0.749	0.752	0.762	0.698	0.741	0.750	0.726	0.70
	Cov12	0.553	0.629	0.586	0.618	0.514	0.485	0.575	0.627	0.6
	Cov13	0.707	0.685	0.720	0.715	0.707	0.732	0.742	0.726	0.72
17	Cov1	0.863	0.856	0.871	0.870	0.867	0.855	0.862	0.833	0.84
	Cov2	0.811	0.842	0.837	0.829	0.829	0.795	0.818	0.818	0.8
	Cov3	0.713	0.785	0.784	0.758	0.731	0.660	0.713	0.728	0.74
	Cov4	0.833	0.828	0.860	0.827	0.851	0.765	0.831	0.750	0.73
	Cov5	0.831	0.851	0.844	0.838	0.835	0.813	0.840	0.813	0.8
	Cov6	0.646	0.775	0.723	0.663	0.605	0.608	0.628	0.751	0.6
	Cov7	0.597	0.676	0.626	0.682	0.585	0.516	0.638	0.650	0.6
	Cov8	0.736	0.778	0.696	0.763	0.748	0.699	0.747	0.737	0.74
	Cov9	0.793	0.779	0.759	0.754	0.800	0.743	0.758	0.785	0.73
	Cov10	0.764	0.778	0.749	0.775	0.758	0.718	0.781	0.747	0.7
	Cov11	0.767	0.779	0.785	0.782	0.746	0.733	0.767	0.742	0.72
	Cov12	0.613	0.715	0.622	0.654	0.597	0.509	0.627	0.630	0.6
	Cov13	0.738	0.761	0.731	0.754	0.737	0.749	0.743	0.730	0.7
19	Cov1	0.870	0.880	0.889	0.894	0.885	0.859	0.872	0.849	0.8
	Cov2	0.820	0.837	0.845	0.844	0.835	0.800	0.830	0.805	0.8
	Cov3	0.734	0.820	0.797	0.770	0.761	0.683	0.740	0.808	0.73
	Cov4	0.872	0.894	0.897	0.857	0.886	0.802	0.856	0.856	0.8
	Cov5	0.835	0.858	0.843	0.857	0.840	0.817	0.838	0.839	0.8
	Cov6	0.674	0.803	0.728	0.692	0.639	0.625	0.648	0.770	0.7
	Cov7	0.644	0.743	0.659	0.629	0.610	0.558	0.691	0.708	0.74
	Cov8	0.774	0.806	0.773	0.796	0.772	0.743	0.777	0.823	0.78
	Cov9	0.802	0.832	0.803	0.809	0.828	0.768	0.768	0.812	0.80
	Cov10	0.779	0.817	0.764	0.806	0.771	0.768	0.800	0.786	0.76
	Cov11	0.790	0.814	0.793	0.785	0.789	0.757	0.775	0.758	0.74
	Cov12	0.646	0.753	0.644	0.661	0.673	0.548	0.700	0.722	0.73

 TABLE 8. Results of the fitness function value for all algorithms for the second experiment.

