European Journal of Organic Chemistry

Supporting Information

Synthesis of [60]Fullerene Hybrids Endowed with Steroids and Monosaccharides: Theoretical Underpinning as Promising anti-SARS-CoV-2 Agents

Reinier Lemos, Kamil Makowski, Luis Almagro, Blanca Tolón, Hortensia Rodríguez, M. Ángeles Herranz, Dolores Molero, Nazario Martín,* and Margarita Suárez*

Table of contents

	Page
1. Synthesis and Characterization	\$1
1.1. Synthesis of mono-carboxylic malonates 2a and 2b	S1
1.2. Synthesis of steroid-sugar conjugates	S3
1.3. Synthesis of Bingel–Hirsch hybrids	S6
2. Spectra of 3-[((22R, 25R)-spirost-5-en-3β-yl)oxy]-3-oxopropanoic acid (2a)	S12
Figure S1. ¹ H NMR spectrum of compound 2a	S12
Figure S2. ¹³ C{1H} NMR spectrum of compound 2a	S13
Figure S3. DEPT-135° spectrum of compound 2a	S13
Figure S4. FTIR spectrum of compound 2a	S14
Figure S5. MS (ESI) of compound 2a	S14
3.Spectra of 3-[(cholest-5-en-3β-yl)oxy]-3-oxopropanoic acid (2b)	S15
Figure S6. ¹ H NMR spectrum of compound 2b	S15
Figure S7. ¹³ C{1H} NMR spectrum of compound 2b	S16
Figure S8. DEPT-135° spectrum of compound 2b	S16
Figure S9. FTIR spectrum of compound 2b	S17
Figure S10. MS (ESI) of compound 2b	S17
4.Spectra of (22 <i>R</i> ,25 <i>R</i>)-spirost-5-en-3β-yl malonate-2',3',4',6'-tetra- <i>O</i> -acetyl-β-D-	S18
mannopyranoside (4a)	
Figure S11. ¹ H NMR spectrum of compound 4a	S18
Figure S12. ¹³ C{1H} NMR spectrum of compound 4a	S19
Figure S13. DEPT-135° spectrum of compound 4a	S19
Figure S14. FTIR spectrum of compound 4a	S20
Figure S15. HRMS (MALDI-TOF) of compound 4a	S20
5. Spectra of 6'-(cholest-5-en-3β-yl malonate)-1',2':3',4'-di- <i>O</i> -isopropylidene-α-D- galactopyranosida (4b)	S21
Figure S16 ⁻¹ H NMR spectrum of compound 4b	\$21
Figure S17 $^{13}C\{1H\}$ NMR spectrum of compound 4b	\$22
Figure S18 DEPT-135° spectrum of compound 4b	\$22
Figure S10: EEE 1 155 spectrum of compound 4b	\$23
Figure S10, 1 The spectrum of compound 10 Figure S20, MS (ESI) of compound 4b	\$23
 Spectra of 6'-((22R,25R)-spirost-5-en-3β-yl malonate)-1',2':3',4'-di-O-isopropylidene- 	S24
α-D-galactopyranoside (4c)	
Figure S21 ¹ H NMR spectrum of compound 4c	S24
Figure S22. ¹³ C{1H} NMR spectrum of compound 4c	S25
Figure S23. DEPT-135° spectrum of compound 4c	S25
Figure S24. FTIR spectrum of compound 4c	S26
Figure S25. MS (ESI) of compound 4c	S26
7. Spectra of methyl-6'-(($22R$, $25R$)-spirost-5-en- 3β -yl malonate)-2', $3'$ -O-isopropylidene- g-L-rhampopyraposide (4d)	S27
Figure \$26 ¹ H NMR spectrum of compound 4d	527
Figure S27 ¹³ C{1H} NMR spectrum of compound 4d	527
Figure S28 DEPT-135° spectrum of compound 4d	520
i gare 5.80. EET i 155 speed am of compound tu	520

_

Figure S29. FTIR spectrum of compound 4d	S29
Figure S30. MS (ESI) of compound 4d	S29
8. Spectra of 61-(3B-O-carbetoxy-(22R.25R)-spirost-5-en)-61-(2'.3'.4'.6'-tetra-O-acetyl-B-	S30
D-mannopyranoside) methano[60]fullerene (5a)	
Figure S31. ¹ H NMR spectrum of compound 5a	S30
Figure S32. $^{13}C{1H}$ NMR spectrum of compound 5a	S31
Figure S33. DEPT-135° spectrum of compound 5a	S31
Figure S34. HSOC spectrum of compound 5a	S32
Figure S35. HMBC spectrum of compound 5a	S32
Figure S36. COSY spectrum of compound 5a	S33
Figure S37. FTIR spectrum of compound 5a	S33
Figure S38. HRMS (MALDI-TOF) of compound 5a	S34
9. Spectra of 61-(3β-O-carbetoxy cholest-5-en)-61-(1'.2':3'.4'-di-O-isopropylidene-α-D-	S35
galactopyranoside) methanol60lfullerene (5b)	
Figure S39. ¹ H NMR spectrum of compound 5b	S35
Figure S40. $^{13}C{1H}$ NMR spectrum of compound 5b	S36
Figure S41, DEPT-135° spectrum of compound 5b	536
Figure S42. HSOC spectrum of compound 5b	S37
Figure S43. HMBC spectrum of compound 5b	\$37
Figure S44 COSV spectrum of compound 5b	538
Figure S45, FTIR spectrum of compound 5b	538
Figure S46, HRMS (MAI DLTOF) of compound 5b	220
Figure 540. The with (WALDI-101) of compound 55 10 Spectra of 61 (28 Ω competency (22B 25B) spinest 5 on) 61 (1/2/3/4/di Ω	535
isopropylidene.g.D.galactopyranoside) methano[60]fullerene (5c)	340
Figure S47 ⁻¹ H NMR spectrum of compound 5c	\$40
Figure S48 $^{13}C(1H)$ NMR spectrum of compound 5c	540 \$/1
Figure S49. DEPT-135° spectrum of compound 5c	541
Figure S50 HSOC spectrum of compound 5c	541
Figure \$50. HSQC spectrum of compound 5c	542
Figure S51. HMDC spectrum of compound 5c	542
Figure \$52, COST spectrum of compound 5c	545
Figure S54. HPMS (MALDI TOE) of compound 5c	545
Figure 554. HKWS (MALDI-TOF) of compound 5c	544
11. Spectra of 61-(3β-O-carbetoxy-(22K,25K)-spirost-5-en)-61-[4'-(methyl-2,3-O- iconvenylidene g L vhempenyveneside)] methene[60]fullevene (5d)	545
Figure S55 ¹ H NMP spectrum of compound 5d	C/E
Figure S55. If NVIK spectrum of compound 5d	545
Figure S50. C{111} NVIK spectrum of compound 5d	540
Figure S57. DEP1-155' spectrum of compound 5d	546
Figure 558. HSQC spectrum of compound 50	547
Figure S59. HMBC spectrum of compound Sd	547
Figure S60. COSY spectrum of compound Sd	S48
Figure S61. FTIR spectrum of compound 5d	S48
Figure S62. HRMS (MALDI-TOF) of compound 5d	S49
12. Spectra of 61-(3β-O-carbetoxy-(22R,25R)-spirost-5-en)-61-[4'-(methyl-α-L-	S50
rhamnopyranoside)] methano[60]fullerene (6)	
Figure S63. ⁴ H NMK spectrum of compound 6	\$50
Figure S64. "C{IH} NMR spectrum of compound 6	S51

Figure S65 DEPT-135° spectrum of compound 6	S51
Figure S66. HSQC spectrum of compound 6	S52
Figure S67. HMBC spectrum of compound 6	S52
Figure S68. COSY spectrum of compound 6	S53
Figure S69. FTIR spectrum of compound 6	S53
Figure S70. HRMS (MALDI-TOF) of compound 6	S54
13. UV-Vis spectra	S55
Figure S71. UV-Vis spectra of monoadducts	S55
14. HPLC chromatograms	S56
Figure S72. HPLC chromatogram of reaction mixture of 5a	S56
Figure S73. HPLC chromatogram of reaction mixture of 5b	S56
Figure S74. HPLC chromatogram of reaction mixture of 5c	S56
Figure S75. HPLC chromatogram of reaction mixture of 5d	S57
Figure S76. HPLC chromatogram of reaction mixture of 6	S57
15.Cyclic Voltammetry	S58
Figure S77. CV of 5b	S58
Figure S78 CV of 5c	S58
16. TGA experiments	S59
Figure S79. Thermogravimetric analysis of 5a	S59
Figure S80. Thermogravimetric analysis of 5b	S59
Figure S81. Thermogravimetric analysis of 5c	S60
Figure S82. Thermogravimetric analysis of 5d	S60
17. Theoretical calculations	S61
Table S1. Atom Cartesian coordinates of compound 5a and 5b	S61
Table S2. Atom Cartesian coordinates of compound 5c and 5d	S65
Table S3. Atom Cartesian coordinates of compound 6	S70
18. Molecular docking calculations	S75
Table S4. Representative conformations of fullerene derivatives bound to Mpro	S75

1. Synthesis and Characterization

1.1. Synthesis of mono-carboxylic malonates 2a and 2b

To a solution of the appropriate steroid diosgenin (1a) or cholesterol (1b) (4.82 mmol) in toluene (100 mL), Meldrum's acid (1.04 g, 7.24 mmol) was added and the mixture was stirred under reflux. After 1 h the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel with *n*-hexane/ethyl acetate (1:1) as the eluent.

3-[((22R, 25R)-Spirost-5-en-3β-yl)oxy]-3-oxopropanoic acid (2a)

This compound was obtained from 1a. The product was isolated as a yellow solid.

