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(R, S)- and (S)-ketamine have made significant progress in the treatment of
treatment-resistant depression (TRD) and have become a research focus in
recent years. However, they both have risks of psychomimetic effects,
dissociative effects, and abuse liability, which limit their clinical use. Recent
preclinical and clinical studies have shown that (R)-ketamine has a more
efficient and lasting antidepressant effect with fewer side effects compared to
(R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled
trial found that although (R)-ketamine has a lower incidence of adverse reactions
in adult TRD treatment, its antidepressant efficacy is not superior to the placebo
group, indicating its antidepressant advantage still needs further verification and
clarification. Moreover, an increasing body of research suggests that (R)-
ketamine might also have significant applications in the prevention and
treatment of medical fields or diseases such as cognitive disorders,
perioperative anesthesia, ischemic stroke, Parkinson’s disease, multiple
sclerosis, osteoporosis, substance use disorders, inflammatory diseases,
COVID-19, and organophosphate poisoning. This article briefly reviews the
mechanism of action and research on antidepressants related to (R)-ketamine,
fully revealing its application potential and development prospects, and providing
some references and assistance for subsequent expanded research.
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1 Introduction

In 1964, the short-acting anesthetic, analgesic, sympathomimetic, and dissociative
effects of (R, S)-ketamine (ketamine) were first discovered in human trials (Domino et al.,
1965). This was followed by immeasurable contributions in numerous clinical practices and
scientific studies (Conahan, 1975; Domino, 2010; Li and Vlisides, 2016; Tyler et al., 2017).
With its combined analgesic and sedative effects, it had been widely used in surgical
anaesthesia and adjuvant analgesic therapy (Gao et al., 2016; Mion, 2017; Barrett et al.,
2020), and especially exerted unique advantages in the relief of various acute and chronic
pains (Schwenk et al., 2018; Barrett et al., 2020; Yang et al., 2020). However, due to its
psychedelic and psychomimetic effects, induction of postoperative nightmares, and abuse
liability, it experienced a period of decline in clinical use (Mion, 2017; Wei et al., 2020). In
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2000, Berman et al. (Berman et al., 2000) first showed in seven
patients with major depressive disorder (MDD) that (R, S)-ketamine
had rapid and sustainable antidepressant effects. This discovery was
considered a major breakthrough in over 50 years of depression
research and reignited the interest of the medical community in (R,
S)-ketamine and its two enantiomers [(S)-ketamine (esketamine)
and (R)-ketamine (arketamine)]. In 2019, the (S)-ketamine nasal
spray (Spravato), one of the enantiomers of (R, S)-ketamine, was
licensed in the US and Europe to treat treatment-resistant
depression (TRD). However, due to the need for further
validation of its efficacy, safety, and abuse risk, its widespread use
is limited, primarily distributed by a controlled systemwith clear risk
assessment and mitigation strategies (Turner, 2019; Jelen
et al., 2021).

Given the issues of (R, S)- and (S)-ketamine in the therapy of
depression, researchers began to focus on the other enantiomer of
ketamine, (R)-ketamine. They found that in contrast to (R, S)- and
(S)-ketamine, (R)-ketamine not only did not induce
psychomimetic-like symptoms but also produced a state of
relaxation and a feeling of wellbeing in healthy subjects
(Vollenweider et al., 1997), while at the same time having
potent, long-lasting antidepressant effects with fewer side effects
(Hashimoto, 2020; Wei et al., 2021b; Scotton et al., 2022). Chang
et al. (Chang et al., 2019) showed in their comparative study that in
the mouse chronic social defeat stress (CSDS) model, the
antidepressant potency of ketamine and its two enantiomers
was in the order of (R)-ketamine > (R, S)-ketamine > (S)-
ketamine. What’s more, in other animal models of depression,
researchers similarly confirmed that the antidepressant effect of
(R)-ketamine was observed to be more effective and prolonged
than that of (R, S)-ketamine and its other metabolites, such as (S)-
ketamine and (2R,6R)-hydroxynorketamine (HNK) (Zhang et al.,
2014; Yang et al., 2015; Fukumoto et al., 2017; Shirayama and
Hashimoto, 2018; Yang et al., 2018; Johnston et al., 2023).
However, a recent small-scale clinical trial indicated that the
effects of (R)-ketamine on TRD patients were not superior to
those of the placebo group (Leal et al., 2023). This contrasting
result has drawn widespread attention and interest in the industry,
and also raised questions about the actual antidepressant efficacy
of (R)-ketamine.

Moreover (Wang et al., 2022b), previously reviewed the
potential preventive and therapeutic effects of (R)-ketamine in
neurological conditions like Alzheimer’s disease (AD), other
dementias, Parkinson’s disease (PD), multiple sclerosis (MS), and
ischemic stroke. However, we have found through further reading of
the literature on (R)-ketamine that the extended research on (R)-
ketamine is not limited to depression and neurological diseases. It
also shows potential applications in perioperative anesthesia,
osteoporosis, substance use disorders, inflammatory diseases,
COVID-19, and organophosphate poisoning, and most of the
mechanisms of action are inextricably linked to their
antidepressant mechanisms. In this review, we briefly overview
the current status and mechanisms of action of (R)-ketamine in
antidepressant research. We also specifically review preclinical and
clinical studies comparing the efficacy of (R)-ketamine with other
antidepressants, metabolites, and placebos. This aims to resolve
controversies over the antidepressant efficacy of (R)-ketamine and
to guide further research in TRD and MDD patients. Additionally,

we have compiled the latest research on (R)-ketamine in non-
depressive treatments to guide its other potential applications
and future research directions.

2 Research on the antidepressant
effects of (R)-ketamine

2.1 Preclinical studies

Although the affinity of (R)-ketamine for the N-methyl-D-
aspartate receptor (NMDAR) (inhibition constant Ki =
1.40 μmol/L) is 4-fold lower than that of (S)-ketamine (Ki =
0.30 μmol/L), in rodents, (R)-ketamine exhibits a stronger and
more long-lasting antidepressant effect than (S)-ketamine, with
fewer psychomotor side effects and a lower risk of abuse (Zhang
et al., 2014; Yang et al., 2017a; Fukumoto et al., 2017; Chang et al.,
2019). Additionally, (R)-ketamine shows a stronger and longer-
lasting antidepressant effect than (R, S)-ketamine and the NMDAR
antagonist Lanicemine (Ebert et al., 1997; Yang et al., 2015; Zanos
et al., 2016; Yang et al., 2018). Moreover, this effect does not lead to a
significant rise in the medial prefrontal cortex’s (mPFC) dopamine
(DA) release (Ago et al., 2019; Zhou et al., 2021) reported that the
bilateral lateral habenular nucleus (LHb) administration of 25 μg/μL
(R)-ketamine and (2R, 6R)-HNK in rats (1 µL/side) did not
significantly produce an antidepressant-like effect at 1 or 24 h.
Thus, we can speculate that (R)-ketamine’s antidepressant effects
might not be related to mechanisms such as NMDAR blockade, LHb
neuronal firing, or DA receptor activation.