Level (K)	Image	MPA	MPAMFO	HHO	CS	GWO	GOA	SSO	PSO	MFO
6	Cov1	15.740	15.750	15.630	15.720	15.730	15.720	15.430	14.991	15.663
	Cov2	16.450	16.460	16.220	16.460	16.460	16.500	15.940	16.276	15.825
	Cov3 Cov4	16.760 18.020	16.780 18.020	16.570	16.760 18.060	16.760 18.080	16.770 18.090	16.350 17.560	16.777	16.156
	Cov4 Cov5	16.900	18.020 16.910	17.840 16.650	16.880	16.870	16.900	16.420	17.483 16.507	17.964 16.522
	Cov6	16.450	16.460	16.240	16.400	16.390	16.440	15.960	16.272	15.636
	Cov7	16.853	16.613	16.856	16.816	16.814	16.850	16.784	16.520	15.963
	Cov8	16.908	16.736	16.912	16.893	16.896	16.918	16.863	16.443	16.011
	Cov9	16.272	16.325	16.274	16.222	16.232	16.249	16.238	16.288	15.877
	Cov10	16.937	16.826	16.938	16.955	16.956	16.984	16.899	16.727	16.771
	Cov11	15.230	14.919	15.232	15.117	15.124	15.013	15.182	14.742	14.256
	Cov12	16.765	16.604	16.765	16.817	16.780	16.860	16.695	15.625 15.736	15.989
8	Cov13 Cov1	16.359 19.190	16.202 19.210	16.362 18.870	16.316 19.080	16.310 19.100	16.325 19.170	16.316 18.640	13.736	15.357 18.569
0	Cov1 Cov2	19.190	19.210	19.340	19.080	19.100	19.170	18.880	19.074	19.411
	Cov2 Cov3	20.000	20.020	19.760	19.930	19.960	20.030	19.220	19.987	19.593
	Cov4	21.565	21.550	21.290	21.470	21.520	21.560	20.830	21.497	20.759
	Cov5	20.230	20.240	19.850	20.160	20.170	20.280	19.440	19.536	19.564
	Cov6	19.670	19.700	19.430	19.610	19.580	19.670	18.930	18.966	18.797
	Cov7	20.369	20.251	20.372	20.288	20.299	20.362	20.288	19.764	20.062
	Cov8	20.318	20.211	20.317	20.246	20.273	20.313	20.167	19.812	19.675
	Cov9 Cov10	19.854 20.326	19.585	19.846 20.345	19.732 20.277	19.792 20.232	19.839 20.351	19.680 20.222	19.298 20.916	18.751 20.844
	Cov10 Cov11	20.320 18.599	20.995 18.172	20.343 18.592	18.452	20.232 18.477	20.331 18.464	18.359	18.110	17.300
	Cov11 Cov12	20.353	20.117	20.367	20.304	20.297	20.336	20.284	19.578	19.309
	Cov13	19.286	19.905	19.713	19.632	19.602	19.732	19.580	19.170	19.515
15	Cov1	28.560	28.590	27.770	28.220	28.340	28.580	27.200	28.004	28.169
	Cov2	28.390	28.490	26.590	27.780	27.620	28.260	25.820	28.468	27.929
	Cov3	29.700	29.730	28.950	29.270	29.330	29.890	28.140	28.776	28.859
	Cov4	30.800	30.800	30.070	30.480	30.470	30.930	29.430	30.403	29.859
	Cov5 Cov6	$28.990 \\ 28.400$	28.970 28.520	27.880 27.360	28.520 27.780	28.850 27.600	29.150 28.320	27.000 25.240	28.310 28.238	28.442 27.975
	Covo Cov7	29.490 29.490	28.405	27 .500 29.535	29.040	29.329	29.458	28.863	27.581	28.230
	Cov8	29.174	28.253	29.318	28.742	28.676	29.281	28.755	27.266	27.930
	Cov9	28.625	27.541	28.716	28.079	28.002	28.706	28.027	26.649	26.682
	Cov10	29.348	28.462	29.385	28.953	29.056	29.481	28.969	27.927	28.041
	Cov11	26.824	27.038	27.014	26.201	25.894	26.795	26.002	26.652	26.560
	Cov12	29.532	29.564	29.557	29.086	29.352	29.507	29.005	29.368	29.463
17	Cov13 Cov1	28.440 31.260	27.234 31.340	28.577 30.190	28.058 30.740	27.256 30.760	27.869 31.220	27.816 29.650	26.901 30.789	26.535 31.099
17	Cov1 Cov2	30.970	30.940	29.210	30.140	29.400	30.560	27.380	30.789	30.821
	Cov3	32.340	32.350	31.460	31.870	31.940	32.490	30.530	31.416	32.021
	Cov4	33.490	33.620	32.620	33.110	33.080	33.700	32.090	33.549	33.163
	Cov5	31.580	31.630	30.300	30.910	31.250	31.610	29.200	31.338	30.751
	Cov6	30.960	30.970	28.560	30.170	29.800	30.790	27.670	30.646	30.050
	Cov7	32.142	31.127	32.196	31.491	31.601	32.314	31.378	30.485	30.977
	Cov8 Cov9	31.786 31.022	30.751 29.705	31.810 31.189	31.212 30.479	31.124 30.198	31.775 30.883	31.266 30.526	30.182 29.510	30.384 29.694
	Cov9 Cov10	32.111	32.276	32.085	31.556	31.595	32.274	31.644	31.358	32.050
	Cov10	29.161	27.434	29.214	28.161	28.111	29.388	28.266	27.286	26.467
	Cov12	32.165	32.928	32.231	31.619	31.730	32.188	31.388	32.465	32.834
	Cov13	30.470	29.705	31.055	30.247	29.987	30.323	30.202	28.718	29.003
19	Cov1	33.780	33.790	32.740	33.320	33.360	33.730	32.190	33.361	32.859
	Cov2	33.250	33.470	31.500	32.230	31.660	33.050	29.080	32.650	33.393
	Cov3	34.900	34.860	33.670	34.330	34.410	35.050	32.490	34.330	34.556
	Cov4 Cov5	36.160	36.230 34.010	35.270 32.530	35.740	35.590	36.390 33.770	34.530	35.364	35.505
	Cov5 Cov6	34.050 33.280	34.010 33.340	32.550	33.300 32.370	33.320 31.830	32.550	31.200 28.810	33.482 32.717	33.470 33.064
	Covo Cov7	33.280 34.675	33.410	34.745	33.945	33.884	32.330 34.718	33.658	33.352	33.290
	Cov8	34.229	33.418	34.228	33.663	33.530	34.180	33.774	33.212	32.918
	Cov9	33.341	32.178	33.420	32.873	32.749	33.346	32.879	31.814	31.389
	Cov10	34.720	34.781	34.778	34.135	34.215	34.760	34.270	34.048	34.502
	Cov11	31.494	29.853	31.350	30.351	30.217	31.305	30.263	29.479	28.971
	Cov12	34.798	33.497	34.735	33.999	34.085	34.540	33.608	33.274	33.341
	Cov13	33.104	32.291	33.308	32.576	32.642	33.093	32.683	31.729	31.982

TABLE 9. Friedman test results for the first experiment.

		MPA	MPAMFO	HHO	CS	GWO	GOA	SSO	PSO	MFO
P	SNR	4.43	7.93	7.57	5.40	3.75	1.55	5.07	5.25	4.05
S	SIM	5.93	8.67	6.91	5.15	5.01	1.62	4.43	4.18	3.12

TABLE 10. Friedman test results for the second experiment.

	MPA	MPAMFO	HHO	CS	GWO	GOA	SSO	PSO	MFO
PSNR	3.76	8.38	5.75	5.70	3.71	2.38	6.64	4.32	4.35
SSIM	3.95	7.89	5.62	5.97	4.86	2.31	4.95	4.82	4.64

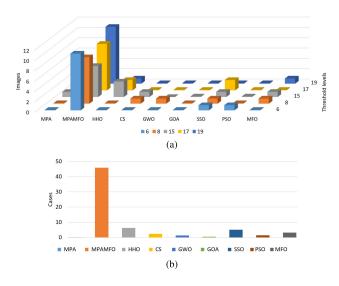
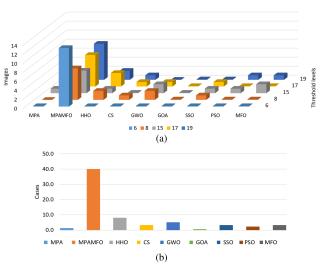


FIGURE 8. Summary of the PSNR results for the second experiment. (a) illustrates the performance of each algorithm at thresholds levels. (b) illustrates the numbers of the best cases obtained by each algorithm.