Yield: 2.4 g (4.79 mmol, 86%)

М.р.: 186-187 °С

¹**H** NMR (700 MHz, CDCl₃, δ ppm): 5.38 (d, *J* = 5.2 Hz, 1H, H6), 4.70 (m, 1H, H3), 4.41 (m, 1H, H16), 3.48 (d, *J* = 9.4 Hz, 1H, H26), 3.41 (s, 2H, OCCH₂CO), 3.37 (t, *J* = 11.1 Hz, 1H, H26), 2.36 (m, 2H, H4), 1.98 (m, 2H, H1), 1.87 (m, 3H, H12, H20, H23), 1.78 (dd, *J* = 9.5, 6.0 Hz, 1H, H17), 1.74 (m, 1H, H2), 1.67 (m, 2H, H7), 1.62 (m, 3H, H8, H25, H24), 1.58 – 1.50 (m, 2H, H11, H12), 1.45 (m, 2H, H24, H11), 1.31 – 1.25 (m, 2H, H15), 1.18 (m, 1H, H2), 1.13-1.09 (m, 2H, H14, H23), 1.03 (s, 3H, H19), 0.99 - 0.95 (m, 4H, H9, H21), 0.79 (t, *J* = 3.2 Hz, 6H, H18, H27).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm):169.5 (C=O), 167.4 (C=O), 139.2 (C5), 123.0 (C6), 109.6 (C22), 81.0 (C16), 77.1 (C3), 67.0 (C26), 62.1 (C17), 56.5 (C14), 50.0 (C9), 41.7 (C20), 40.6 (OCCH₂CO), 40.4 (C13), 39.8 (C2), 37.9 (C4), 37.0 (C1), 36.8 (C10), 32.2 (C23), 31.9 (C15), 31.5 (C8), 31.4 (C7), 30.4 (C25), 28.9 (C24), 27.6 (C12), 20.9 (C11), 19.4 (C19), 17.3 (C27), 16.4 (C18), 14.6 (C21).

FTIR: v 2946, 2904, 1733, 1454, 1155, 735 cm⁻¹.

MS (ESI): 499.0 [M-H]⁻

Anal. Calcd for C₃₀H₄₄O₆: C 71.97, H 8.86; found C 72.01, H 8.89.

3-[(Cholest-5-en-3β-yl)oxy]-3-oxopropanoic acid (2b)

This compound was obtained from 1b. The product was isolated as a white solid.

Yield: 1.89 g (4.01 mmol, 85%)

M.p.:165-166 °C

¹**H NMR** (700 MHz, CDCl₃, δ ppm): 5.39 (d, *J* = 5.1 Hz, 1H, H6), 4.72 (m, 1H, H3), 3.42 (s, 2H, (OCCH₂CO), 2.36 (d, *J* = 7.9 Hz, 2H, H4), 2.02 (d, *J* = 3.5 Hz, 2H, H12), 2.01 – 1.98 (m, 1H, H7), 1.96 (t, *J* = 5.3 Hz, 1H, H7), 1.89 (m, 3H, H2, H1), 1.81 (m, 1H, H16), 1.62 (m, 1H, H2), 1.60 (m, 2H, H23), 1.56 (m, 1H, H25), 1.50 (m, 2H, H11), 1.44 (m,1H, H8), 1.37 (m, 1H, H20), 1.34 (m, 2H, H15, H22), 1.26 (d, *J* = 10.6 Hz, 1H, H16), 1.16 (d, *J* = 4.1 Hz, 1H, H24), 1.14 (t, *J* = 4.1 Hz, 2H, H15, H24), 1.09 (d, *J* = 9.1 Hz, 1H, H17), 1.02 (s, 3H, H19), 1.00 (m, 2H, H14, H22), 0.97 (d, *J* = 2.1 Hz, 1H, H9), 0.91 (d, *J* = 6.5 Hz, 3H, H21), 0.86 (dd, *J* = 6.7, 3.3 Hz, 6H, H26, H27), 0.67 (s, 3H, H18).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 169.9 (C=O), 167.5 (C=O), 139.2 (C5), 123.3 (C6), 76.3 (C3), 56.8 (C14), 56.2 (C17), 50.1 (C9), 42.4 (C13), 40.4 (OCCH₂CO), 39.8 (C24), 39.6 (C12), 37.9 (C4), 37.1 (C1), 36.7 (C10), 36.3 (C22), 35.9 (C20), 32.0 (C7), 32.0 (C8), 28.4 (C2), 28.1 (C25), 27.7 (C16), 24.4 (C15), 24.0 (C23), 23.0 (C26), 22.7 (C27), 21.2 (C11), 19.4 (C19), 18.8 (C21), 12.0 (C18).

FTIR: v 3302, 2925, 2854, 1746, 1712, 1462, 1214, 1173, 736 cm⁻¹.

MS (ESI): 495.4 [M+Na]⁺

Anal. Calcd for C₃₀H₄₈O₄: C 76.23, H 10.24; found: C 76.26, H 10.27.

1.2. Synthesis of steroid-sugar conjugates

Method A

(22R,25R)-spirost-5-en-3β-yl malonate-2',3',4',6'-tetra-O-acetyl-β-D-mannopyranoside (4a)

A solution of malonate **2a** (0.94 g, 1.87 mmol), **3a** (0.54 g, 1.10 mmol), 4 Å molecular sieves (0.5 g) in dry CH₂Cl₂ (10 mL) was stirred for 5 min. The solution was cooled to 0 °C and BF₃·Et₂O (0.3 mL, 2.37 mmol) was added over 5 min over argon. The mixture was stirred for 1 h at room temperature and the reaction mixture was neutralized with Et₃N, filtered through celite, the solvent was removed and the residue was purified by column chromatography in silica gel with *n*-hexane/ethyl acetate (3:1) as the eluent. The product was isolated as a white solid;

Yield: 0.54 g (0.65 mmol, 60%)

M.p.: 90-91 °C

¹**H** NMR (700 MHz, CDCl₃, δ ppm): 6.11 (d, *J* = 1.9 Hz, 1H, H1'), 5.40 (d, *J* = 9.3 Hz, 1H, H6), 5.33 (m, 2H, H3', H4'), 5.28 (d, *J* = 1.3 Hz, 1H, H2'), 4.68 (m, 1H, H3), 4.40 (m, 1H, H16), 4.29 (dd, *J* = 12.9, 5.4 Hz, 1H, H6'), 4.11 (m, 2H, H5', H6'), 3.45 (m, 3H, H26, OCCH₂CO), 3.37 (t, *J* = 11.0 Hz, 1H, H26), 2.37 (m, 2H, H4), 2.18 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.00 (s, 3H, CH₃), 1.99 – 1.95 (m, 2H, H1), 1.92 – 1.84 (m, 3H, H12, H20, H23), 1.80 – 1.76 (m, 1H, H17), 1.73 (m, 1H, H2), 1.68 - 1.59 (m, 5H, H7, H8, H24, H25), 1.57 - 1.42 (m, 2H, H11, H24), 1.27 (m, 2H, H11, H12), 1.20 – 1.08 (m, 5H, H2, H14, H15, H23), 1.03 (s, 3H, H19), 0.97 (d, *J* = 7.0 Hz, 4H, H9, H21), 0.78 (m, 6H, H18, H27).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 170.8 (C=O) mannose, 167.0 (C=O) mannose, 169.8 (C=O) mannose, 169.7 (C=O) mannose, 165.3 (C=O), 164.1 (C=O), 139.4 (C5), 122.9 (C6), 109.4 (C22), 91.4 (C1'), 80.9 (C16), 75.9 (C3), 70.9 (C5'), 68.8 (C3'), 68.3 (C2'), 67.0 (C26), 65.5 (C4'), 62.2 (C17), 62.0 (C6'), 56.5 (C14), 50.0 (C9), 41.7 (C20), 41.7 (OCCH₂CO), 40.4 (C13), 39.8 (C2), 37.9 (C4), 37.0 (C1), 36.8 (C10), 32.2 (C23), 31.9 (C15), 31.5 (C7, C8), 30.4 (C25), 28.9 (C24), 27.7 (C12), 21.0 (C11), 20.9 (CH₃), 20.8 (CH₃), 20.8 (CH₃), 20.7 (CH₃), 19.4 (C19), 17.3 (C27), 16.4 (C18), 14.7 (C21).

FTIR: v 2930, 2852, 1747, 1217, 736, 598 cm⁻¹.

HRMS (MALDI-TOF) m/z: $[M+H]^+$ calcd for C₄₄H₆₃O₁₅: 831,4167; found 831,4197.

Anal. Calcd for C₄₄H₆₃O₁₅: C 63.60, H 7.52; found C 63.69, H 7.60.

Method B

To a stirred solution of the corresponding monosaccharide **3b** or **3c** (0.38 mmol) in dry CH₂Cl₂ (5 mL), was added the corresponding malonic acid (**2a** or **2b**) (0.5 mmol) followed by EDC·HCl (221 mg, 1.15 mmol). After stirring at 25 °C for 1 h the mixture was diluted with CH₂Cl₂ (5 mL). The solution mixture was washed with two 10 mL portions of water and saturated NaCl aqueous solution (15 mL). The organic layer was dried (MgSO₄) and filtered, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel with *n*-hexane/ethyl acetate (6:1) as the eluent.

6'-(Cholest-5-en-3β-y malonate)-1',2':3',4'-di-O- isopropylidene-α-D-galactopyranoside (4b)

This compound was obtained from the monosacharide **3b** and the steroidal acid **2b**. The product was isolated as a white solid.

Yield: 0.20 g (0.28 mmol, 71%). M.p.: 105-106 °C.