Further research indicated that α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor (AMPAR, one of the ionotropic
glutamate receptors) antagonist NBQX, the transforming growth
factor-β1 (TGF-β1) inhibitors RepSox and SB431542, the colony-
stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, and the γ-
aminobutyric acid type A receptor (GABAAR) agonist muscimol can
all inhibit the antidepressant effects of (R)-ketamine in animal
models of depression. This suggests that the activation of TGF-β1
signaling pathway, CSF1R, AMPAR, and the inhibition of GABAAR
are crucial for the rapid and long-lasting antidepressant effects of
(R)-ketamine (Yang et al., 2015; Yang et al., 2018; Zhang et al., 2020;
Rafało-Ulińska et al., 2022; Tang et al., 2023). Additionally, when
compared to (S)-ketamine, the sustained antidepressant effects of
(R)-ketamine may be primarily mediated through the nuclear
receptor binding protein 1 (NRBP1), which is found in the
microglial cells of the mPFC in adult mice. This is because (R)-
ketamine was reported to activate ERK in primary microglial cells,
thereby increasing the expression of NRBP1, brain-derived
neurotrophic factor (BDNF), and the phosphorylated cAMP
response element binding protein (p-CREB)/CREB, leading to its
long-lasting antidepressant effects (Yao et al., 2022).

On the other hand, (R)-ketamine, through the BDNF-
tropomyosin receptor kinase B (TrkB) signaling pathway, helps
to restore the decreased BDNF levels in the prefrontal cortex (PFC),
hippocampal CA3, and dentate gyrus (DG) regions of rodents (Yang
et al., 2015; Yang et al., 2018; Fujita et al., 2020; Tan et al., 2020;
Fujita et al., 2021; Lin et al., 2021; Qu et al., 2021). Simultaneously,
(R)-ketamine can elevate the release of 5-hydroxytryptamine (5-HT)
in the mPFC (Ago et al., 2019), and significantly inhibit the
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overexpression of the nuclear factor of activated T-cells 4 (NFATc4)
signaling gene in the PFC (Ma et al., 2022c). These findings indicate
that activating the BDNF-TrkB, NFATc4 signaling pathways, and
endogenous 5-HT receptors might be key mechanisms for the
antidepressant effects of (R)-ketamine.

In addition, activation of mammalian target of rapamycin
(mTOR) and extracellular signal-regulated kinase (ERK) has been
suggested as a hypothetical molecular mechanism for the
antidepressant effects of ketamine (Tang et al., 2015; Zanos et al.,
2018; Johnston et al., 2020). However, in CSDS model, (R)-ketamine
significantly reversed the reduction of ERK and upstream effector
mitogen-activated protein kinase/ERK kinase phosphorylation in
the PFC and hippocampal DG of susceptible mice after CSDS, but
not mTOR and its downstream effector ribosomal protein S6 kinase
phosphorylation in the PFC. Meanwhile, mTOR inhibitors
(rapamycin or AZD8055) also failed to block the antidepressant
effects of (R)-ketamine (Yang et al., 2018).

However, in a chronic unpredictable mild stress (CUMS) model,
(R)-ketamine was found to increase protein expression levels of
phosphorylated mTOR (pmTOR) in the mouse PFC, reversing the
CUMS-induced decrease in the pmTOR/mTOR ratio, but had no
effect on ERK phosphorylation levels (Rafało-Ulińska and Pałucha-
Poniewiera, 2022). These two diametrically opposed results may
stem from different models of depression, study methods, dosing
regimens, and timing of tissue collection, all of which may have a
differential impact on the test results, and more in-depth studies will
be needed in the future to arrive at more definitive answers.

Considering that the pathophysiology of MDD involves
microRNAs (miRNAs) as a critical regulatory component of
synaptic plasticity, this suggests that directly targeting miRNAs
might be a potential therapeutic strategy for MDD (Zhou L.
et al., 2021; Ma et al., 2022b) found that chronic restraint stress
(CRS)-exposed mice could have their body weight loss, forced
swimming test immobility duration, and sucrose preference
greatly improved by giving (R)-ketamine (10 mg/kg) as a
pretreatment 1 day prior to CRS. It also markedly attenuated the
expression of miR-132-5p and its associated regulatory genes
[BDNF, Methyl CpG binding protein 2 (MeCP2), Tgfb1, TGF-β
receptor II (Tgfbr2)] in the PFC of mice given CRS. Additionally, the
onset and progression of depression are closely associated with the
upregulation of endoplasmic reticulum stress-related genes (Nevell
et al., 2014). Therefore (Jóźwiak-Bębenista et al., 2022), compared
the effects of two enantiomers of ketamine on the expression of
endoplasmic reticulum stress-responsive genes in a human astrocyte
cell line. The study found that (R)-ketamine has a relatively mild
effect on the expression of genes in the unfolded protein response
(UPR) pathway (Jóźwiak-Bębenista et al., 2022). Furthermore, it can
also increase the expression of CREB3L1 in old astrocyte specifically
induced substance (OASIS) encoded in astrocytes and CREB3/
LUMAN mRNA in astrocytes, suggesting that the antidepressant
effects of (R)-ketamine may be related to members of the OASIS
family (Jóźwiak-Bębenista et al., 2022).

In addition, (R)-ketamine has anti-inflammatory effects (Zhang
et al., 2021a; Zhang et al., 2021b), and significantly ameliorates
increased spleen weight in CSDS-susceptible mice (Zhang et al.,
2020; Wei et al., 2021a), resulting in amelioration of increased
expression of the natural killer cell-activated receptor (NKG2D)
in the spleen (Zhang et al., 2021). It can also partially repairs

alterations in the gut microbiota that may be related to the onset
and progression of certain diseases (Yang et al., 2017b; Qu et al.,
2017; Wang et al., 2021; Wang et al., 2022a). This implies that the
antidepressant mechanism of (R)-ketamine might be related to the
brain-spleen axis and the microbiota-gut-brain axis (Getachew et al.,
2018; Huang et al., 2019; Wilkowska et al., 2021; Wei et al., 2022).

Although the indirect metabolite of (R)-ketamine, (2R, 6R)-
HNK, has shown rapid and/or long-lasting antidepressant effects in
various animal models of depression (Zanos et al., 2016; Chou et al.,
2018; Pham et al., 2018; Zanos et al., 2019a; Zanos et al., 2019b;
Fukumoto et al., 2019; Highland et al., 2019). Interestingly, some
researchers did not observe the sustained antidepressant effects of
(2R, 6R)-HNK similar to (R)-ketamine (Yang et al., 2017a; Zhang
et al., 2018a; Zhang et al., 2018c; Shirayama and Hashimoto, 2018;
Yamaguchi et al., 2018; Xiong et al., 2019). Instead, they believe that
(R)-ketamine produces its own antidepressant effects rather than
being a result of (2R, 6R)-HNK (Shirayama and Hashimoto, 2017;
Yamaguchi et al., 2018). A study pointed out that (2R, 6R)-HNK is
an inert molecule that differs from ketamine pharmacologically and
does not bind to specific high-affinity sites in the brain (Bonaventura
et al., 2022). Thus, it might produce antidepressant effects indirectly
by interacting with physical or chemical processes or by weakly
interacting with many different molecular targets in various
biological systems (Bonaventura et al., 2022). Therefore, the
precise antidepressant effects, mechanisms, and specific functions
of (2R, 6R)-HNK in the antidepressant effects of (R)-ketamine still
require further research for confirmation.