PSO, and MPA, and GWO allocate from the fourth to eighth ranks, respectively according to PSNR measure. Meanwhile, based on the SSIM value, the algorithms are ranked as in the following order, the CS, HHO, SSO, GWO, PSO, and MFO, respectively. From these two tables, it can see that GOA is the worst result according to the results of the experiments.



IEEEAccess

FIGURE 9. Summary of the SSIM results for the second experiment. (a) illustrates the performance of each algorithm at thresholds levels. (b) illustrates the numbers of the best cases obtained by each algorithm.

For further analysis, the Wilcoxon rank-sum test is used to check the statistical differences between the proposed method and the compared algorithms as in Tables 11 and 12. From Table 11, there are statistical differences between MPAMFO and MPA, GWO, GOA, and MFO based on the PSNR measure. Whereas, based on the SSIM measure, there are statistical differences between MPAMFO and GOA, SSO, PSO,

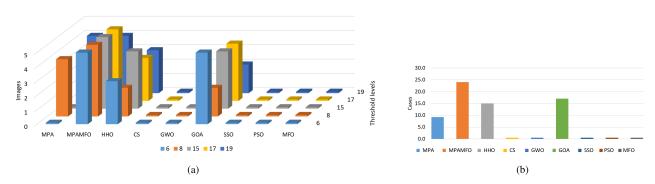


FIGURE 10. Summary of the fitness value results for the second experiment. (a) illustrates the performance of each algorithm at thresholds levels. (b) illustrates the numbers of the best cases obtained by each algorithm.

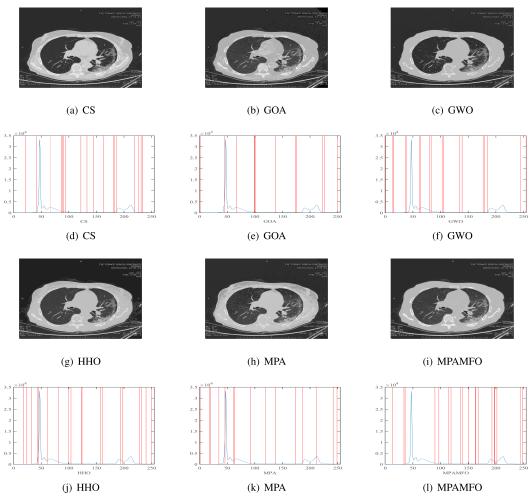


FIGURE 11. Segmented image and Threshold values obtained by each algorithm over the histogram of image I1 for CoVID-19.

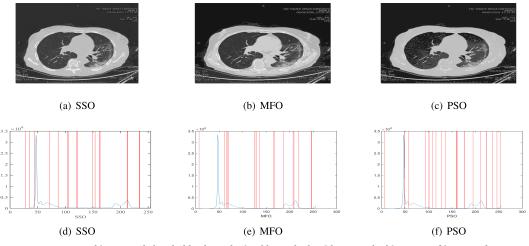


FIGURE 12. Segmented image and Threshold values obtained by each algorithm over the histogram of image 11 for CoVID-19.

and MFO. From Table 12, the MPAMFO showed statistical differences with all algorithms in both measure except the SSO for the PSNR, and HHO, CS, and PSO for the SSIM measure.

From the above two experimental series, it can be observed the superiority of the developed MPAMFO overall the compared algorithms. However, MPAMFO has some limitations that need to be improved; for example, complexity is higher

TABLE 11. Wilcoxon rank sum test results for the first experiment.

	MPA	HHO	CS	GWO	GOA	SSO	PSO	MFO
PSNR	0.049	0.783	0.214	0.035	0.000	0.177	0.218	0.048
SSIM	0.132	0.291	0.065	0.056	0.000	0.034	0.040	0.005

TABLE 12. Wilcoxon rank sum test results for the second experiment.

	MPA	HHO	CS	GWO	GOA	SSO	PSO	MFO
PSNR	0.000	0.016	0.008	0.000	0.000	0.108	0.001	0.006
SSIM	0.027	0.153	0.127	0.047	0.000	0.037	0.075	0.049

than the original MPA. Since it depends on MFO (during exploration phase) that using the sorting process during searching about the optimal threshold values, and this performed by using Quicksort algorithm. In addition, the initial population affects the quality of the final output, and for fixing this point, the chaotic maps or opposite-based learning techniques can be used.

VII. CONCLUSIONS

This paper presents an efficient multi-level thresholding (MLT) method for image segmentation including medical image segmentation, such as COVID-19 CT images. The proposed method uses a new swarm intelligence (SI) method, called marine predators algorithm (MPA). The MPA is a novel SI method, and therefore, for our knowledge, this study presents the first application of the MPA for image segmentation. The MPA is improved using the moth-?ame optimization (MFO) algorithm. The operators of the MFO are applied to improve the exploitation ability of the MPA by working as a local search of the MPA. The proposed MPAMFO was evaluated with different images, including CT images of new coronavirus (COVID-19), and it showed good and stable performances in all tests. More so, extensive comparisons were implemented to approve the superiority of the proposed MPAMFO over several existing methods, such as GWO, SSA, CS, PSO, and the originals MFO and MPA. Evaluation outcomes showed that the MPAMFO outperforms other methods in terms of SSIM, PSNR, and fitness value.