¹**H NMR** (700 MHz, CDCl₃, δ ppm): 5.53 (d, J = 5.0 Hz, 1H, H1'), 5.38 (d, J = 5.2 Hz, 1H, H6), 4.66 (m, 1H, H3), 4.62 (dd, J = 7.9, 2.5 Hz, 1H, H3'), 4.35 (d, J = 5.0 Hz, 1H, H6'), 4.33 (m, 1H, H2'), 4.27 (dd, J = 11.5, 7.5 Hz, 1H, H6'), 4.24 (dd, J = 7.8, 1.8 Hz, 1H, H4'), 4.04 (m, 1H, H5'), 3.40 (s, 2H, OCCH₂CO), 2.34 (dd, J = 12.7, 3.9 Hz, 2H, H4), 2.01 (m, 2H, H12), 1.95 (m, 1H, H7), 1.87 (d, J = 14.1 Hz, 1H, H2), 1.85 (t, J = 3.6 Hz, 1H, H1), 1.83 (m, 1H, H16), 1.60 (m, 3H, H2, H23), 1.52 (s, 3H, CH₃), 1.45 (s, 3H, CH₃), 1.44 (m, 4H, H7, H11, H25), 1.42 (d, J = 11.6 Hz, 1H, H8), 1.37 (m, 1H, H20), 1.33 (m, 7H, H22, 2 CH₃), 1.25 (m, 1H, H16), 1.14 (m, 4H, H1, H24, H25), 1.07 (m, 3H, H15, H17), 1.01 (s, 3H, H19), 0.99 (d, J = 8.2 Hz, 2H, H14, H22), 0.94 (m, 1H, H9), 0.91 (d, J = 6.5 Hz, 3H, H21), 0.86 (dd, J = 6.7, 3.2 Hz, 6H, H26, H27), 0.67 (s, 3H, H18). ¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 166.8 (C=O), 166.0 (C=O), 139.6 (C5), 123.0 (C6),

109.8 (C7'), 109.0 (C8'), 96.4 (C1'), 75.5 (C3), 71.1 (C4'), 70.8 (C3'), 70.5 (C2'), 65.9 (C5'), 64.4 (C6'), 56.9 (C14), 56.3 (C17), 50.1 (C9), 42.4 (C13), 41.9 (OCCH₂CO), 39.8 (C24), 39.7 (C12), 38.0 (C4), 37.0 (C1), 36.7 (C10), 36.3 (C22), 35.9 (C20), 32.0 (C7), 32.0 (C8), 28.4 (C2), 28.2 (C25), 27.7 (C16), 26.2 (CH₃), 26.1 (CH₃), 25.1 (CH₃), 24.6 (CH₃), 24.4 (C15), 24.0 (C23), 23.0 (C26), 22.7 (C27), 21.2 (C11), 19.4 (C19), 18.9 (C21), 12.0 (C18).

FTIR: v 2931, 2856, 1735, 1463, 1377, 1071, 1007, 737 cm⁻¹.

MS (ESI): 737.5 [M+Na]⁺. Anal. Calcd for C₄₂H₆₆O₉: C 70.56, H 9.30; found C 70.61, H 9.35.

6'-(22R,25R)-Spirost-5-en-3β-yl-malonate)-1',2':3',4'-di-O-isopropylidene-α-D-galactopyranoside (4c)

This compound was obtained from the monosacharide **3b** and the steroidal acid **2a**. The product was isolated as a white solid.

Yield: 0.22 g (0.30 mmol, 75%)

М.р.: 123-124 °С

¹**H NMR** (700 MHz, CDCl₃, δ ppm): 5.53 (d, *J* = 4.9 Hz, 1H, H1'), 5.37 (dt, *J* = 5.4, 2.0 Hz, 1H, H6), 4.65 (m, 1H, H3), 4.62 (dd, *J* = 7.9, 2.6 Hz, 1H, H3'), 4.41 (m, 1H, H16), 4.37 – 4.30 (m, 2H, H2', H6'), 4.30 – 4.22 (m, 2H, H5', H6'), 4.04 (m, 1H, H4'), 3.47 (m, 1H, H26), 3.37 (t, *J*= 11.0 Hz, 1H, H26), 3.38 (s, 2H, OCCH₂CO), 2.35 (m, 2H, H4), 1.99 (m, 2H, H1), 1.87 (m, 4H, H12, H20, H23), 1.77 (m, 1H, H17), 1.73 (m, 1H, H2), 1.71 – 1.56 (m, 5H, H7, H8, H24, H25), 1.56 – 1.52 (m, 1H, H11), 1.51 (s, 3H, CH₃), 1.49 – 1.45 (m, 1H, H11), 1.45 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.33 (s, 3H, CH₃), 1.32 – 1.23 (m, 1H, H7), 1.21 – 1.07 (m, 5H, H2, H14, H15, H23), 1.03 (s, 3H, H19), 0.97 (d, *J* = 7.0 Hz, 4H, H9, H21), 0.79 (d, *J* = 5.6 Hz, 6H, H18, H27).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 166.8 (C=O), 165.9 (C=O), 139.6 (C5), 122.7 (C6), 109.8 (C22), 109.4 (C7'), 109.0 (C8'), 96.4 (C1'), 80.9 (C16), 75.3 (C3), 71.1 (C2'), 70.8 (C5'), 70.5 (C3'), 67 (C26), 65.9 (C4'), 64.4 (C6'), 62.2 (C17), 56.5 (C14), 50.0 (C9), 41.9 (OCCH₂CO), 41.7 (C20), 40.4 (C13), 39.8 (C2), 37.9 (C4), 37.0 (C23), 36.8 (C10), 32.2 (C1), 32.0 (C15), 31.5 (C7, C8), 30.4 (C25), 28.9 (C24), 27.7 (C12), 26.2 (CH₃), 26.1 (CH₃), 25.1(CH₃), 24.6 (CH₃), 20.9 (C11), 19.5 (C19), 17.3 (C27), 16.4 (C18), 14.7 (C21).

FTIR: $v = 2925, 2853, 1734, 1376, 1069, 896, 736 \text{ cm}^{-1}$.

HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₄₂H₆₃O₁₁: 743.4370; found 743.4394.

Anal. Calcd for C₄₂H₆₃O₁₁: C 67.90, H 8.41; found C 67.97, H 8.46.

Methyl-6'-((22R,25R)-spirost-5-en-3β-ylmalonate)-2',3'-O-isopropylidene-α-Lrhamnopyranoside (4d)

This compound was obtained from the monosacharide **3c** and the steroidal acid **2b**. The product was isolated as a white solid.

Yield: 0.19 g (0.28 mmol, 72%). M.p.: 77-78 °C

¹**H** NMR (700 MHz, CDCl₃, δ ppm): 5.37 (m, 1H, H6), 4.89 (m, 2H, H1', H4'), 4.65 (m, 1H, H3), 4.41(m, 1H, H16), 4.16 (dd, *J* = 7.8, 5.4 Hz, 1H, H2'), 4.13 (d, *J* = 5.5 Hz, 1H, H3'), 3.72 (m, 1H, H5'), 3.47 (m, 1H, H26), 3.43 – 3.26 (m, 4H, CH₃O, H26), 3.38 (s, 2H, OCCH₂CO), 2.34 (m, 2H, H4), 1.99 (m, 2H, H1), 1.87 (m, 4H, H12, H20, H23), 1.80 – 1.71 (m, 2H, H2, H17), 1.71 – 1.59 (m, 6H, H7, H8, H24, H25), 1.52 (s, 3H, CH₃), 1.48 – 1.38 (m, 2H, H11), 1.34 (s, 3H, CH₃), 1.28 (m, 2H, H15), 1.23 (d, *J* = 6.3 Hz, 3H, H6'), 1.21 – 1.11 (m, 2H, H2, H14), 1.10 (m, 1H, H23), 1.02 (s, 3H, H19), 0.97 (d, *J* = 6.8 Hz, 4H, H9, H21), 0.79 (d, *J* = 5.8 Hz, 6H, H18, H27).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 165.9 (2 C=O), 139.5 (C5), 122.8 (C6), 110.0 (C7'), 109.4 (C22), 98.1 (C1'), 80.9 (C16), 76.0 (C3'), 75.8 (C2'), 75.6 (C4'), 75.5 (C3), 67.0 (C26), 63.8 (C5'), 62.2 (C17), 56.5 (C14), 55.1 (CH₃-O), 50.0 (C9), 42.2 (OCCH₂CO), 41.7 (C20), 40.4 (C13), 39.8 (C2), 37.9 (C4), 37.0 (C23), 36.8 (C10), 32.2 (C1), 32.0 (C15), 31.5 (C7,C8), 30.4 (C25), 28.9 (C24), 27.9 (CH₃), 27.7 (C12), 26.5 (CH₃), 20.9 (C11), 19.4 (C19), 17.3 (C6'), 17.1 (C27), 16.4 (C18), 14.7 (C21).

FTIR: v 2942, 1735, 1454, 1142, 1091, 982, 736 cm⁻¹. **MS** (ESI): 699.2 [M-H]⁻. **Anal.** Calcd for C₄₀H₆₀O₁₀: C 68.54, H 8.63; found C 68.59, H 8.68.

1.3. Synthesis of Bingel–Hirsch hybrids

A solution of C_{60} (50 mg, 0.069 mmol) in toluene (100 mL) was prepared. The corresponding malonate (0.069 mmol), CBr₄ (0.12 mmol), and diazabicyclo[4.2.0]undec-7-ene (DBU; 0.19 mL, 1.35 mmol) were added in that order. The reaction mixture was then stirred at room temperature for 2 h. Water was added, and the residue was extracted with toluene. The combined extracts were dried (MgSO₄) and filtered, and the solvent was removed under reduced pressure. Purification of

the products was achieved by column chromatography on silica gel, first with CS_2 to elute unreacted C_{60} and finally with dichloromethane for the monoadduct.

61-(3β-O-Carbetoxy-(22R,25R)-spirost-5-en)-61-(2',3',4',6'-tetra-O-acetyl-β-Dmannopyranoside) methano[60]fullerene (5a)

This compound was prepared from 4a.

Yield: 80 mg (0.05 mmol, 63%); brown solid.

HPLC: toluene/acetonitrile, flow rate 1 mL/min, $t_R = 5.3$ min.