Although researchers have studied the antidepressant effects of
(R)-ketamine from multiple perspectives, its specific mechanisms of
action and exact target sites remain unclear. Clearly, these preclinical
research findings provide guidance for subsequent studies and also
offer theoretical support for clinical treatments and new drug
development. (Figure 1 briefly illustrates some of the
antidepressant mechanisms of (R)-ketamine).

2.2 Clinical research

Currently, all drug formulations of (R)-ketamine have not been
approved for the market, but researchers continue to explore its
antidepressant efficacy and side effects in clinical settings. In 2020,
(Leal et al., 2021), initially documented a 40-min single intravenous
infusion of (R)-ketamine (0.5 mg/kg) in 7 TRD subjects. By
comparing the Montgomery-Åsberg Depression Rating Scale
(MADRS) scores before and after the infusion, they observed that
(R)-ketamine produced a rapid and significant antidepressant effect
in TRD participants. This effect began to appear 60 min after the
infusion, and peaked at 240 min, and 43% of the participants still
showed antidepressant effects on the 7th day (Leal et al., 2021).
Regarding side effects, only a portion of the participants briefly
experienced mild blurred vision and dizziness, with no occurrences
of dissociation or hemodynamic changes, indicating good safety of
(R)-ketamine (Leal et al., 2021). Although this study yielded
surprising antidepressant efficacy at the time, certain limitations
in terms of the level of evidence for open-label design need to be
noted. Therefore, the team redesigned a randomized, double-blind,
crossover, pilot trial with a total sample size of 10 cases at 1-week
intervals and treated all TRD patients with 0.5 mg/kg (R)-ketamine
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and saline intravenously (Leal et al., 2023). The results showed an
improvement in depressive symptoms over time (2 weeks of
observational analysis) and a lower incidence of adverse events in
all TRD patients, but there was no significant difference between the
(R)-ketamine group and the saline control group (Leal et al., 2023).
This unexpected finding has once again raised questions about the
actual antidepressant efficacy of (R)-ketamine. Compared to a
previous open-label trial (Leal et al., 2021), subjects in this study
had a longer duration of depression and more psychiatric co-
morbidities such as obsessive-compulsive disorder, social anxiety
disorder and generalized anxiety disorder (Leal et al., 2023). Based
on the experience of previous ketamine antidepressant studies, some
patients need to receive two ormore doses of the medication in order
to produce a response (Phillips et al., 2019; Phillips et al., 2020).
Thus, a single (R)-ketamine administration may not achieve a level
of depression treatment that would normally require a cumulative
effect of the drug. In addition, a crossover design trial may not be
optimal given the current uncertainty about the ideal therapeutic

dose and frequency of administration of (R)-ketamine. Considering
that the assessment of depression efficacy is largely dependent on
MADRS scores, it is difficult to achieve significant between-group
differences with a small sample size of 10 patients. Thus, although
this small pilot study by LEAL et al. (Leal et al., 2023) failed to
demonstrate that a single intravenous infusion of (R)-ketamine was
superior to placebo in improving depression, the possibility that (R)-
ketamine has antidepressant effects in humans cannot be completely
discounted (R)-ketamine may provide positive clinical benefits, at
least in terms of medication safety and adverse effects. Recent studies
on (R)-ketamine in the treatment of bi-directional depression have
again demonstrated its favorable antidepressant effects (Bandeira
et al., 2023). In the study, six subjects with type I and type II bipolar
disorders were treated with (R)-ketamine intravenously on two
separate occasions (1 week apart) at doses of 0.5 mg/kg and
1 mg/kg, respectively). Before and after treatment, the subjects’
mean total MADRS scores were reduced by more than 50% and
little dissociative and manic symptoms were observed at both doses,

FIGURE 1
Mechanisms of (R)-ketamine antidepressant (partial) (R)-ketamine can activate ERK, thus increasing the expression of NRBP1, BDNF, and p-CREB in
primary microglial cells. At the same time, it promotes the release of glutamate into the synaptic cleft, enhances AMPAR flux, activates cellular signaling,
and increases the synaptic protein translation of AMPAR subunits and PSD-95, thereby promoting the formation of synapses and dendrites. Additionally,
(R)-ketamine can regulate TGF-β signaling in microglial cells, increase the release of BDNF, and subsequently promote binding with the TrkB
receptor. Through the MEK-ERK-CREB signaling pathway, it can enhance synaptogenesis and dendritogenesis, thus exhibiting its antidepressant effects.
Furthermore, the antidepressant mechanism of (R)-ketamine may also involve the microbiome-gut-brain axis, the brain-spleen axis pathway, and the
regulation of miR-132-5p and NFTc4. Abbreviations: AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; BDNF: brain-derived
neurotrophic factor; CREB: cyclic adenosine monophosphate response element-binding protein; ERK: extracellular signal-related kinase; MEK:
mitogen-activated protein kinase; MeCP2: Methyl CpG binding protein 2. NFATc4: nuclear factor of activated T cells 4; PSD-95: postsynaptic density
protein 95; TGF-β: transforming growth factor β; TrkB: tropomyosin receptor kinase B.
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demonstrating the feasibility and safety of (R)-ketamine for its rapid
antidepressant effect in the treatment of bipolar depression
(Bandeira et al., 2023). This further emphasizes that (R)-
ketamine, as a novel antidepressant with good development
potential, may in the future require larger sample sizes, more
flexibility in dosage and frequency of administration, as well as
more study design options (such as parallel subgroup design, etc.) to
gain insights into the actual antidepressant efficacy of (R)-ketamine
in clinical practice.

In 2018, China registered and approved a large randomized
controlled trial that will compare the safety and effectiveness of
(R)-ketamine with (S)-ketamine and (R, S)-ketamine in TRD
treatment (ChiCTR1800015879) (Chinese Clinical Trial Registry,
2019). The following year, China’s Hengrui Medicine Co., Ltd.
received approval from the National Medical Products
Administration and began clinical trials to treat refractory
depression with hydrochloride (R)-ketamine nasal spray
(Netease, 2019). On 19 February 2021, the American
company, Perception Neuroscience, released its Phase I
clinical research data on (R)-ketamine, showing that the dose
of (R)-ketamine (PCN-101) required to produce similar
perceptual changes is much higher than that of (S)-ketamine,
and the total dose below 150 mg is safe and well-tolerated (Cision
PR Newswire, 2021). At the same time, the company
subsequently initiated a Phase II confirmatory trial for TDR

patients, which will be a key study to evaluate the therapeutic
effects and related side effects of (R)-ketamine (Cision PR
Newswire, 2021).