Overall, the proposed MPAMFO assesses its high performance; therefore, in the future, it could be improved to be applied in various optimization applications, such as time series forecasting, data clustering, cloud computing, machine job scheduling, and others. Also, for COVID-19 CT image segmentation, there are several algorithms can be considered in the future work, such as improving MPAMFO as a multi-objective image segmentation method, using recent new MH technique such as Henry Gas optimization algorithm, and Slime mould algorithm.

REFERENCES

 P. Huang, T. Liu, L. Huang, H. Liu, M. Lei, W. Xu, X. Hu, J. Chen, and B. Liu, "Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion," *Radiology*, vol. 295, no. 1, pp. 22–23, Apr. 2020.

- [2] H. Zhu, H. He, J. Xu, Q. Fang, and W. Wang, "Medical image segmentation using fruit fly optimization and density peaks clustering," *Comput. Math. Methods Med.*, vol. 2018, pp. 1–11, Dec. 2018.
- [3] S. Amerifar, A. T. Targhi, and M. M. Dehshibi, "Iris the picture of health: Towards medical diagnosis of diseases based on iris pattern," in *Proc. 10th Int. Conf. Digit. Inf. Manage. (ICDIM)*, Oct. 2015, pp. 120–123.
- [4] A. K. Bhandari, A. Kumar, and G. K. Singh, "Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms," *Expert Syst. Appl.*, vol. 42, no. 22, pp. 8707–8730, Dec. 2015.
- [5] X. Cao, S. Gao, L. Chen, and Y. Wang, "Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance," *Multimedia Tools Appl.*, vol. 79, pp. 9177–9192, Jan. 2019.
- [6] D. Oliva, S. Nag, M. A. Elaziz, U. Sarkar, and S. Hinojosa, "Multilevel thresholding by fuzzy type II sets using evolutionary algorithms," *Swarm Evol. Comput.*, vol. 51, Dec. 2019, Art. no. 100591.
- [7] M. A. Elaziz, D. Oliva, A. A. Ewees, and S. Xiong, "Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer," *Expert Syst. Appl.*, vol. 125, pp. 112–129, Jul. 2019.
- [8] A. Oliver, X. Munoz, J. Batlle, L. Pacheco, and J. Freixenet, "Improving clustering algorithms for image segmentation using contour and region information," in *Proc. IEEE Int. Conf. Automat., Qual. Test., Robot.*, May 2006, pp. 315–320.
- [9] C. Qi, "Maximum entropy for image segmentation based on an adaptive particle swarm optimization," *Appl. Math. Inf. Sci.*, vol. 8, no. 6, p. 3129, 2014.
- [10] M. Chelva and A. Samal, "A comprehensive study of edge detection techniques in image processing applications using particle swarm optimization algorithm," *Indian J. Sci. Res*, vol. 14, no. 2, pp. 220–228, 2017.
- [11] A. Alihodzic and M. Tuba, "Improved bat algorithm applied to multilevel image thresholding," *Sci. World J.*, vol. 2014, pp. 1–16, Aug. 2014.
- [12] M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation," *J. Electron. Imag.*, vol. 13, no. 1, pp. 146–166, 2004.
- [13] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, "A new method for graylevel picture thresholding using the entropy of the histogram," *Comput. Vis., Graph., Image Process.*, vol. 29, no. 3, pp. 273–285, Mar. 1985.
- [14] N. Otsu, "A threshold selection method from gray-level histograms," *IEEE Trans. Syst., Man, Cybern.*, vol. SMC-9, no. 1, pp. 62–66, Jan. 1979.
- [15] A. K. M. Khairuzzaman and S. Chaudhury, "Moth-flame optimization algorithm based multilevel thresholding for image segmentation," *Int. J. Appl. Metaheuristic Comput.*, vol. 8, no. 4, pp. 58–83, Oct. 2017.
- [16] S. Samantaa, N. Dey, P. Das, S. Acharjee, and S. S. Chaudhuri, "Multilevel threshold based gray scale image segmentation using cuckoo search," 2013, arXiv:1307.0277. [Online]. Available: http://arxiv.org/abs/ 1307.0277
- [17] V. Rajinikanth, N. S. M. Raja, and S. C. Satapathy, "Robust color image multi-thresholding using between-class variance and cuckoo search algorithm," in *Information Systems Design and Intelligent Applications*. New Delhi, India: Springer, 2016, pp. 379–386.
- [18] H. S. Abdullah and A. H. Jasim, "Improved ant colony optimization for document image segmentation," *Int. J. Comput. Sci. Inf. Secur.*, vol. 14, no. 11, p. 775, 2016.
- [19] S. C. Satapathy, N. S. M. Raja, V. Rajinikanth, A. S. Ashour, and N. Dey, "Multi-level image thresholding using Otsu and chaotic bat algorithm," *Neural Comput. Appl.*, vol. 29, no. 12, pp. 1285–1307, Jun. 2018.