¹**H NMR** (700 MHz, CDCl₃, δ ppm): 6.05 (d, J = 8.3 Hz, 1H, H1'), 5.54 – 5.49 (m, 2H, H4', H6), 5.16 (m, 1H, H3'), 5.03 – 4.96 (m, 1H, H3), 4.42 (m, 1H, H16), 4.25 (m, 1H, H6'), 4.20 (m, 1H, H6'), 4.12 (m, 1H, H2'), 3.82 – 3.76 (m, 1H, H5'), 3.43 – 3.39 (m, 1H, H26), 3.38 (t, *J* = 5.0 Hz, 1H, H26), 2.61 – 2.58 (m, 1H, H4), 2.54 – 2.50 (m, 1H, H4), 2.21 (s, 3H, CH₃), 2.08 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 1.94 –1.92 (m, 4H, H1, H23), 1.95 (s, 3H, CH₃), 1.83 –1.76 (m, 1H, H20), 1.75 -1.72 (m, 1H, H17), 1.70 - 1.68 (m, 1H, H2), 1.61 - 1.58 (m, 2H, H7), 1.55 (m, 4H, H8, H11, H24, H25), 1.37 (d, *J* = 6.7 Hz, 3H, H11, H12), 1.18 (s, 1H, H24), 1.16 – 1.12 (m, 4H, H2, H14, H15), 1.04 (s, 3H, H19), 1.01 – 0.94 (m, 1H, H9), 0.91 (d, *J* = 7.0 Hz, 3H, H21), 0.8 (m, 6H, H18, H27). ¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 171.2 (C=O) mannose, 170.4 (C=O) mannose, 170.1 (C=O) mannose, 170.0 (C=O) mannose, 162.2 (C=O), 162.0 (C=O), 145.4, 145.3, 145.2, 145.1, 144.7, 144.7, 143.9, 143.1, 143.0, 139.4 (C5), 123.1 (C6), 109.3 (C22), 93.8 (C1'), 80.8 (C16), 78.0 (C3), 71.4 (C5'), 70.2 (Csp³ cyclopropane ring), 70.1 (Csp³ cyclopropane ring), 69.9 (C3'), 68.7 (C2'), 67.4 (C26), 66.9 (C4'), 62.0 (C17), 61.0 (C6'), 52.4 (Csp³ cyclopropane ring), 56.4 (C14), 49.9 (C9), 41.6 (C20), 40.3 (C13), 39.7 (C2), 37.7 (C4), 36.9 (C1), 36.8 (C10), 32.1 (C23), 31.8 (C15), 31.4 (C7), 30.3 (C8), 29.7 (C25), 28.8 (C24), 27.7 (C12), 20.9 (C11), 20.7 (2 CH₃), 20.6 (CH₃), 20.6 (CH₃), 19.4 (C19), 17.2 (C27), 16.3 (C18), 14.5 (C21).

FTIR: v 2921, 2852, 1737, 1458, 1188, 1157, 800, 735 cm⁻¹.

HRMS (MALDI-TOF) m/z: $[M+H]^+$ Calcd for $C_{104}H_{61}O_{15}$: 1549.4010; found 1549.4014.

61-(3β-O-Carbetoxy-cholest-5-en)-61-(1',2':3',4'-di-O-isopropylidene-α-Dgalactopyranoside) methano[60]fullerene (5b)

This compound was prepared from 4b.

Yield: 77 mg (0.05 mmol, 65%); brown solid.

HPLC: toluene/acetonitrile, flow rate 1 mL/min, $t_R = 5.2$ min.

¹**H** NMR (700 MHz, CDCl₃, δ ppm): 5.57 (dd, *J* = 6.9, 5.0 Hz, 1H, H1'), 5.49 (m, 1H, H6), 5.00 (m, 1H, H3), 4.72 – 4.57 (m, 2H, H3', H6'), 4.38 – 4.31 (m, 2H, H2', H4'), 4.29 – 4.21 (m, 2H, H5', H6'), 2.58 (m, 2H, H4), 2.23 (m, 2H, H2), 2.03 (m, 3H, H7, H12), 1.96 (m, 1H, H1), 1.84 (m 2H, H16), 1.53 (s, 3H, CH₃), 1.50 (s, 3H, CH₃), 1.53 – 1.44 (m, 3H, H8, H11), 1.40 – 1.31 (m, 2H, H20, H22), 1.35 (s, 3H, CH₃), 1.33 (s, 3H, CH₃), 1.26 (m, 3H, H1, H24), 1.22 – 1.09 (m, 7H, H12, H15, H17, H23, H25), 1.08 (s, 3H, H19), 1.04 – 0.98 (m, 3H, H9, H14, H22), 0.92 (dd, *J* = 9.5, 6.5 Hz, 3H, H21), 0.88 – 0.85 (m, 6H, H26, H27), 0.69 (s, 3H, H18).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 163.7 (C=O), 163.0 (C=O), 145.4, 145.3, 145.3, 145.0, 144.8, 143.2, 143.1, 142.3, 142.1, 142.0, 141.0, 139.4 (C5), 123.5 (C6), 109.9 (C7'), 109.0 (C8'), 96.4 (C1'), 77.9 (C3), 71.8 (Csp³ cyclopropane ring), 71.7 (Csp³ cyclopropane ring), 71.0 (C4'), 70.8 (C3'), 70.5 (C2'), 65.9 (C5'), 65.7 (C6'), 56.8 (C14), 56.3 (C17), 52.4 (Csp³ cyclopropane ring), 50.1 (C9), 42.5 (C13), 39.8 (C24), 39.6 (C12), 37.9 (C4), 37.1 (C1), 36.8 (C10), 36.3 (C22), 35.9 (C20), 32.1 (C7), 32.0 (C8), 28.4 (C2), 28.2 (C25), 27.8 (C16), 26.3 (CH₃), 26.2 (CH₃), 25.1 (CH₃), 24.7 (CH₃), 24.4 (C15), 24.0 (C23), 23.0 (C26), 22.7 (C27), 21.2 (C11), 19.5 (C19), 18.9 (C21), 12.0 (C18).

FTIR: v 2923, 2853, 1745, 1492, 1239, 1074, 968, 745 cm⁻¹.

HRMS (MALDI-TOF) m/z: [M]⁺ Calc. for C₁₀₂H₆₄O₉: 1432.4550; found 1432.4534.

61-(3β-O-Carbetoxy-(22*R*,25*R*)-spirost-5-en)-61-(1',2':3',4'-di-O-isopropylidene-α-D-galactopyranoside) methano[60]fullerene (5c)

This compound was prepared from 4c.

Yield: 68 mg (0.05 mmol, 65%); brown solid.

HPLC: toluene/acetonitrile, flow rate 1 mL/min, $t_R = 5.6$ min.

¹**H** NMR (700 MHz, CDCl₃, δ ppm): 5.57 (d, *J* = 5.0 Hz, 1H, H1'), 5.49 (d, *J* = 5.0 Hz, 1H, H6), 4.99 (m, 1H, H3), 4.73 – 4.57 (m, 3H, H3', H6'), 4.42 (m, 1H, H16), 4.35 (m, 2H, H2', H5'), 4.27 -4.22 (m, 1H, H4'), 3.48 (dd, J = 11.9, 4.3 Hz, 1H, H26), 3.38 (t, J = 11.0 Hz, 1H, H26), 2.59 (m, 2H, H4), 2.11 (d, J = 12.0 Hz, 1H, H12), 2.02 (m, 2H, H1), 1.94 (m, 1H, H23), 1.91 – 1.83 (m, 2H, H12, H20), 1.85 – 1.73 (m, 2H, H2, H17), 1.69 (dd, *J* = 12.5, 3.8 Hz, 1H, H8), 1.68 – 1.55 (m, 3H, H7, H11), 1.53 (s, 3H, CH3), 1.50 (s, 3H, CH3), 1.45 (m, 2H, H24), 1.35 (s, 3H, CH3), 1.33 (s, 3H, CH₃), 1.40 – 1.31 (m, 4H, H7, H15, H25), 1.26 – 1.20 (m, 2H, H2, H23), 1.14 (m, 1H, H14), 1.10 (s, 3H, H19), 1.03 (m, 1H, H9), 0.98 (d, *J* = 6.9 Hz, 3H, H21), 0.83 – 0.78 (m, 6H, H18, H27). ¹³C{**1H**} **NMR** (175 MHz, CDCl₃, δ ppm): 163.7 (C=O), 163.0 (C=O), 145.4, 144.8, 144.0, 143.1, 142.3, 141.1, 139.4 (C5), 139.1, 129.2, 128.4, 123.2 (C6), 109.9 (C22), 109.4 (C7'), 109.0 (C8'), 96.4 (C1'), 80.9 (C16), 77.9 (C3), 71.8 (Csp³ cyclopropane ring), 71.7 (Csp³ cyclopropane ring), 71.1 (C2'), 70.8 (C5'), 70.5 (C3'), 67.0 (C26), 65.9 (C6'), 65.8 (C4'), 62.2 (C17), 56.6 (C14), 52.4 (Csp³ cyclopropane ring), 50.1 (C9), 41.8 (C20), 40.4 (C13), 39.9 (C2), 37.9 (C4), 37.1 (C23), 36.9 (C10), 32.2 (C1), 32.0 (C15), 31.5 (C7, C8), 30.4 (C25), 28.9 (C24), 27.8 (C12), 26.4 (CH₃), 26.2 (CH₃), 25.1 (CH₃), 24.7 (CH₃), 21.0 (C11), 19.6 (C19), 17.3 (C27), 16.5 (C18), 14.7 (C21). FTIR: v 2921, 2852, 1737, 1461, 1268, 1188, 748 cm-1.

HRMS (MALDI-TOF) m/z: [M-H]⁻ Calc. for C₁₀₂H₅₉O₁₁: 1459.4057; found 1459.3912.

61-(3β-O-Carbetoxy-(22R,25R)-spirost-5-en)-61-[4'-(methyl-2',3'-O-isopropylidene-α-L-rhamnopyranoside)] methano[60]fullerene (5d)

This compound was prepared from **4d**.

Yield: 93 mg (0.07 mmol, 60%); brown solid.

HPLC: toluene/acetonitrile, flow rate 1 mL/min, $t_R = 4.0$ min.