Moreover, regarding the controversy in preclinical studies about
the antidepressant efficacy of (R)-ketamine’s direct metabolite (2R,
6R)-HNK, Grunebaum et al. (Grunebaum et al., 2019) found that
24 h after administering ketamine (0.5 mg/kg) intravenously to
MDD patients with significant suicidal ideation, the patients had
higher plasma concentrations of (2R, 6R)-HNK, but this was not
significantly related to clinical improvement in depression. The
result suggests that we should be more cautious when evaluating
the antidepressant effects of (2R, 6R)-HNK (Grunebaum et al.,
2019). Currently, a Phase I clinical trial for (2R, 6R)-HNK is
being conducted, which will provide an objective assessment of
the actual antidepressant effects of (2R, 6R)-HNK
(ClinicalTrials, 2021).

Taken together, although (R)-ketamine has shown its distinct
advantages in various animal models of depression, some clinical
studies still have doubts about its actual antidepressant effects. To
determine the specific antidepressant effects of (R)-ketamine and its
metabolites, and to assess the safety, drug resistance, side effects, and
abuse risks of medium-to long-term, high-dose use, we still need to
rely on large-sample, multi-center, blind clinical randomized
controlled trials, and compare various regimens in terms of
dosing, frequency, and timing.

FIGURE 2
Applications of (R)-ketamine in treatments other than depression. Besides its use in treating depression, (R)-ketamine also holds significant potential
in the prevention and treatment of perioperative anesthesia, ischemic stroke, cognitive disorders, Parkinson’s disease, multiple sclerosis, osteoporosis,
substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning.
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3 Research on non-depressive
conditions

3.1 Cognitive impairments

There is growing evidence that cognitive deficits, especially mild
cognitive deficits, are significantly present in childhood and
adolescence prior to psychotic episodes (Mollon and
Reichenberg, 2018). Cognitive deficits in the offspring of
maternal immune activation (MIA) model mice in adulthood can
be prevented by repeated intermittent use of (R)-ketamine
(10 mg/kg/day, twice a week for 4 weeks) during adolescent and
juvenile stages (P28-P56) and may reduce the risk of conversion to
psychosis in adulthood through activation of the BDNF-TrkB
signaling pathway in the brain (Tan et al., 2022). However, given
the multiple concerns regarding the use of ketamine and its
metabolites in adolescents, especially in infants and young
children, translating the results of this study into clinical practice
may take longer. In addition, long-term social isolation has been
shown to potentially lead to social cognitive deficits (Beutel et al.,
2017), and maintaining an individual’s social cognitive functioning
typically involves two brain regions, the insula and prefrontal cortex
(Menon and Uddin, 2010; Bicks et al., 2015). The unique activation
of the anterior insula cortex (aIC) induced by (R)-ketamine
(20 mg/kg, i.p.) restores the aIC function, which promotes the
formation of social memories and ameliorates social cognitive
impairment deficits in socially isolated reared mice (Yokoyama
et al., 2024).

On the other hand, ketamine and its enantiomers have been
shown to produce different effects on memory and cognitive
function in individuals at different doses (Gill et al., 2021;
Zhornitsky et al., 2022). It was shown that at a higher
subanesthetic dose (20 mg/kg), both ketamine and its two
enantiomers significantly impaired recognition memory in mice
in the novel object recognition (NOR) test. Whereas at a lower dose
(10 mg/kg), (S)-ketamine still produced significant impairment of
recognition memory, but not (R)-ketamine (Ide et al., 2019).
Furthermore, both ketamine and (S)-ketamine at doses of
10–20 mg/kg induced cognitive deficits in NMDA receptor
subunit GluN2D knockout (GluN2D-KO) mice, but the same
dose of (R)-ketamine did not inhibit cognitive functioning in
GluN2D-KO mice (Ide et al., 2019), suggesting that, in terms of
decreasing the impact on individual cognitive effects on memory,
(R)-ketamine appears to have an advantage over ketamine and (S)-
ketamine. In the future, there is still a need to further substantiate
and explore the quantitative effects of various ketamine compounds
on cognitive effects in human clinical studies.

The NMDAR antagonist phencyclidine (PCP) can cause
schizophrenia-like symptoms, including cognitive impairments, in
both healthy individuals and rodents. However, these cognitive
impairments can be alleviated by intermittent use of (R)-
ketamine twice a week for 2 weeks at a dose of 10 mg/kg/day
rather than (S)-ketamine (Tan et al., 2020). Further, using (R)-
ketamine in prevention and treatment can alleviate systemic and
neuroinflammation in mice induced by lipopolysaccharide (LPS)
and has preventive and therapeutic effects on delirium and cognitive
impairments (Zhang et al., 2021b). Additionally, metabotropic
glutamate receptors 2 and 3 (mGluR2/3) are considered potential

drug targets for treating various neurological diseases (Li et al.,
2022). Its selective inhibitors have demonstrated significant
antidepressant effects with reduced side effects in research in
preclinical and clinical settings (Jiang et al., 2023). Recent
research demonstrated that when the mGlu2/3 receptor
antagonist LY341495 was combined with (R)-ketamine, it not
only reduced the side effects of (R)-ketamine, but was also
effective against depression symptoms induced by CUMS.
Combined treatment reversed CUMS-induced PFC-dependent
memory deficits and restored the diminished strength of
longterm potentiation (LTP), exerting characteristic
antidepressant and cognitive-enhancing effects (Pałucha-
Poniewiera et al., 2023). In addition, (R)-ketamine (7.5, 15, and
30 mg/kg, i.p.) dose-dependently increased electroencephalogram
(EEG) theta power at 23 h of wakefulness and rapid eye movement
(REM) sleep, further supporting its potential use in cognitive
impairment (Pothorszki et al., 2024).

In addition, among healthy volunteers, (R)-ketamine has milder
impacts on psychopathology and neurocognition to (S)-ketamine,
which might produce a “negative experience”. Its potential
“protective effect” can partially offset the adverse effects of (S)-
ketamine (Passie et al., 2021). Patients who suffer from depression
often encounter intense psychological distress and may have a
distorted perception that “time is slowing or dilating”, and this
perception is positively correlated with the intensity of suicidal
ideation (Cáceda et al., 2020). However, unlike (S)-ketamine, the
antidepressant effects of (R)-ketamine are not based on the
underestimation of time or behavioral disorders, but might help
enhance cognitive abilities (Popik et al., 2022). Considering that
geriatric depression is closely related to all-cause dementia, AD, and
vascular dementia (Zhao et al., 2022), and that dementia patients
often exhibit anxiety, depression, and other neuropsychiatric
symptoms (NPS) significantly associated with their overall
cognitive abilities (Sabates et al., 2023), it is hypothesized that
(R)-ketamine may have a useful preventive or delaying effect on
the progression of late-life depression to dementia in patients.
Furthermore, it may also have beneficial effects on the emotional
and cognitive aspects of various types of dementia patients.

Therefore, synthesizing the above studies we can easily find that
(R)-ketamine has a weak inhibitory effect on cognition, may
improve cognitive dysfunction caused by other causes (such as
psychiatric disorders) to a certain extent (Hashimoto, 2023), and
may play a positive role in preventing or delaying the disease
progression of AD, and it is expected to be a potential
medication for preventing and treating cognitive deficits in
patients in the future.