- [20] A. Mostafa, A. E. Hassanien, M. Houseni, and H. Hefny, "Liver segmentation in MRI images based on whale optimization algorithm," *Multimedia Tools Appl.*, vol. 76, no. 23, pp. 24931–24954, Dec. 2017.
- [21] N. Dey, J. Chaki, L. Moraru, S. Fong, and X.-S. Yang, "Firefly algorithm and its variants in digital image processing: A comprehensive review," in *Applications of Firefly Algorithm and its Variants*. Singapore: Springer, 2020, pp. 1–28.
- [22] V. Rajinikanth and M. S. Couceiro, "RGB histogram based color image segmentation using firefly algorithm," *Procedia Comput. Sci.*, vol. 46, pp. 1449–1457, Jan. 2015.
- [23] X.-S. Yang, "Firefly algorithm and its variants in digital image processing," in Applications of Firefly Algorithm and its Variants: Case Studies and New Developments. Singapore: Springer, 2020.
- [24] N. Raja, V. Rajinikanth, and K. Latha, "Otsu based optimal multilevel image thresholding using firefly algorithm," *Model. Simul. Eng.*, vol. 2014, p. 37, Jun. 2014.
- [25] D. Oliva, M. S. R. Martins, V. Osuna-Enciso, and E. F. de Morais, "Combining information from thresholding techniques through an evolutionary Bayesian network algorithm," *Appl. Soft Comput.*, vol. 90, May 2020, Art. no. 106147.
- [26] E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva, A. A. Heidari, D. Zaldivar, M. Pérez-Cisneros, and L. K. Foong, "An efficient Harris hawks-inspired image segmentation method," *Expert Syst. Appl.*, vol. 155, Oct. 2020, Art. no. 113428.
- [27] R. Boudjemaa, D. Oliva, and F. Ouaar, "Fractional Lévy flight bat algorithm for global optimisation," *Int. J. Bio-Inspired Comput.*, vol. 15, no. 2, pp. 100–112, 2020.
- [28] E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva, S. Hinojosa, and M. Pérez-Cisneros, "Multilevel segmentation for automatic detection of malignant masses in digital mammograms based on threshold comparison," in *Proc. IEEE Latin Amer. Conf. Comput. Intell. (LA-CCI)*, Nov. 2019, pp. 1–6.
- [29] E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva, and M. Pérez-Cisneros, "Automatic detection and classification of abnormal tissues on digital mammograms based on a bag-of-visual-words approach," *Proc. SPIE*, vol. 11314, Mar. 2020, Art. no. 1131424.
- [30] E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Zaldivar, and C. E. Galván-Tejada, "Automatic detection of malignant masses in digital mammograms based on a MCET-HHO approach," in *Applications* of Hybrid Metaheuristic Algorithms for Image Processing. Cham, Switzerland: Springer, 2020, pp. 351–374.
- [31] M. A. Elaziz, S. Bhattacharyya, and S. Lu, "Swarm selection method for multilevel thresholding image segmentation," *Expert Syst. Appl.*, vol. 138, Dec. 2019, Art. no. 112818.
- [32] M. A. El Aziz, A. A. Ewees, and A. E. Hassanien, "Hybrid swarms optimization based image segmentation," in *Hybrid Soft Computing for Image Segmentation*. Cham, Switzerland: Springer, 2016, pp. 1–21.
- [33] V. Rajinikanth, N. S. M. Raja, and K. Latha, "Optimal multilevel image thresholding: An analysis with PSO and BFO algorithms," *Aust. J. Basic Appl. Sci.*, vol. 8, no. 9, pp. 443–454, 2014.
- [34] Y. Li, L. Jiao, R. Shang, and R. Stolkin, "Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation," *Inf. Sci.*, vol. 294, pp. 408–422, Feb. 2015.
- [35] A. Chatterjee, P. Siarry, A. Nakib, and R. Blanc, "An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy," *Eng. Appl. Artif. Intell.*, vol. 25, no. 8, pp. 1698–1709, Dec. 2012.
- [36] Q. Abbas, M. T. A. Khan, A. Farooq, and M. E. Celebi, "Segmentation of lungs in HRCT scan images using particle swarm optimization," *Int. J. Innov. Comput. Inf. Control*, vol. 9, no. 5, pp. 2155–2165, 2013.
- [37] R. Panda, S. Agrawal, L. Samantaray, and A. Abraham, "An evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniques," *Appl. Soft Comput.*, vol. 50, pp. 94–108, Jan. 2017.
- [38] A. Ladgham, F. Hamdaoui, A. Sakly, and A. Mtibaa, "Fast MR brain image segmentation based on modified shuffled frog leaping algorithm," *Signal, Image Video Process.*, vol. 9, no. 5, pp. 1113–1120, Jul. 2015.
- [39] N. S. M. Raja, S. L. Fernandes, N. Dey, S. C. Satapathy, and V. Rajinikanth, "Contrast enhanced medical MRI evaluation using tsallis entropy and region growing segmentation," *J. Ambient Intell. Hum. Comput.*, pp. 1–12, May 2018, doi: 10.1007/s12652-018-0854-8.