¹**H NMR** (700 MHz, CDCl₃, δ ppm): .48 (d, *J* = 5.0 Hz, 1H, H6), 5.18 (dd, *J* = 10.2, 7.9 Hz, 1H, H4'), 5.01 (m, 1H, H3), 4.96 (s, 1H, H1'), 4.42 (m, 1H, H16), 4.33 (dd, *J* = 7.9, 5.3 Hz, 1H, H3'), 4.20 (d, *J* = 5.4 Hz, 1H, H2'), 3.93 (m, 1H, H5'), 3.48 (m, 1H, H26), 3.42 (s, 3H, CH₃O), 3.37 (m, 1H, H26), 2.63 (m, 2H, H4), 1.96 (m, 4H, H1, H12, H23), 1.87 (q, *J* = 6.4 Hz, 2H, H12, H20), 1.79 (dd, J = 8.6, 6.7 Hz, 1H, H17), 1.76 (m, 1H, H2), 1.69 - 1.59 (m, 3H, H7, H8, H25), 1.65 (s, 3H, CH₃), 1.56 (m, 2H, H11), 1.52 - 1.43 (m, 2H, H24), 1.37 (d, *J* = 2.6 Hz, 6H, H6', CH₃), 1.31 (m, 3H, H7, H15), 1.22 (m, 2H, H2, H23), 1.15 (m, 1H, H14), 1.10 (s, 3H, H19), 1.03 (m, 1H, H9), 0.98 (d, *J* = 7.0 Hz, 3H, H21), 0.80 (m, 6H, H18, H27).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 162.9 (C=O), 162.8 (C=O), 145.5, 145.4, 145.0, 144.8, 144.0, 143.2, 143.1, 142.4, 142.3, 142.1, 142.0, 141.1, 139.8, 139.3 (C5), 123.2 (C6), 110.1 (C7'), 109.5 (C22), 98.3 (C1'), 80.9 (C16), 78.0 (C3), 78.0 (C4'), 76.2 (C2'), 75.5 (C3'), 71.7 (Csp3 cyclopropane ring), 71.6 (Csp3 cyclopropane ring), 67.0 (C26), 63.7 (C5'), 62.2 (C17), 56.5 (C14), 55.3 (H₃CO), 52.4 (Csp³ cyclopropane ring), 50.0 (C9), 41.8 (C20), 40.4 (C13), 39.8 (C2), 37.7 (C4), 37.1 (C23), 37.0 (C10), 32.2 (C1), 32.0 (C15), 31.5 (C7, C8), 30.4 (25), 28.9 (C24), 28.1 (CH₃), 27.7 (C12), 26.8 (CH₃), 21.0 (C11), 19.6 (C19), 17.6 (C6'), 17.3 (C27), 16.5 (C18), 14.7 (C21).

FTIR: v 2922, 2852, 1746, 1717, 1459, 1376, 1459, 1376, 980, 748 cm⁻¹.

HRMS (MALDI-TOF) m/z: [M-H]⁻ Calc. for C₁₀₀H₅₇O₁₀: 1417.3951; found 1417.3925.

61-(3β-O-Carbetoxy-(22R,25R)-spirost-5-en)-61-[4'-(methyl-α-L-rhamnopyranoside)] methano[60]fullerene (6)

To a solution of hybrid **5d** (15 mg, 0.02 mmol) in CHCl₃ (3 mL) was added a 9:1 mixture of CF₃CO₂H/H₂O (5 mL). The reaction mixture was stirred for 14 h at room temperature. Then it was neutralized with a aqueous saturated solution of Na₂CO₃ and the fullerene derivative was extracted with an three 30 mL portions of 7:3 mixture of CHCl₃/MeOH. The organic layer was dried over Na₂SO₄ and concentrated. The residue was precipitated by the addition of hexane affording a solid and filtered in vacuo. The solid was purified by column chromatography on silica gel with CS₂ and dichloromethane as eluents. **Yield**: 9 mg (0.007 mmol, 35%); brown solid.

HPLC: toluene/acetonitrile, flow rate 1 mL/min, $t_R = 4.5$ min.

¹**H NMR** (700 MHz, CDCl₃, δ ppm): 5.48 (d, *J* = 5.1 Hz, 1H, H6), 5.25 (t, *J* = 9.6 Hz, 1H, H4'), 5.04 (m, 1H, H3), 4.78 (d, *J* = 1,5 Hz, 1H, H1'), 4.42 (m, H, H16), 4.11 (m, 1H, H3'), 4.06 (s, 1H, H2'), 3.97 (m, 1H, H5'), 3.48 (m, 1H, H26), 3.43 (s, 3H, CH₃O), 3.38 (t, *J* = 11.0 Hz, 1H, H26), 3.09 (d, *J* = 6.1 Hz, 1H, HO-3'), 2.59 (d, *J* = 7.1 Hz, 2H, H4), 2.50 (d, *J* = 4.0 Hz, 1H, HO-2'), 2.13 – 2.09 (m, 1H, H12), 2.07 – 1.94 (m, 3H, H1, H23), 1.91 – 1.83 (m, 2H, H12, H20), 1.78 (m, 2H, H2, H17), 1.71 – 1.58 (m, 4H, H7, H8, H25), 1.52 – 1.43 (m, 4H, H11, H24), 1.40 (d, *J* = 6.2 Hz, 3H, H6'), 1.25 (m, 4H, H2, H15, H23), 1.17 (m, 1H, H14), 1.09 (s, 3H, H19), 1.06 – 1.01 (m, 1H, H9), 0.98 (d, *J* = 7.0 Hz, 3H, H21), 0.79 (m, 6H, H18, H27).

¹³C{1H} NMR (175 MHz, CDCl₃, δ ppm): 163.9 (C=O), 163.8 (C=O), 146.0, 145.3, 145.2, 144.9, 143.9, 143.4, 143.1, 142.9, 142.4, 141.3, 141.1, 140.7, 148.5, 148.5, 146.0, 145.8, 145.3, 144.8, 144.1, 143.9, 143.4, 142.9, 142.2, 141.1, 140.7, 139.0 (C5), 123.6 (C6), 109.5 (C22), 100.5 (C1'), 80.7 (C16), 78.6 (C4'), 78.6 (C3), 71.5 (Csp³ cyclopropane ring), 71.5 (Csp³ cyclopropane ring), 71.2 (C2'), 70.1 (C3'), 67.0 (C26), 65.4 (C5'), 62.2 (C17), 56.6 (C14), 55.4 (H₃C-O), 52.4 (Csp³ cyclopropane ring), 50.1 (C9), 41.8 (C20), 40.42 (C13), 39.8 (C2), 38.0 (C4), 37.1 (C10), 37.0 (C23), 32.2 (C1), 32.0 (C15), 31.6 (C7), 31.6 (C8), 30.5 (C25), 28.9 (C24), 27.8 (C12), 21.0 (C11), 19.5 (C19), 18.0 (C6'), 17.3 (C27), 16.5 (C18), 14.7 (C21).

FTIR: v 3567, 2924, 2853, 1743, 1461, 1372, 1177, 747 cm⁻¹.

HRMS (MALDI-TOF) m/z: [M+H]⁺ Calc. for C₉₇H₅₅O₁₀: 1379.3795; found 1379.3746.

2. Spectra of 3-[((22R, 25R)-spirost-5-en-3β-yl)oxy]-3-oxopropanoic acid (2a):

Figure S1. ¹H NMR spectrum of compound 2a

Figure S3. DEPT-135° spectrum of compound 2a

Figure S4. IR spectrum of compound 2a

Figure S5. MS (ESI) of compound 2a. m/z: 499.0 [M+Na]⁺ for C₃₀H₄₄NaO₆

3. Spectra of 3-[(cholest-5-en-3β-yl)oxy]-3-oxopropanoic acid (2b)

Figure S6. ¹H NMR spectrum of compound 2b

Figure S8. DEPT-135° spectrum of compound 2b

Figure S9. FTIR spectrum of compound 2b

Figure S10. MS-ESI of compound 2b. $m/z = 495.4 [M+Na]^+$ for $C_{30}H_{48}NaO_4$

4. Spectra of (22*R*,25*R*)-spirost-5-en-3β-yl mannopyranoside (4a)

Figure S11. ¹H NMR spectrum of compound 4a

Figure S13. DEPT-135° spectrum of compound 4a

Figure S14. FTIR spectrum of compound 4a

Figure S15. HRMS (MALDI-TOF) of compound **4a** showing the ionic pattern corresponding to $[M+H]^+$ 831.4197; calculated for C₄₄H₆₃O₁₅ 831.4167

5. Spectra of 6'-(Cholest-5-en-3β-ylmalonate)-1',2':3',4'-di-*O*-isopropylidene-α-Dgalactopyranoside (4b)

Figure S16. ¹H NMR spectrum of compound 4b

Figure S18. DEPT-135° spectrum of compound 4b

Figure S19. FTIR spectrum of compound 4b

Figure S20. MS-ESI (MeOH) of compound 4b. $m/z = 737.5 [M+Na]^+$ for $C_{42}H_{66}NaO_9$

6. Spectra of 6'-(22*R*,25*R*)-spirost-5-en-3β-yl Malonate)-1',2':3',4'-di-*O*-isopropylidene-α-D-galactopyranoside (4c)

Figure S21. ¹H NMR spectrum of compound 4c

Figure S23. DEPT-135° spectrum of compound 4c

Figure S24. FTIR spectrum of compound 4c

Figure S25. MS-ESI (MeOH) of compound 4c. $m/z = 764.4 [M+Na]^+$ for $C_{42}H_{62}NaO_{11}$

7. Spectra of methyl-6'-((22*R*,25*R*)-spirost-5-en-3β-yl malonate)-2',3'-O-isopropylidene-α-L-rhamnopyranoside (4d)

Figure S26. ¹H NMR spectrum of compound 4d

Figure S28. DEPT-135° spectrum of compound 4d

Figure S29. FTIR spectrum of compound 4d

Figure S30. MS-ESI of compound 4d

8. Spectra of 61-(3β-O-Carbetoxy-(22R,25R)-spirost-5-en)-61-(2',3',4',6'-tetra-O-acetyl-β-Dmannopyranoside) methano[60]fullerene (5a)

Figure S31. ¹H NMR spectrum of compound 5a

Figure S33. DEPT-135° spectrum of compound 5a

Figure S35. HMBC spectrum of compound 5a

Figure S36. COSY spectrum of compound 5a

Figure S37. FTIR of compound 5a

Figure S38. HRMS (MALDI-TOF) (Dithranol) of compound **5a** showing the ionic pattern corresponding to $[M+H]^+$ 1549.4014; calculated for $C_{104}H_{61}O_{15}$ 1549.4010.