3.2 Perioperative anesthesia

Perioperative anaesthesia is one of the most prominent areas of
clinical application of (R, S)-ketamine and (S)-ketamine in addition
to the treatment of depression (Barrett et al., 2020). However, the use
of (R)-ketamine in this area deserves deeper reflection, exploration
and research. Indeed, (R)-ketamine was used in clinical trials as early
as the 1980s, however, unfortunately, researchers at that time did not
observe that (R)-ketamine exhibited stronger effects than (R, S)- and
(S)-ketamine in hypnosis and analgesia (White et al., 1980; White
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et al., 1985). More recent studies, by administering an intravenous
infusion of ketamine to healthy subjects and subsequently
examining plasma metabolite concentrations at various time
points, found that the plasma metabolite (R)-ketamine did not
have any effect on the pain-relieving or dissociative effects of the
racemate ketamine (Olofsen et al., 2022). The researchers thus
hypothesized that (R)-ketamine may lack efficacy in pain relief
(Olofsen et al., 2022). Considering these limited studies, the
actual analgesic and sedative efficacy of (R)-ketamine has not
been evaluated and supported by strong evidence due to
limitations in trial design, original drug class, pain detection
methodology, and subject population, and thus further
confirmation from subsequent studies is still needed. In addition,
unlike (R, S)- and (S)-ketamine, which induce cardiovascular side
effects such as tachycardia, elevated blood pressure, and increased
cardiac output to varying degrees (Geisslinger et al., 1993; Canuso
et al., 2018; Zanos et al., 2018; Kamp et al., 2021), (R)- Ketamine is
essentially unaltered in hemodynamic parameters in healthy
subjects and is more advantageous in myocardial protection
(Geisslinger et al., 1993; Leal et al., 2021; Olofsen et al., 2022). In
studies of ketamine-related psychedelic side effects, elevated plasma
concentrations of (R)-ketamine in humans do not significantly alter
measured effects such as anti-injury perception and psychedelic
symptoms originally induced by (S)- and (R, S)-ketamine (Olofsen
et al., 2022). Instead, this may be synergistic with the nitric oxide
(NO) donor sodium nitroprusside in reducing (R, S)-ketamine-
induced psychedelic symptoms and internal and external perceptual
deficits (Jonkman et al., 2018).

In addition, (R)-ketamine has shown elimination of anxiety-
related behaviors and social interaction disorders induced by MIA
(de Oliveira et al., 2021), as well as the ability to rapidly improve
depression-like behaviors in rodents (Yang et al., 2018; Yao et al.,
2022). This suggests that (R)-ketamine may also have some potential
for development and application in alleviating preoperative anxiety
and postoperative postpartum depression. Given the lower affinity of
(R)-ketamine for the cytochrome P450 enzyme system, its drug
clearance is 50% lower than that of (S)-ketamine, resulting in a
longer retention and duration of action in the body (Kamp et al.,
2020). Once the positive clinical efficacy and indications regarding
the positive effects of (R)-ketamine in anxiolytic, antipsychedelic,
cardioprotective, neuroprotective, and PND prevention and
amelioration have been further demonstrated, its prolonged in
vivo retention properties will be more conducive to a lasting
perioperative effect.

3.3 Ischemic stroke

Ischemic stroke, also known as a stroke, is a frequent acute
cerebrovascular illness that has high rates of morbidity andmortality
(Collaborators, 2020). Very effective therapeutic drugs and methods
are still limited currently (Oh et al., 2022). Research has shown that
depression and anxiety were found to increase the risk of stroke
(Nakada et al., 2023). Conversely, a stroke could also trigger and
exacerbate symptoms of depression and anxiety (Chen et al., 2023).
Early identification and prevention of post-stroke depression (PSD)
can significantly improve patients’ depressive symptoms, promote
the recovery of physical and cognitive functions, and thereby

enhance the prognosis of stroke and the 10-year survival rate
(Robinson and Jorge, 2016; Sun et al., 2023). It was reported
that, in middle cerebral artery occlusion (MCAO) and chronic
CUMS model rats, a single local injection of ketamine in the
dentate gyrus region could enhance synaptic plasticity by
regulating NMDAR/calcium/calcium-calmodulin-dependent
protein kinase II (CaMKII), thereby producing significant and
long-lasting antidepressant effects (Abdoulaye et al., 2021).
Furthermore, ketamine, administered through intraperitoneal
injection 30 min after MCAO, demonstrated significant
reductions in infarct volume, edema ratio, and neurological
deficit, providing neuroprotection against ischemic brain injury
(Shu et al., 2012). Given that both ketamine and (S)-ketamine
have shown improvements and neuroprotective effects against
ischemic stroke (Shu et al., 2012; Zhang et al., 2023), (R)-
ketamine, compared to ketamine and (S)-ketamine, has a
stronger, more lasting antidepressant effect with fewer side effects
(Johnston et al., 2023). Thus (Xiong et al., 2020), further confirmed
that (R)-ketamine is also significant in ischemic stroke through
animal experiments. The study demonstrated that after
administering mice with (R)-ketamine (10 mg/kg) 30 min before
(or 1 h after) MCAO and 24 h post-MCAO, it was observed that (R)-
ketamine not only significantly alleviated brain injuries and
behavioral abnormalities caused by MCAO but also showed
stronger neuroprotective effects than (S)-Ketamine (Xiong et al.,
2020). This suggests that (R)-ketamine may develop into a novel
medication for the prevention and treatment of ischemic
stroke or PSD.

3.4 Multiple sclerosis

MS is an immune-mediated disease that leads to inflammatory
demyelinating lesions in the central nervous system, including the
spinal cord and brain (Wang et al., 2021). Affected by early
inflammation and delayed neurodegenerative lesions, the
disability rate is extremely high (Dobson and Giovannoni, 2019).
In MS patients, MDD and its severe symptoms are very common
and are closely related to a significant reduction in quality of life and
an increased risk of suicide (Jones et al., 2021). Wang et al.’s study
(Wang et al., 2021) showed that after continuously injecting (R)-
ketamine (10 mg/kg/day) into MS model mice for 15 days, the
weight loss of the mice was significantly alleviated. Furthermore,
unlike the saline, (R)-ketamine improved the clinical experimental
autoimmune encephalitis (EAE) score of mice, attenuated their
pathology scores, microglia activation, and the integrity of the
blood-brain barrier in the spinal cord. To sum up, these findings
indicate that there is a preventive effect of (R)-ketamine. On the
other hand, cuprizone (CPZ) is often used to establish a mouse
model that mimics the demyelination in MS patients due to its
demyelinating effect. A recent study found that after continuously
injecting mice with (R)-ketamine (10 mg/kg/day) twice a week for
6 weeks, it could improve the CPZ-induced corpus callosum
demyelination and microglial cell activation by activating TrkB,
promote myelin regeneration after discontinuing CPZ, and partially
restored the abnormal β-diversity of the gut microbiota in mice
treated with CPZ (Wang et al., 2022a). Therefore, these results imply
that (R)-ketamine may be a potential drug for the prevention and
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treatment of MS, and the gut-microbiota-microglial crosstalk may
significantly influence the effects of (R)-ketamine in the CPZ-treated
MS model mice.