- [40] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, "Marine predators algorithm: A nature-inspired Metaheuristic," *Expert Syst. Appl.*, vol. 152, Aug. 2020, Art. no. 113377.
- [41] D. Yousri, T. S. Babu, E. Beshr, M. B. Eteiba, and D. Allam, "A robust strategy based on marine predators algorithm for large scale photovoltaic array reconfiguration to mitigate the partial shading effect on the performance of PV system," *IEEE Access*, vol. 8, pp. 112407–112426, 2020.
- [42] M. Abdel-Basset, R. Mohamed, M. Elhoseny, R. K. Chakrabortty, and M. Ryan, "A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy," *IEEE Access*, vol. 8, pp. 79521–79540, 2020.
- [43] S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm," *Knowl.-Based Syst.*, vol. 89, pp. 228–249, Nov. 2015.
- [44] D. K. Kotary and S. J. Nanda, "Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization," *Eng. Appl. Artif. Intell.*, vol. 87, Jan. 2020, Art. no. 103342.
- [45] A. A. Ewees, A. T. Sahlol, and M. A. Amasha, "A bio-inspired moth-flame optimization algorithm for arabic handwritten letter recognition," in *Proc. Int. Conf. Control, Artif. Intell., Robot. Optim. (ICCAIRO)*, May 2017, pp. 154–159.
- [46] M. A. A. Al-qaness, A. A. Ewees, H. Fan, and M. A. El Aziz, "Optimization method for forecasting confirmed cases of COVID-19 in China," *J. Clin. Med.*, vol. 9, no. 3, p. 674, Mar. 2020.
- [47] M. A. Elaziz, A. A. Ewees, R. A. Ibrahim, and S. Lu, "Opposition-based moth-flame optimization improved by differential evolution for feature selection," *Math. Comput. Simul.*, vol. 168, pp. 48–75, Feb. 2020.
- [48] H. Zhao, H. Zhao, and S. Guo, "Using GM (1,1) optimized by MFO with rolling mechanism to forecast the electricity consumption of inner mongolia," *Appl. Sci.*, vol. 6, no. 1, p. 20, Jan. 2016.
 [49] V. Savsani and M. A. Tawhid, "Non-dominated sorting moth flame
- [49] V. Savsani and M. A. Tawhid, "Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems," *Eng. Appl. Artif. Intell.*, vol. 63, pp. 20–32, Aug. 2017.
- [50] S. K. Reddy, L. K. Panwar, B. K. Panigrahi, and R. Kumar, "Solution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): A flame selection based computational technique," *J. Comput. Sci.*, vol. 25, pp. 298–317, Mar. 2018.
- [51] S. H. H. Mehne and S. Mirjalili, Moth-Flameoptimization Algorithm: Theory, Literature Review, and Application in Optimal Nonlinear Feedback Control Design (Studies in Computational Intelligence), vol. 811. Cham, Switzerland: Springer, Jan. 2020, pp. 143–166, doi: 10.1007/978-3-030-12127-3_9.
- [52] D. Allam, D. A. Yousri, and M. B. Eteiba, "Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm," *Energy Convers. Manage.*, vol. 123, pp. 535–548, Sep. 2016.
- [53] J. P. Cohen, P. Morrison, and L. Dao, "COVID-19 image data collection," 2020, arXiv:2003.11597. [Online]. Available: http://arxiv.org/abs/ 2003.11597 and https://github.com/ieee8023/covid-chestxray-dataset
- [54] S. J. Mousavirad and H. Ebrahimpour-Komleh, "Human mental searchbased multilevel thresholding for image segmentation," *Appl. Soft Comput.*, Apr. 2019, Art. no. 105427, doi: 10.1016/j.asoc.2019.04.002.
- [55] S. J. Mousavirad and H. Ebrahimpour-Komleh, "Multilevel image thresholding using entropy of histogram and recently developed populationbased Metaheuristic algorithms," *Evol. Intell.*, vol. 10, nos. 1–2, pp. 45–75, Jul. 2017.
- [56] S. J. Mousavirad, G. Schaefer, and H. Ebrahimpour-Komleh, "A benchmark of population-based Metaheuristic algorithms for high-dimensional multi-level image thresholding," in *Proc. IEEE Congr. Evol. Comput.* (*CEC*), Jun. 2019, pp. 2394–2401.
- [57] R. Monisha, R. Mrinalini, M. N. Britto, R. Ramakrishnan, and V. Rajinikanth, "Social group optimization and Shannon's function-based RGB image multi-level thresholding," in *Smart Intelligent Computing and Applications*. Singapore: Springer, 2019, pp. 123–132.
- [58] A. K. Bhandari, "A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation," *Neural Comput. Appl.*, vol. 32, pp. 4583–4613, Oct. 2018.
- [59] Y. Huang and S. Wang, "Multilevel thresholding methods for image segmentation with Otsu based on QPSO," in *Proc. Congr. Image Signal Process.*, vol. 3, 2008, pp. 701–705.
- [60] J. Qin, C. Wang, and G. Qin, "A multilevel image thresholding method based on subspace elimination optimization," *Math. Problems Eng.*, vol. 2019, pp. 1–11, Jun. 2019.
- [61] M. A. E. Aziz, A. A. Ewees, and A. E. Hassanien, "Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation," *Expert Syst. Appl.*, vol. 83, pp. 242–256, Oct. 2017.