9. Spectra of 61-(3β-O-Carbetoxycholest-5-en)-61-(1',2':3',4'-di-O-isopropylidene-α-D-galactopyranoside) methano[60]fullerene (5b)

Figure S39. ¹H NMR spectrum of compound 5b

Figure S40. ¹³C{1H} NMR spectrum of compound 5b

Figure S41. DEPT-135° spectrum of compound 5b

Figure S43. HMBC spectrum of compound 5b

130 140 150

Figure S44. COSY spectrum of compound 5b

Figure S45. FTIR of compound 5b

Figure S46. HRMS (MALDI-TOF) of compound **5b** showing the ionic pattern corresponding to $[M]^{\bullet+}$ 1432.4534; calculated for $C_{102}H_{64}O_9$ 1432.4550.

10. Spectra of 61-(3β-O-Carbetoxy-(22R,25R)-spirost-5-en)-61-(1',2':3',4'-di-O-isopropylideneα-D-galactopyranoside) methano[60]fullerene (5c)

Figure S47. ¹H NMR spectrum of compound 5c

S41

Figure S51. HMBC spectrum of compound 5c

Figure S52. COSY spectrum of compound 5c

Figure S53. FTIR of compound 5c

Figure S54. HRMS (MALDI-TOF) of compound **5c** showing the ionic pattern corresponding to [M-H]⁻ 1459.3912; calculated for C₁₀₂H₅₉O₁₁ 1459.4057.

11. Spectra of 61-(3β-O-Carbetoxy-(22*R*,25*R*)-spirost-5-en)-61-[4'-(methyl-2,3-Oisopropylidene-α-L-rhamnopyranoside)] methano[60]fullerene (5d)

Figure S55. ¹H NMR spectrum of compound 5d

Figure S57. DEPT-135° spectrum of compound 5d

Figure S59. HMBC spectrum of compound 5d

Figure S60. COSY spectrum of compound 5d

Figure S61. FTIR of compound 5d

Figure S62. HRMS (MALDI-TOF) of compound **5d** showing the ionic pattern corresponding to $[M-H]^{-1417.3925}$; calculated for $C_{100}H_{59}O_{10}$ 1417.3951.

12. Spectra of 61-(3β-O-Carbetoxy-(22R,25R)-spirost-5-en)-61-[4'-(methyl-α-L-rhamnopyranoside)] methano[60]fullerene (6)

Figure S63. ¹H NMR spectrum of compound 6

ppm Figure S65. DEPT-135° spectrum of compound 6

Figure S67. HMBC spectrum of compound 6

Figure S68. COSY spectrum of compound 6

Figure S69. FTIR spectrum of compound 6

Figure S70. HRMS (MALDI-TOF) of compound 6 showing the ionic pattern corresponding to $[M+H]^+$ 1379.3746; calculated for C₉₇H₅₅O₁₀ 1379.3795.

13. UV-Vis spectra

Figure S71. UV-vis spectra of monoadducts 5a-d and 6.

Figure S72. HPLC chromatogram of reaction mixture of **5a**: BuckyPrep, toluene/acetonitrile (9:1), flow rate 1 mL/min, $t_R = 5.31$ min.

Figure S73. HPLC chromatogram of reaction mixture of 5b: BuckyPrep, toluene/acetonitrile (9:1), flow rate 1 mL/min, $t_R = 5.16$ min.

Figure S74. HPLC chromatogram of reaction mixture of **5c**: BuckyPrep, toluene/acetonitrile (9:1), flow rate 1 mL/min, $t_R = 5.64$ min.

Figure S75. HPLC chromatogram of reaction mixture of 5d: BuckyPrep, toluene/acetonitrile (9:1), flow rate 1 mL/min, $t_R = 4.0$ min.

Figure S76. HPLC chromatogram of reaction mixture of 6: BuckyPrep, toluene/acetonitrile (9:1), flow rate 1 mL/min, $t_R = 4.5$ min.

15. Cyclic Voltammetry

Figure S78. CV of 5b

16. Thermogravimetric analysis

Figure S79. Thermogravimetric analysis and first derivative of 5a under inert atmosphere.

Figure S80. Thermogravimetric analysis and first derivative of 5a under inert atmosphere.

Figure S81. Thermogravimetric analysis and first derivative of 5c under inert atmosphere.

Figure S82. Thermogravimetric analysis and first derivative of 5d under inert atmosphere.

17. Theoretical calculations

Table S1. XYZ of atom coordinates of compounds 5a and 5	b.
---	----

		5a		5b			
	Х	У	Z		х	у	Z
0	2.64538194536266	2.00869842881952	0.14673830402573	0	1.072709	0.939458	-0.314831
С	1.72221844004539	2.11972775664860	-0.88296421082350	С	0.215973	1.620033	-1.240809
С	0.89388261631164	2.53726213737925	1.88629482911254	С	1.661783	2.870802	1.004780
С	2.22196612395256	1.84838653393091	1.52713908585548	С	0.978938	1.489318	1.006307
С	2.38873763177565	0.41982780752256	2.01689549824713	0	1.367967	3.593403	2.208997
С	0.51256935053021	2.98654233837659	-0.52474218742923	0	0.124368	4.548913	0.534705
С	-0.16673858277588	2.57057400140522	0.76282736809453	0	0.452694	1.094128	-2.509366
С	5.64965591977403	-1.32038310680444	-2.83973445972380	0	1.559902	3.109052	-2.386291
С	4.47772635137880	-1.76652695836158	-1.97111218761771	С	-0.454493	1.531395	1.563215
С	4.53939025343354	-1.14839356001698	-0.55729374428359	С	0.560186	3.115529	-1.363520
С	5.95807459993332	-0.78831829805029	-0.20523130507065	С	1.145873	3.790189	-0.124483
С	6.60166510609787	0.28336863605372	-1.08359849654311	0	-1.091562	0.252457	1.297194
С	6.02350339089977	0.13072747132391	-2.52799618433239	С	1.196468	2.071151	-3.301513
С	6.61387326333843	-1.42304696015524	0.78001108746533	С	2.463994	1.433509	-3.834909
С	8.05927498835846	-1.21381814297749	1.10847766474531	С	0.266675	2.592919	-4.394972
С	8.72378037052039	-0.06436110832084	0.33233345062342	С	0.628296	4.793396	1.854460
С	8.15293878483664	0.09335554230166	-1.09542470259718	С	-0.547158	4.956754	2.800481
С	10.25854078412037	-0.22367944445706	0.34218604053708	С	1.577337	5.992920	1.876069
С	11.02394182134888	0.88936894545611	-0.42698731998640	С	-1.251083	-3.045969	2.955345
С	10.41347666322821	1.01512442264898	-1.84367305681953	С	-1.568702	-2.015437	1.854142
С	8.89660408744992	1.22369535707639	-1.82818428024226	С	-1.119588	-0.642048	2.309191
С	10.80091168802894	-1.53153995916584	-0.27639874665119	0	-2.099804	-3.373315	3.752046
С	12.27241971015034	-1.24418372850308	-0.59149304376434	0	-0.802918	-0.410139	3.458478
С	12.46123719889912	0.30543088060892	-0.56243355023226	С	1.599471	-2.034639	1.844900
0	3.26093270694638	-1.26388142016684	-2.64849271685953	С	1.112199	-3.455466	2.103572
С	2.09112618480385	-1.76204388909095	-2.22061896852746	С	2.250014	-4.276836	2.776294
С	0.97394783744627	-0.93448455017812	-2.84118317024493	С	3.573721	-3.560801	2.655734
С	1.20547330962293	0.55142653844512	-2.62161473146107	С	3.642148	-2.189975	3.332210
0	1.29261703708042	0.77318277066487	-1.29011290483121	С	2.257631	-1.501279	3.117613
0	1.32197030227756	1.38349453549273	-3.49498317583762	С	4.563182	-4.035265	1.879919
0	1.94362069068943	-2.69144400736657	-1.45381850056094	С	5.855541	-3.325850	1.590444
С	10.97092346079497	2.24474866664298	0.28966863713987	С	6.067396	-2.094087	2.486184
С	6.19757162880183	1.67468595398958	-0.54011476738867	С	4.730218	-1.340653	2.626321
С	13.43149234349163	0.52506397194699	0.62084146998548	С	7.269419	-1.142848	2.113636
0	13.09308195722571	-1.77691525508705	0.47648298031160	С	6.860740	0.211712	1.435304
С	14.13586351468630	-0.84135643885333	0.72450524764846	С	5.664990	0.901450	2.161745
0	15.10619450846297	-0.87943256134320	-0.33421681224192	С	5.009344	0.033012	3.238340
С	14.77607079563599	-1.21105780527685	2.07496415177956	С	8.247676	-1.751284	1.087669