3.5 Parkinson’s disease

PD is a chronic progressive neurodegenerative disorder that
primarily damages the neurons in the substantia nigra (SNr)
responsible for producing dopamine. Although most of the
current drugs can alleviate the motor symptoms of patients, they
cannot provide adequate neuroprotection or halt the disease’s
progression(Kieburtz et al., 2018). While the primary clinical
manifestation of PD is motor symptoms, non-motor symptoms
like anxiety and depression are also the most common and
significant psychiatric features of PD (Landau et al., 2016).
Moreover, these two symptoms often accompany PD patients
and may persist throughout the disease course (Zhang et al.,
2023). In addition, cognitive deficits related to learning and
memory abilities have been observed in more than 15% of PD
patients (Svenningsson et al., 2012). Subanesthetic doses (5, 10, and
15 mg/kg) of ketamine (i.p., once weekly) have all been shown to
reverse depressive-like behavior, short-term memory impairment,
pleasure deficits, and to improve gait deficits in rats with PD model
induced by bilateral lesions in SNc (Vecchia et al., 2018; Vecchia
et al., 2021). Meanwhile, ketamine at 8 mg/kg also exerted
neuroprotective effects through the activation of cellular
autophagy in PD model mice, which increased the number of
nigrostriatal dopaminergic neurons (Fan et al., 2017). However,
the potential risk of drug abuse and possible psychiatric side effects
of ketamine are issues that need to be focused on in its future clinical
treatment of PD. Fujita et al.’s study (Fujita et al., 2020) observed
whether the two enantiomers of ketamine had neuroprotective
effects in PD mice by 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine (MPTP)-induced PD mouse model. The
results showed that repeated intranasal administration of both
(R)- and (S)-ketamine could effectively reduce the decline of
dopamine transporter (DAT) in the striatum of mice caused by
MPTP, with (R)-ketamine showing a more pronounced effect than
(S)-ketamine (Fujita et al., 2020). Further, by continuously
administering (R)-ketamine intranasally, tyrosine hydroxylase
(TH) in the striatum and SNr decreased significantly as a result
of MPTP, while (S)-ketamine did not have this effect (Fujita et al.,
2020). In addition, BDNF provides trophic support through the
TrkB signaling pathway to increase dendritic and axonal branching
and synaptogenesis. This signaling pathway plays an important role
in the development of neurodegenerative diseases such as PD and
AD and psychiatric disorders such as depression, and has become a
key target for the development of related therapeutic drugs
(Hashimoto, 2010; 2013; Mitre et al., 2017). It has been shown
that (R)-ketamine normalizes the protein levels of BDNF and
p-TrkB in the PFC and hippocampal CA3 and DG regions of
mice modeled for depression, promotes synaptogenesis, and
ameliorates the reduction of dendritic spine densities in the
prelimbic (PrL), CA3 and DG of the mPFC (Yang et al., 2015).
Also, (R)-ketamine significantly attenuated MPTP-induced
reduction of DAT in mouse striatum, and these ameliorative
effects could be blocked by pretreatment with a TrkB antagonist

(ANA-12) (Fujita et al., 2020). It is speculated that (R)-ketamine
may play a neuroprotective role in counteracting MPTP-induced
neurotoxic effects in the PD brain by activating the BDNF-TrkB
signaling pathway in the striatum and SNr (Fujita et al., 2020),
suggesting that it may be a possible new drug in the future for the
prevention or treatment of neurodegenerative diseases such as
Parkinson’s disease.

3.6 Osteoporosis

Osteoporosis is characterized by reduced bone density,
deterioration of microarchitecture, and susceptibility to fragility
fractures (Lane et al., 2000). MDD is one of the important risk
factors for osteoporosis, and bone mineral density (BMD) is lower in
both adults and women when combined with depression. Therefore,
assessing and treating depression in these high-risk patients is
crucial for preventing osteoporosis (Yuan et al., 2021). It was
reported that the osteoprotegerin/nuclear factor κB receptor
activator/nuclear factor κB receptor activator ligand (OPG/
RANK/RANKL) signaling pathway and the osteopontin (OPN)
system had essential involvement in bone metabolic
abnormalities caused by MDD. Moreover, the antidepressant
effects of (R, S)-ketamine might be associated with the
improvement of inflammatory bone markers (Kadriu et al.,
2018). Further research found that instead of (S)-ketamine and
(2R, 6R)-HNK, (R)-ketamine dramatically reduced the elevated
plasma levels of RANKL and ameliorated the reduction in the
OPG/RANKL ratio in CSDS susceptible mice (Zhang et al.,
2018b; Xiong et al., 2019). Additionally, it could also significantly
increase the BMD of the femur in CSDS susceptible mice (Xiong
et al., 2019). In conclusion, it could be inferred that the OPG/
RANKL ratio in the blood of MDD patients might be a potential
biomarker for assessing the antidepressant effects of (R)- and (R, S)-
ketamine, which is crucial for diagnosis (Zhang et al., 2018b). Wan
et al. (Wan et al., 2022) reported that administering (R)-ketamine
(10 mg/kg/day, twice a week) continuously for 6 weeks could
dramatically enhance the cortical bone density and overall
density of ovariectomized (OVX) mice by modulating the anti-
inflammatory effects of gut microbiota. Similarly, one dosage of
10 mg/kg of (R)-ketamine improved anhedonia-like behavior, as
well as reduced femoral neck cortical and total BMD. Furthermore,
one dose of (R)-ketamine altered gut microbiota composition,
resulting in changes in thirteen metabolic pathways and six
metabolites in CSDS susceptible mice. The findings suggest that
by acting on the gut–microbiota–bone–brain axis, (R)-ketamine can
ameliorate the anhedonia-like phenotype and decrease BMD in
CSDS susceptible mice (Wan et al., 2023). As a result, (R)-
ketamine might emerge as a promising drug for treating reduced
bone density or osteoporosis in patients with depression in
the future.