- [62] T. R. Farshi, "A multilevel image thresholding using the animal migration optimization algorithm," *Iran J. Comput. Sci.*, vol. 2, no. 1, pp. 9–22, Mar. 2019.
- [63] A. K. Bhandari, N. Singh, and S. Shubham, "An efficient optimal multilevel image thresholding with electromagnetism-like mechanism," *Multimedia Tools Appl.*, vol. 78, no. 24, pp. 35733–35788, Dec. 2019.
- [64] M. Tuba, N. Bacanin, and A. Alinodzic, "Multilevel image thresholding by fireworks algorithm," in *Proc. 25th Int. Conf. Radioelektronika* (*RADIOELEKTRONIKA*), Apr. 2015, pp. 326–330.
- [65] M. Ali, C. W. Ahn, and M. Pant, "Multi-level image thresholding by synergetic differential evolution," *Appl. Soft Comput.*, vol. 17, pp. 1–11, Apr. 2014.
- [66] H. Shah-Hosseini, "Multilevel thresholding for image segmentation using the galaxy-based search algorithm," *Int. J. Intell. Syst. Appl.*, vol. 5, no. 11, p. 19, 2013.
- [67] A. A. Ewees, M. A. Elaziz, M. A. A. Al-Qaness, H. A. Khalil, and S. Kim, "Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation," *IEEE Access*, vol. 8, pp. 26304–26315, 2020.
- [68] H. S. N. Alwerfali, M. A. Elaziz, M. A. A. Al-Qaness, A. A. Abbasi, S. Lu, F. Liu, and L. Li, "A multilevel image thresholding based on hybrid salp swarm algorithm and fuzzy entropy," *IEEE Access*, vol. 7, pp. 181405–181422, 2019.
- [69] G. Sun, A. Zhang, Y. Yao, and Z. Wang, "A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding," *Appl. Soft Comput.*, vol. 46, pp. 703–730, Sep. 2016.
- [70] H. S. N. Alwerfali, M. A. A. Al-qaness, M. A. Elaziz, A. A. Ewees, D. Oliva, and S. Lu, "Multi-level image thresholding based on modified spherical search optimizer and fuzzy entropy," *Entropy*, vol. 22, no. 3, p. 328, Mar. 2020.
- [71] Y. Li, X. Bai, L. Jiao, and Y. Xue, "Partitioned-cooperative quantumbehaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation," *Appl. Soft Comput.*, vol. 56, pp. 345–356, Jul. 2017.
- [72] R. Wang, Y. Zhou, C. Zhao, and H. Wu, "A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation," *Bio-Med. Mater. Eng.*, vol. 26, no. s1, pp. S1345–S1351, Aug. 2015.
- [73] E. Tuba, M. Tuba, and D. Simian, "Support vector machine optimized by firefly algorithm for emphysema classification in lung tissue CT images," in *Proc. 25th Int. Conf. Central Eur. Comput. Graph., Vis. Comput. Vis.* Pilsen, Czechia: Univ. of West Bohemia, May/Jun. 2017, pp. 159–166.
- [74] H. M. Ahmed, B. A. B. Youssef, A. S. Elkorany, A. A. Saleeb, and F. A. El-Samie, "Hybrid gray wolf optimizer-artificial neural network classification approach for magnetic resonance brain images," *Appl. Opt.*, vol. 57, no. 7, pp. B25–B31, 2018.
- [75] N. S. M. Raja, P. V. Lakshmi, and K. P. Gunasekaran, "Firefly algorithmassisted segmentation of brain regions using tsallis entropy and Markov random field," in *Innovations in Electronics and Communication Engineering*. Singapore: Springer, 2018, pp. 229–237.
- [76] L.-K. Huang and M.-J.-J. Wang, "Image thresholding by minimizing the measures of fuzziness," *Pattern Recognit.*, vol. 28, no. 1, pp. 41–51, Jan. 1995.
- [77] X. Li, Z. Zhao, and H. D. Cheng, "Fuzzy entropy threshold approach to breast cancer detection," *Inf. Sci.-Appl.*, vol. 4, no. 1, pp. 49–56, Jul. 1995.
- [78] H. D. Cheng, Y.-H. Chen, and Y. Sun, "A novel fuzzy entropy approach to image enhancement and thresholding," *Signal Process.*, vol. 75, no. 3, pp. 277–301, Jun. 1999.
- [79] S. Song, H. Jia, and J. Ma, "A chaotic electromagnetic field optimization algorithm based on fuzzy entropy for multilevel thresholding color image segmentation," *Entropy*, vol. 21, no. 4, p. 398, Apr. 2019.
- [80] E. Sert and D. Avci, "Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches," *Biomed. Signal Process. Control*, vol. 47, pp. 276–287, Jan. 2019.
- [81] T. X. Pham, P. Siarry, and H. Oulhadj, "A multi-objective optimization approach for brain MRI segmentation using fuzzy entropy clustering and region-based active contour methods," *Magn. Reson. Imag.*, vol. 61, pp. 41–65, Sep. 2019.
- [82] D. Oliva, M. A. Elaziz, and S. Hinojosa, "Fuzzy entropy approaches for image segmentation," in *Metaheuristic Algorithms for Image Segmentation: Theory and Applications.* Cham, Switzerland: Springer, 2019, pp. 141–147.
- [83] M. A. Elaziz and S. Lu, "Many-objectives multilevel thresholding image segmentation using knee evolutionary algorithm," *Expert Syst. Appl.*, vol. 125, pp. 305–316, Jul. 2019.