С	16.29780649319810	-1.03468924745063	2.03382380606869	С	7.713263	-1.303588	-0.296923
С	16.92872317151691	-1.93159354233512	0.94267071946846	С	6.578631	-0.277342	-0.024316
С	15.93387150189144	-2.04462527539873	-0.23447779281073	0	0.000748	-3.542067	3.072219
С	17.29354034355709	-3.32522298420062	1.46517850126227	С	3.906662	-2.333130	4.843246
С	14.37095781478009	1.72034559196333	0.49030535931264	С	8.056900	1.183545	1.449033
0	1.22326965035037	3.92163069726789	2.15474260360729	С	6.433793	0.737974	-1.178779
0	0.88290795478902	5.81611758938741	3.25731861508200	С	5.359305	1.813943	-0.956632
С	0.63263204522669	4.63800864055203	3.19255259074234	С	6.168442	-0.014758	-2.510799
С	-0.23832108557836	3.88270923404851	4.16823210984757	С	5.032308	-1.044548	-2.460285
0	-0.82767614799957	1.30382527330644	0.57213170995313	С	4.670959	-1.621067	-3.831826
0	-2.08090466340564	1.74297226424641	2.42110901960183	С	3.729125	-2.839367	-3.781790
С	-1.81612417312072	1.02687098002717	1.47193131660217	С	2.463394	-2.575930	-2.957460
С	-2.53820605280864	-0.23804732053244	1.10806510168609	С	3.362281	-3.294150	-5.200649
0	-0.44273224017440	2.98270774242526	-1.59446920495850	Н	-0.835711	1.431522	-0.970900
0	0.69987648446807	4.72702537044566	-2.52337751494057	Н	2.749567	2.717242	0.918942
С	-0.19699774262916	3.91602314868153	-2.58797820185457	Н	1.561512	0.798327	1.632175
С	-1.15990810462882	3.73884133492667	-3.72528013147983	Н	-0.428845	1.717832	2.643385
0	1.32815902266218	-0.44243030226859	1.56199099876373	Н	-1.080490	2.285637	1.071334
0	2.62296339131101	-2.20182265843267	2.19408563100517	Н	-0.335191	3.688401	-1.672588
С	1.58070783611333	-1.78220392580727	1.73226634987493	Н	1.958420	4.450760	-0.476608
С	0.40810774395883	-2.61275927475124	1.29032984076979	Н	3.058676	1.052451	-2.996037
Н	2.25327089123596	2.55867217104113	-1.73816710903931	Н	2.211772	0.600671	-4.505256
Н	0.46189914167695	2.05103836331381	2.77111666984124	Н	3.054046	2.173669	-4.393945
Н	2.98733781605731	2.41814809707401	2.07853910244896	Н	0.798223	3.315669	-5.030760
Н	3.35980957755105	0.03091713835207	1.68234628359126	Н	-0.083448	1.757022	-5.017139
Н	2.39673370266511	0.42559494583758	3.12145449355076	Н	-0.613965	3.084513	-3.958248
Н	0.90514898982381	4.00677255419119	-0.38279250272954	Н	-1.204590	4.079324	2.745049
Н	-0.92378598724087	3.31698337372593	1.04659822225779	Н	-0.183130	5.063451	3.831365
Η	6.50426568175624	-1.98415464555854	-2.62783714945724	Н	-1.126182	5.852650	2.534768
Η	5.38708841886553	-1.45851466142981	-3.89990481694368	Н	1.037893	6.911247	1.602637
Н	4.38636568380015	-2.86071892946516	-1.92450187801893	Н	1.999003	6.112448	2.883526
Н	3.91287886364005	-0.23944185230787	-0.57655016243822	Н	2.412541	5.851250	1.176020
Н	4.10559220717155	-1.83132370829894	0.18433288038807	Н	0.809155	-1.390619	1.446340
Н	5.12280240984930	0.75921285510903	-2.63210141786983	Н	2.344274	-2.095515	1.031119
Н	6.74443228776705	0.51306698713793	-3.26472535560508	Н	0.769181	-3.937115	1.175902
Н	6.07569554429652	-2.18091583065055	1.36196808686135	Н	2.305324	-5.286296	2.345509
Н	8.59004934210001	-2.16351745058141	0.90443028556694	Н	1.964251	-4.393405	3.834947
Н	8.18858245678074	-1.04978478490800	2.19410169126340	Н	1.588568	-1.695800	3.970808
Н	8.49345439014424	0.87388703837816	0.87068011205695	Н	2.389858	-0.409563	3.083875
Н	8.34632015853414	-0.85303059455859	-1.64119756159780	Н	4.417569	-5.001045	1.381125
Н	10.58802515940607	-0.19310393636130	1.39927285535809	Н	5.851973	-3.038434	0.521818
Н	10.90741080726287	1.84932299202535	-2.37091296227013	Н	6.692644	-4.036643	1.696655
Н	10.64626389987968	0.10681449288562	-2.42652363923158	Н	6.306481	-2.487578	3.491504
L			1		1		1

Н	8.53613935685174	1.31702073204070	-2.86476855492568	Н	4.338551	-1.165732	1.602147
Н	8.66678087148688	2.18540473966929	-1.34050643912187	Н	7.800694	-0.917349	3.053046
Н	10.73137614140676	-2.39455225958081	0.39990152151011	Н	6.000026	1.856995	2.598099
Н	10.25523906333926	-1.79280129079315	-1.19706184092976	Н	4.886175	1.154188	1.427219
Н	12.60226072893681	-1.69209211370257	-1.54281148130994	Н	5.667495	-0.077591	4.117922
Н	12.93980130029796	0.66863613190925	-1.48637896965570	Н	4.091397	0.526341	3.597338
Н	11.39822645835767	2.18691460367237	1.30248849397277	Н	9.258216	-1.351160	1.257364
Н	11.52743445416772	3.01122687718695	-0.27321686837606	Н	8.335774	-2.842963	1.176532
Н	9.93691347316417	2.60656155157312	0.39766258255386	Н	7.344589	-2.154180	-0.891706
Н	5.10800012092421	1.73402797415822	-0.39212157222645	Н	8.514630	-0.838320	-0.893695
Н	6.67498164815488	1.88496734201388	0.42886947347929	Н	5.621103	-0.824338	0.026148
Н	6.47547131451887	2.47325088062232	-1.24530992460801	Н	3.171206	-3.009084	5.305560
Н	12.84378754958666	0.61377557952797	1.55137808457924	Н	4.908962	-2.739047	5.045481
Н	14.32215032308019	-0.60547091456813	2.87412562055912	Н	3.820473	-1.356945	5.345692
Н	14.51783064571950	-2.26075260412387	2.28850632094397	Н	8.376059	1.385533	2.484142
Н	16.73801008428039	-1.27008323867455	3.01646328634006	Н	8.925903	0.800150	0.894640
Н	16.53417503719323	0.01953184265064	1.82395008256792	Н	7.775714	2.148217	0.996850
Н	17.84763424412737	-1.43952693138951	0.58233224614798	Н	7.403332	1.259742	-1.293361
Н	15.28995396266124	-2.93579984884618	-0.10776272492864	Н	5.259595	2.444239	-1.855090
Н	16.45377795118463	-2.13626918360010	-1.19871771874418	Н	5.608336	2.474596	-0.113868
Н	16.41505375788605	-3.81957402025789	1.91240330106475	Н	4.369113	1.373200	-0.755030
Н	17.65997010110961	-3.97574216044208	0.65419395597797	Н	5.942859	0.733800	-3.291286
Н	18.08044708694039	-3.27024660880033	2.23350291793937	Н	7.090127	-0.524518	-2.839833
Н	15.01932873080904	1.81486642556801	1.37644203851370	Н	5.321212	-1.879063	-1.795687
Н	13.81111640546580	2.66073237722914	0.38752328085158	Н	4.133563	-0.593288	-2.004983
Н	15.01643926923306	1.59640983283602	-0.39049392059419	Н	4.211927	-0.830313	-4.453925
Н	-0.65029809838803	4.61188231975833	4.87354291290980	Н	5.597583	-1.915920	-4.358391
Н	-1.05441900846293	3.33680349904052	3.67109666703902	Н	4.285402	-3.663131	-3.292043
Н	0.35856933729680	3.14642954850116	4.73094341493849	Н	1.801162	-3.456191	-2.971480
Н	-3.00709946508182	-0.66120843201670	2.00371253731813	Н	2.688175	-2.346540	-1.904478
Н	-3.32639678608789	0.00160626411374	0.37728141005810	Н	1.891528	-1.723399	-3.361179
Н	-1.86100852536172	-0.95882131581533	0.63712659942087	Н	2.757902	-4.214907	-5.184736
Н	-1.32282449121916	4.70363938517649	-4.21945637329063	Н	4.261034	-3.485789	-5.807893
Н	-0.69183984348056	3.04966176221677	-4.44630820679065	Н	2.769279	-2.517099	-5.713207
Н	-2.10722621711814	3.29638834637648	-3.39441805530234	С	-4.463246	0.028779	-1.462198
Н	0.68058398990027	-3.67191503246421	1.34124255462835	С	-3.848594	0.027079	-2.780233
Н	-0.45463985458398	-2.41681089620509	1.94448034441308	С	-5.798495	-0.378219	-1.319176
Н	0.13451239462749	-2.35849330951055	0.25813343960327	С	-4.583001	-0.375844	-3.902590
С	-2.66230669687653	-5.03031041540605	-2.56179847670108	С	-6.561585	-0.806491	-2.480680
С	-3.09503837707702	-3.81089317911854	-1.91555474157323	С	-5.965278	-0.807020	-3.749047
С	-1.37112642576746	-5.09911973158261	-3.11053225704093	С	-3.460385	-0.371502	-0.490577
С	-2.21471011429664	-2.71975165989142	-1.84768972938251	С	-2.461726	-0.380551	-2.630700
С	-3.79595295977114	-5.57904792258121	-3.28920475496436	С	-6.168513	-1.220759	-0.203100