3.7 Inflammatory disease

LPS can induce a phenotype similar to depression, causing
systemic inflammation and increased spleen weight, so it is often
used to establish inflammation-related rodent models of depression
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(Zhang et al., 2020). However, (R, S)-ketamine can attenuate or even
reverse the inflammatory response of BV2 microglial cells caused by
LPS (Lu et al., 2020) and reduce the levels of high mobility group
protein B1 (HMGB1) in plasma and vital organs such as the heart,
liver, and kidney, thereby increasing the 7-day survival rate of rats
with sepsis caused by cecal ligation and puncture (CLP) (Zhang
et al., 2014; Zhang et al., 2021a) further reported that the combined
use of (R)-ketamine at 15 mg/kg for prevention and treatment
significantly improved the 14-day survival rate of mice after CLP.
Additionally, it can also improve the reduction in rectal temperature
caused by sepsis 12 h after CLP, the elevated levels of plasma
inflammatory cytokines, and the increase in injury markers of
vital organs such as the heart, lungs, kidneys, and liver. All these
point to (R)-ketamine’s possible effectiveness in the prevention and
treatment of sepsis. On the other hand, pretreatment with 10 mg/kg
of (R)-ketamine (6 days before LPS injection) or combined with
treatments 24 h before and 10 min after LPS injection can effectively
prevent inflammation and significantly reduce spleen enlargement,
central and systemic inflammation, and cognitive dysfunction in
mice caused by LPS (Zhang et al., 2021b; Ma et al., 2022c).
Furthermore, pretreatment with (R)-ketamine at 10 mg/kg 6 days
before LPS administration can effectively correct the aberrant
expression of two miRNAs (miR-149 and miR-7688-5p) and
NFATc4 mRNA in the PFC of mice induced by LPS, and
partially restore the effects of LPS on the mouse gut microbiota,
thereby continuously preventing depressive-like behavior in
inflammation model mice (Ma et al., 2022a; Yao et al., 2022).
Additionally, depression might increase the risk of inflammatory
bowel disease, but using antidepressants to treat depression can
reduce this risk (Frolkis et al., 2019). Fujita et al. (Fujita et al., 2021)
found that repeated injection of (R)-ketamine (10 mg/kg/day, for
14 or 7 days) had positive effects on the ulcerative colitis (UC) model
induced by dextran sulfate sodium (DSS) through the activation of
TrkB. Together, these findings indicate that (R)-ketamine has
significant anti-inflammatory effects, especially when
administered multiple times or for prevention and treatment.
Thus, it holds promise as a new drug choice for treating
inflammatory diseases such as sepsis and UC.

3.8 COVID-19

Increasing evidence suggests that the novel coronavirus
infection may have adverse effects on the central nervous system
(CNS), causing psychiatric and neurological symptoms in those
infected (Chen et al., 2022). The endoplasmic reticulum chaperone
protein σ-1 receptor is crucial for the replication of the novel
coronavirus in host cells and is considered a potential therapeutic
target for COVID-19 patients (Gordon et al., 2020a; Gordon et al.,
2020b). Research has found that (R, S)-ketamine not only has
sedative, analgesic, and antidepressant effects but also has a
minimal impact on respiration. It can interact with σ receptors
(including σ-1 and σ-2) (Robson et al., 2012) and is believed to have
potential benefits for the treatment of COVID-19 patients (Ortoleva,
2020; Akinosoglou et al., 2021). Moreover, compared to two other
ketamine compounds, (R)-ketamine has a more pronounced effect
on the σ-1 receptor (Hashimoto, 2021). It has significant advantages
in improving inflammatory diseases of the central nervous system

(e.g., the spinal cord and brain) as well as lung inflammation (Zhang
et al., 2021a; Wang et al., 2021), and can help COVID-19 patients
feel more comfortable (Vollenweider et al., 1997). Therefore, (R)-
ketamine, with its dual anti-inflammatory and antidepressant
effects, may benefit such patients and holds promise as a new
therapeutic candidate for the future treatment of COVID-19.

3.9 Substance use disorder

The consumption of alcohol and illicit drugs represents a
growing and intricate worldwide public health issue. Even though
current behavioral interventions and drug treatments have achieved
some results, the outcomes for treating substance use disorders
(SUDs) are still not ideal (Jones et al., 2018). A systematic review
found that using (R, S)-ketamine to treat SUDs can reduce patients’
craving, motivation, and use of cocaine. It can also increase the
success rate of withdrawal from alcohol and opioids and maintain a
significant difference from the control group for up to 2 years after a
single dose (Jones et al., 2018; Witkin et al., 2020) demonstrated that
on its own, (R)-ketamine did not cause conditioned place preference
(CPP). In contrast, it blocked morphine-induced CPP and reduced
overall morphine withdrawal scores in rats following naloxone-
precipitation. Furthermore, it was reported that (R)-ketamine
(20 mg/kg) could significantly alleviate morphine withdrawal
signs, with its efficacy comparable to that of the commonly used
opioid withdrawal drug, Lofexidine (Witkin et al., 2020).
Pretreatment with (R)-ketamine at 3 mg/kg in rats showed a
significant inhibitory trend towards tolerance induced by ethanol
(ETOH), and it did not affect ETOH’s dependence or its effects
(Shafique et al., 2021). Therefore, it can be seen that (R)-ketamine
not only does not induce or exacerbate substance dependence but,
on the contrary, can play a potential therapeutic role in ethanol- and
opioid-induced SUDs. Future clinical randomized controlled trials
will further validate its effects in treating substance use disorders.

3.10 Organophosphate poisoning

The repeated use of various low-dose nerve agent substitutes and
organophosphate agents [diisopropyl fluorophosphate (DFP)] can
simulate the chronic depressive state of Gulf War Illness (GWI) in
rats, mainly manifesting as emotional and cognitive impairments
(Phillips and Deshpande, 2016). Using this model, researchers
administered a single dose of (R, S)-ketamine (10 mg/kg) to rats
3 months after exposure to DFP. The results showed that rats
displayed antidepressant effects in the forced swim test 1 h after
treatment, and this effect remained significant 24 h posttreatment
(Ribeiro et al., 2020). Meanwhile, the reduced expression of BDNF in
the rat brain due to DFP exposure did not show significant
improvement 1 h after (R, S)-ketamine treatment, but 24 h later,
the level of BDNF expression dramatically rose (Ribeiro et al., 2020).
Additionally, in another experiment by the team, they found that (R,
S)-ketamine and its two enantiomers could significantly ameliorate
the GWI characteristic behaviors of DFP rats (Zhu et al., 2020).
Furthermore, compared to (R, S)- and (S)-ketamine, the
ameliorative effects of (R)-ketamine were more powerful,
prolonged, and associated with less severe CNS adverse effects.
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(Zhu et al., 2020). Acetylcholinesterase inhibitors in
organophosphate pesticides can affect cholinergic signaling
modulation, and this cholinergic signal also involves the
regulation of glutamatergic transmission (Picciotto et al., 2012).
At sub-anesthetic doses, (R, S)-ketamine can elevate extracellular
glutamate levels and glutamate cycling in rats (Zanos and Gould,
2018). Considering that the NMDA receptor family includes seven
subunits: GluN1, GluN2A-D, and GluN3A-B, of which GluN2D is
only associated with cognitive impairments and motor sensitization,
as well as persistent antidepressant effects induced by (R)-ketamine,
it is essentially unrelated to the effects of (R, S)-ketamine and (S)-
ketamine (Ide et al., 2017; Ide and Ikeda, 2018; Ide et al., 2019).
Therefore, (R)-ketaminemay demonstrate its multifunctional effects
in GWI by modulating glutamatergic signal transmission and is
expected to become a novel choice for treating
organophosphate poisoning.