- [84] S. Mirjalili, "Moth-flame optimization algorithm: A novel natureinspired heuristic paradigm," *Knowl.-Based Syst.*, vol. 89, pp. 228–249, Nov. 2015, doi: 10.1016/j.knosys.2015.07.006.
- [85] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, "Harris hawks optimization: Algorithm and applications," *Future Gener*. *Comput. Syst.*, vol. 97, pp. 849–872, Aug. 2019.
- [86] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in Proc. World Congr. Nature Biologically Inspired Comput. (NaBIC), Dec. 2009, pp. 210–214.
- [87] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.
- [88] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah, "Grasshopper optimization algorithm for multi-objective optimization problems," *Int. J. Speech Technol.*, vol. 48, no. 4, pp. 805–820, Apr. 2018.
- [89] J. Zhao, D. Tang, Z. Liu, Y. Cai, and S. Dong, "Spherical search optimizer: A simple yet efficient meta-heuristic approach," *Neural Comput. Appl.*, vol. 32, pp. 9777–9808, Oct. 2019.
- [90] J. Kennedy and R. Eberhart, "Particle swarm optimization," in *Proc. Int. Conf. Neural Netw. (ICNN)*, vol. 4, 1995, pp. 1942–1948.
- [91] P.-Y. Yin, "Multilevel minimum cross entropy threshold selection based on particle swarm optimization," *Appl. Math. Comput.*, vol. 184, pp. 503–892, Jan. 2007.
- [92] P. Roy, S. Dutta, N. Dey, G. Dey, S. Chakraborty, and R. Ray, "Adaptive thresholding: A comparative study," in *Proc. Int. Conf. Control, Instrum., Commun. Comput. Technol. (ICCICCT)*, Jul. 2014, pp. 1182–1186.
- [93] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error measurement to structural similarity," *IEEE Trans. Image Process.*, vol. 13, no. 1, pp. 600–612, Apr. 2004.
- [94] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, J. Seekins, D. A. Mong, S. S. Halabi, J. K. Sandberg, R. Jones, D. B. Larson, C. P. Langlotz, B. N. Patel, M. P. Lungren, and A. Y. Ng, "Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison," in *Proc. AAAI Conf. Artif. Intell.*, vol. 33, 2019, pp. 590–597.
- [95] D. Demner-Fushman, M. D. Kohli, M. B. Rosenman, S. E. Shooshan, L. Rodriguez, S. Antani, G. R. Thoma, and C. J. McDonald, "Preparing a collection of radiology examinations for distribution and retrieval," *J. Amer. Med. Inform. Assoc.*, vol. 23, no. 2, pp. 304–310, Mar. 2016.
- [96] A. Majkowska, S. Mittal, D. F. Steiner, J. J. Reicher, S. M. McKinney, G. E. Duggan, K. Eswaran, P.-H. C. Chen, Y. Liu, S. R. Kalidindi, A. Ding, G. S. Corrado, D. Tse, and S. Shetty, "Chest radiograph interpretation with deep learning models: Assessment with radiologist-adjudicated reference standards and population-adjusted evaluation," *Radiology*, vol. 294, no. 2, pp. 421–431, Feb. 2020.
- [97] A. Bustos, A. Pertusa, J.-M. Salinas, and M. de la Iglesia-Vayá, "Pad-Chest: A large chest X-ray image dataset with multi-label annotated reports," 2019, arXiv:1901.07441. [Online]. Available: http://arxiv.org/ abs/1901.07441
- [98] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, "ChestXray8: Hospital-scale chest X-ray database and benchmarks on weaklysupervised classification and localization of common thorax diseases," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jul. 2017, pp. 2097–2106.
- [99] A. E. W. Johnson, T. J. Pollard, N. R. Greenbaum, M. P. Lungren, C.-Y. Deng, Y. Peng, Z. Lu, R. G. Mark, S. J. Berkowitz, and S. Horng, "MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs," 2019, arXiv:1901.07042. [Online]. Available: http://arxiv.org/abs/1901.07042

MOHAMED ABD ELAZIZ received the B.S. and M.S. degrees in computer science and the Ph.D. degree in mathematics and computer science from Zagazig University, Egypt, in 2008, 2011, and 2014, respectively. From 2008 to 2011, he was an Assistant Lecturer with the Department of Computer Science. He is currently an Associate Professor with Zagazig University. He has authored or coauthored more than 100 articles. His research interests include metaheuristic technique, cloud

computing machine learning, signal processing, image processing, and evolutionary algorithms.

AHMED A. EWEES received the Ph.D. degree from Damietta University, Egypt, in 2012. He currently works as an Associate Professor of computer science with Damietta University. He co-supervises master's and Ph.D. students, as well as leading and supervising various graduation projects. He has many scientific research papers published in international journals and conferences. His research interests include machine learning, artificial intelligence, text mining, natu-

ral language processing, image processing, and metaheuristic optimization techniques.

DALIA YOUSRI received the B.Tech. degree (Hons.) and the M.Tech. degree in electric power and machine from the Faculty of Engineering, Fayoum University, Egypt, in 2011 and 2016, respectively. She is currently pursuing the Ph.D. degree. She is also working as an Assistant Lecturer. She has published refereed manuscripts in the fields of optimization algorithms, photovoltaic applications, chaotic systems, and fractional calculus with some topics. She has more than 300 cita-

tions. She has been acting as a Reviewer of various reputed journals, such as IEEE Access, IET, *Elsevier Energy Conversion and Management, Applied Soft Computing*, and the *International Journal of Electronics and Communications*. Her research interests include the modifications of optimization algorithms, modeling, and implementation of solar PV systems, chaotic systems, and fractional calculus topics.

HUSEIN S. NAJI ALWERFALI received the B.S. degree from Elmergib University, in 2011, and the M.S. degree from the Huazhong University of Science and Technology, Wuhan, China, in 2016, majored in big data and image analysis, where he is currently pursuing the Ph.D. degree with the School of Computer Science. His current research interests include image segmentation and image processing.

QAMAR A. AWAD received the B.S. and M.S. degrees in computer science from Zagazig University, Egypt. She is currently an Assistant Lecturer with Zagazig University. Her current research interests include image segmentation and image processing.

SONGFENG LU was born in 1968. He received the Ph.D. degree in computer software and theory from the Huazhong University of Science and Technology. He is currently a Professor with the Huazhong University of Science and Technology. His research interests include artificial intelligence, quantum computing, and information security.

MOHAMMED A. A. AL-QANESS received the B.S., M.S., and Ph.D. degrees from the Wuhan University of Technology, in 2010, 2014, and 2017, respectively, all in information and communication engineering. He is currently an Assistant Professor with the School of Computer Science, Wuhan University, Wuhan, China. He is also a Postdoctoral Follower with the State Key Laboratory for Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University.

His current research interests include wireless sensing, mobile computing, machine learning, signal and image processing, and natural language processing.