4 Side effects and abuse potential of
(R)-ketamine

(R)-ketamine demonstrates greater advantages in its
antidepressant effects compared to ketamine and (S)-ketamine
(Zhang et al., 2014; Fukumoto et al., 2017; Chang et al., 2019).
However, in recent years, researchers have remained concerned
about its potential for abuse and common side effects, such as
psychotomimetic and dissociative effects, that are shared by
ketamine and (S)-ketamine (Chang et al., 2019). studied the
effects of ketamine and its enantiomers on spontaneous
movement and pre-pulse inhibition (PPI) in the mouse CSDS
model, finding the strength of these effects was ranked as follow:
(S)-ketamine > (R, S)-ketamine > (R)-ketamine. At the same time,
(R)-ketamine does not induce anhedonia-like effects (Witkin et al.,
2020), nor does it cause acute hypermobility effects or significant
PPI deficits (Yang et al., 2015). When administered at a dose of
20 mg/kg, it not only does not induce CPP in mice or increase their
scores, but it also alleviates the dissociative and psychomimetic
effects caused by (R, S)- or (S)-ketamine (Yang et al., 2015; Chang
et al., 2019). In addition, in drug discrimination tests in rats, when
the aim was to induce cognitive deficits, (R)-ketamine showed a
specific discriminative stimulus effect, making drug discrimination
challenging. Compared to (S)- and (R, S)-ketamine, the cognitive
deficits it induced were milder (Popik et al., 2020). Nonetheless,
Zanos et al. (Zanos et al., 2019a) pointed out that some previous
conclusions might not be accurate, as many studies did not use a full
range of relevant subanesthetic doses for testing. Zanos and his
colleagues found that for CD-1 mice, the minimum effective
anesthetic dose of (R)-ketamine was 120 mg/kg, while the
subanesthetic dose was 90 mg/kg (Zanos et al., 2019a).
Simultaneously, when the dose exceeded 20 mg/kg, (R)-ketamine
caused motor discoordination in mice; at 40 mg/kg, it induced acute
hyperlocomotion in mice and produced evident CPP; and at
90 mg/kg, it interfered with PPI. In conclusion, these suggest that
(R)-ketamine may still induce various side effects and carry a risk of
abuse when used in higher-than-antidepressant dosages (Zanos
et al., 2019a).

Given that the addictive potential of ketamine and its
enantiomers in different individuals seems to be closely related to

its pharmacological properties and its impact on individual
psychology (Shim, 2022), Bonaventura et al. (Bonaventura et al.,
2021) analyzed the pharmacological and behavioral characteristics
of (R)-ketamine and (S)-ketamine, finding that the two differ in the
physiological mechanisms of drug dependence. Compared to (R)-
ketamine, (S)-ketamine had a greater affinity and potency for opioid
receptors (Bonaventura et al., 2021). However, repeated injections of
a subanesthetic dose of (S)-ketamine (20 mg/kg, IP) led to significant
psychomotor sensitization and CPP, while the behavioral changes
caused by the same dose of (R)-ketamine were milder or almost
negligible (Bonaventura et al., 2021). Thus, the pharmacological
effects of (S)-ketamine might be the primary factor in the human
abuse liability of racemic ketamine, whereas (R)-ketamine may not
influence it (Bonaventura et al., 2021).

Recently (Shim, 2022), expressed doubts about the conclusion
mentioned above, as a previous study reported that 10–30 mg/kg of
(R)-ketamine significantly enhanced spontaneous motor activity in
mice, surpassing the effects of 30 mg/kg of (S)-ketamine (Fukumoto
et al., 2017). However, in their study (Bonaventura et al., 2021),
administered acute injections of (R)-ketamine at 5, 10, and 20 mg/kg
to mice, observing increased motor activity only at the 20 mg/kg
dose, and its effect was weaker than that of (S)-ketamine at the same
dose. Therefore, subsequent studies should delve into factors such as
procedures, measurement timing, and species differences to explain
the discrepancies in the studies above (Shim, 2022). On the other
hand, in the mouse behavioral sensitization model, a mere 3-day
observation period might be insufficient to conclusively determine
whether low-dose repeated injections of (R)-ketamine lead to
psychomotor sensitization. Thus, a longer treatment duration and
lower doses should be used to accurately assess the effects of the two
enantiomers on mice (Shim, 2022).

In summary, most current preclinical studies and some clinical
research indicate that compared to (R, S)- and (S)-ketamine, (R)-
ketamine exhibits milder effects in terms of psychosis-like
symptoms, dissociative side effects, and abuse potential, with a
higher safety profile (Geisslinger et al., 1993; Hashimoto, 2020;
Wei et al., 2021b; Olofsen et al., 2022). However, when
considering the abuse potential and psychomotor sensitization,
the conclusions of existing research remain contentious. For this
reason, future studies should involve large-sample, randomized,
double-blind, placebo-controlled trials. These trials should
encompass subjective evaluations of drug craving or preference,
observations of behavioral sensitization from repeated dosing, and
long-term follow-ups of patients with TRD and potential co-morbid
SUDs to assess misuse; addiction; and psychomotor sensitization.

5 Conclusion

Due to the significant effects of ketamine in treating TRD,
researchers have intensively studied its antidepressant molecular
mechanisms over the past two decades, especially its two
enantiomers, metabolites, functional characteristics, and selective
targets. In spite of the fact that the etiology andmechanisms ofMDD
are not fully understood, the efficacy of antidepressants remains
variable due to the complexity of the disease and individual
differences in symptoms and gene expression profiles in patients
with MDD (Xia et al., 2022). Additionally, although ketamine’s and
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its enantiomers’ benefits for treating MDD are widely recognized, the
specific molecular mechanisms of its anti-depressant action remain
unclear (Heifets et al., 2021). Furthermore, existing studies show that
(R)-ketamine has significant advantages over other drugs in terms of
antidepressant efficacy and side effects, but knowledge of its
antidepressant mechanisms and targets of intervention remains
limited. In the future, we need to integrate chemistry, biology, and
genetic technology to further explore these mechanisms.

In addition to its unique role in the treatment of depression, (R)-
ketamine has been shown to have preventive, therapeutic and
developmental potential in cognitive disorders, perioperative
anaesthesia, cerebral ischaemic stroke, Parkinson’s disease, multiple
sclerosis, osteoporosis, substance use disorders, inflammatory disorders,
COVID-19, organophosphorus poisoning, etc. (Figure 2), and the
related mechanism of action may be more similar to the
antidepressant mechanism of (R)-ketamine. The mechanism of
action may be more similar to the antidepressant mechanism of
(R)-ketamine, while the mechanism other than the antidepressant
effect needs to be explored by further studies due to the limitation
of fewer studies at present. In addition, with further research, we believe
that (R)-ketamine will have more new indications and application
potentials to be explored by researchers around the world in the future.

Finally, despite the superior safety profile and fewer side effects
of (R)-ketamine compared to (S)- and (R, S)-ketamine, it is essential
to focus on potential negative issues arising from prolonged use or
excessive dosage. For example, it remains to be investigated whether
(R)-ketamine may present analogous problems to those associated
with (R, S)-ketamine, such as cognitive impairments induced by
neurotoxicity, diminished therapeutic efficacy due to drug tolerance,
drug addiction and abuse resulting from psychological dependence,
and the potential link between ulcerative cystitis and bladder cancer.
These questions need to be systematically addressed in subsequent
research studies.
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