С	-4.49839253636556	-3.59530458840603	-2.23509256903440	С	-2.210395	-0.630436	-1.225100
С	-0.86689225826881	-2.81385219742872	-2.35644559875495	С	-3.958867	-1.212870	-4.918063
С	-4.93229775278057	-4.69116225899719	-3.08718677092164	С	-7.407850	-1.920472	-2.075926
С	-0.46232515974095	-3.97331129325341	-3.00920019431576	С	-3.821293	-1.151685	0.604857
С	-1.16960384007360	-5.73431921830403	-4.40239052812840	С	-6.191492	-1.916310	-4.659977
С	-3.59829414564731	-6.18703341029561	-4.53595913694767	С	-5.186112	-1.617467	0.717660
С	-2.70742729006272	-1.37477474652215	-2.08786286092031	С	-7.165463	-2.176008	-0.664575
С	-4.97375216957086	-2.29802581257149	-2.46221865466356	С	-1.856794	-1.175246	-3.616409
С	-2.25839895553095	-6.27174758634041	-5.10003970398512	С	-2.620217	-1.604387	-4.776709
С	-4.06308045328145	-1.16528783941074	-2.38104526692643	С	-4.951249	-2.167319	-5.382593
С	-0.43904865263658	-1.45051247714972	-2.78337101585673	С	-7.623486	-2.992231	-2.953353
С	0.31327205996640	-3.90844178398122	-4.26081526976810	С	-1.351027	-1.652892	-0.838481
С	-5.82498491447238	-4.44480592432028	-4.13927514623686	С	-7.003729	-2.990108	-4.269374
С	-0.13562776615358	-4.99817759430052	-5.11135169399303	С	-2.925711	-2.198461	1.186761
С	-1.67143300681186	-0.61123619783033	-2.74274447423879	С	-0.999792	-2.267212	-3.215139
С	-4.52723277006028	-5.93658763742536	-5.62419406091039	С	-5.173282	-2.981659	1.215838
С	-5.90350096039993	-2.04105131347373	-3.55107486239740	С	-7.151374	-3.490136	-0.182908
С	-5.61970092704455	-5.08016933961880	-5.43052624640855	С	-1.567214	-2.466449	0.398352
С	-6.31911674930642	-3.09572142314671	-4.37538065681631	С	-0.782080	-2.509189	-1.849844
С	0.65614880637896	-2.68565031403320	-4.83144106456941	С	-2.224571	-2.969892	-5.094362
С	0.40516624462942	-1.37717566526075	-4.16284238378940	С	-4.571004	-3.483002	-5.685730
С	-2.36329026356151	-6.08497435322512	-6.53961960996576	С	-3.803767	-3.384549	1.414837
С	-4.42610288946389	-0.21222222196750	-3.40675150071425	С	-6.140713	-3.900184	0.779797
С	-0.23419184216092	-4.82880776967033	-6.50140638789759	С	-7.607211	-4.358710	-2.451419
С	-3.76357633758808	-5.87484394579661	-6.86410208065619	С	-6.605643	-4.354614	-4.581284
С	-2.01727476513541	0.27872201874731	-3.75522675489448	С	-1.218395	-3.379666	-4.126203
С	-5.56423971982999	-0.75032923543303	-4.13479130116291	С	-7.377349	-4.603059	-1.091146
С	-1.36884750827215	-5.37723346185407	-7.22719259033494	С	-3.182888	-3.891202	-5.537725
С	-3.41672555406036	0.48752445989669	-4.08779792531596	С	-5.413363	-4.596623	-5.275476
С	-5.98880378722438	-4.12624519593921	-6.46596950358855	С	-1.335716	-3.883112	-0.024488
С	-6.41888683976965	-2.89922139383200	-5.81276780158270	С	-6.977968	-5.199536	-3.457231
С	0.50076175253254	-2.49472725472818	-6.25572285534633	С	-0.765963	-3.872449	-1.352144
С	-0.15105394599238	-0.48678029796654	-5.22026019994815	С	-3.415704	-4.680776	1.094012
C	0.09272954378964	-3.54715735964373	-7.08785572386394	C	-5.745470	-5.257780	0.474610
С	-1.24835223167228	0.34077882853880	-5.01091367013769	C	-6.505808	-5.696633	-0.683983
С	-4.12243553378943	-4.95796243166425	-7.86203455714525	С	-1.201473	-4.694685	-3.645122
C	-5.65786210456267	-0.56529706341873	-5.52050364982191	C	-3.167010	-5.258215	-5.036065
С	0.00706248446980	-1.14932613029593	-6.49209535332411	С	-2.161788	-4.932915	0.363733
C	-5.25437119076115	-4.06600814536047	-7.65742686619904	C	-4.545419	-5.692921	-4.873334
C	-6.09615344282798	-1.65602613353913	-6.37396284634490	C	-0.964674	-4.947633	-2.231553
C	-1.74105239990838	-4.42715951301485	-8.26563162287618	C	-4.400154	-5.633885	0.618540
С	-3.52057597621077	0.68009466440338	-5.52528101849453	С	-6.140893	-6.252663	-3.064837
С	-0.83471254542287	-3.29312512939935	-8.18101415903736	C	-2.194449	-5.652541	-4.107059

-							
С	-2.18448938853434	0.58695078817819	-6.09099498200012	С	-5.900092	-6.505587	-1.654648
С	-3.09234322652964	-4.22002794792992	-8.57509236937882	С	-4.900832	-6.504803	-3.786902
С	-4.61933188897147	0.16938585451586	-6.22823320935939	С	-2.394974	-6.040446	-0.547797
С	-4.92200188112697	-2.77631853396436	-8.24326002707189	С	-1.801305	-6.055461	-1.820328
С	-5.33281408665261	-1.59320314668792	-7.61354804650576	С	-3.774046	-6.473290	-0.390623
С	-0.87823541057988	-0.90207812711208	-7.55242952333944	С	-2.564700	-6.493901	-2.977395
С	-1.31085986071856	-1.99630771111303	-8.40846434726807	С	-4.508087	-6.904939	-1.502286
С	-1.99945114488550	-0.01194439529195	-7.34793530510044	С	-3.893618	-6.910255	-2.821832
С	-3.58694313973138	-2.87118450692260	-8.81158558786939				
C	-4.42426893729451	-0.46271818173486	-7.52521071098501				
С	-2.71199845337489	-1.77924745320717	-8.73170699773914				
С	-3.13808669754691	-0.55113935157876	-8.07430337909961				

Table S2. XYZ of atom coordinates of compounds 5c and 5d

		5c			5d				
	Х	У	Z	1	Х	у	Z		
0	0.125098	1.263058	-3.382847	Н	3.90207577029696	3.35647318652662	1.76540961171945		
С	-0.637484	2.445575	-3.085568	Н	4.49038328281961	1.66139924732196	1.60112805111454		
С	1.123166	1.058359	-1.169353	Н	3.71445233665598	2.19914702963560	3.12791626619139		
С	0.253247	0.383599	-2.258511	Н	15.09716009849159	1.31413811062117	-0.24528373434300		
0	0.948531	0.406171	0.094601	Н	13.83786071726084	2.54720570912641	0.04387707153533		
0	-0.111363	2.423539	0.263482	Н	15.03205732388568	2.18577958613190	1.30551608884396		
0	-0.611146	3.270622	-4.204441	Н	18.28059299047240	-1.97372974455580	4.06071283553929		
0	1.018960	4.002182	-2.737004	Н	17.95055727156224	-3.25470960227960	2.87173891027579		
С	-1.117709	-0.103219	-1.774392	Н	16.66995861750647	-2.73121141235785	3.98675051572936		
С	0.028200	3.289240	-1.992128	Н	16.65959565565688	-2.39128651690595	0.48792283965006		
С	0.741807	2.530160	-0.880411	Н	15.49634824120471	-2.74241882494403	1.79345538646910		
0	-0.948117	-1.445326	-1.244130	Н	17.94714337552195	-0.93018383765443	1.84126152542219		
С	0.524331	4.176968	-4.076405	Н	16.53483937061306	0.79265846700093	2.46515396502285		
С	1.625087	3.777439	-5.046630	Н	16.74164762345694	0.04161471312882	4.05110444502345		
С	0.000082	5.593103	-4.273763	Н	14.60627717812251	-1.27700880529713	3.68231180202915		
С	0.469069	1.384399	1.058993	Н	14.30764280784294	0.46367770426536	3.61238308534720		
С	-0.611988	0.754398	1.914417	Н	12.87182182529445	1.06224379075338	1.86739261246592		
С	1.650550	1.899964	1.884777	Н	5.29938257809080	1.31434917263987	-0.63739363790897		
0	0.609398	-3.976669	-0.290754	Н	6.67012874064020	1.59908967406299	-1.73727534471579		
С	-0.620781	-4.014495	-0.822241	Н	6.87799215474815	1.77969337805259	0.02552834072398		
С	-1.604045	-3.266758	0.075147	Н	10.01747296946514	2.38804486982487	-0.10163904358862		
С	-1.924089	-1.872828	-0.411599	Н	11.62562153165132	2.53150510696175	-0.83310974339111		

0	-0.946839	-4.537691	-1.866777	Н	11.45238948070514	2.39553568732878	0.93575724401402
0	-2.888846	-1.216289	-0.078340	Н	13.11552700488645	-0.05075962025386	-0.95469852324513
С	2.314539	-3.470152	-1.926092	Η	12.78427340563999	-2.25720685654505	-0.11209017405065
С	1.713922	-4.571777	-1.065801	Н	10.43028345684716	-2.26960893504683	0.18081383482940
С	2.741832	-5.089269	-0.049793	Н	10.85158613710360	-2.18393367739780	1.90077767944085
С	3.890338	-4.128078	0.199981	Н	8.83827409529373	1.30166988042367	-1.58376715032802
С	3.553288	-2.640767	0.223857	Н	8.75866589196250	-0.10639962327936	-2.63661763225729
С	2.699531	-2.272485	-1.048167	Н	10.85304870382045	-1.01318886856792	-1.66804821376657
С	5.128440	-4.601341	0.421298	Н	11.11543917182610	0.60827542440351	-2.31259776833705
С	6.319584	-3.755643	0.756577	Н	10.65339164787578	0.22507651220374	1.94575238471564
С	5.947352	-2.317485	1.144038	Η	8.48257573515356	-1.60541036487945	-0.66802815880280
С	4.854800	-1.774354	0.203806	Η	8.58011248107584	0.96339201325295	0.97422701891709
С	7.200111	-1.416752	1.200393	Н	8.26189504422510	-0.32594807245608	2.93539852009485
С	6.904346	0.086934	1.471954	Н	8.62891347526501	-1.84768080885331	2.14533699536715
С	5.829012	0.567477	0.467158	Η	6.10593671668347	-1.58493033003510	2.55149395594093
С	4.564520	-0.292617	0.494288	Н	6.98452936609715	-1.05578810237945	-2.71430346729010
С	8.062035	-1.392399	-0.080915	Н	5.36347441332391	-0.47723580700408	-2.34513022331221
С	8.894416	-0.108849	0.011571	Н	4.14614048581639	-1.61864734821264	1.29457412604468
С	8.247600	0.785480	1.114904	Н	4.02559079262263	-0.43305875242620	-0.00856733621651
С	6.434838	0.346778	2.906952	Н	4.28901671976555	-3.39500764447703	-0.27495447990874
С	2.713795	-2.370985	1.500226	Н	5.50397570211541	-3.03450532314190	-2.52297173918655
С	9.335996	0.845350	2.210018	Н	6.52541519391694	-3.01915514461062	-1.07626753019439
0	10.226171	-0.438579	0.479144	Н	0.99988693122710	5.25723445833172	-0.37423387816287
С	10.619925	0.569063	1.403618	Н	-0.53517141846995	5.72314397691501	0.41236761100996
0	10.934060	1.789555	0.713911	Н	-0.36920699387727	5.85223933115326	-1.36341397583359
С	11.842923	0.036028	2.170785	Н	-2.47130516315717	4.34640335089358	-1.59191406465919
С	12.855346	1.154372	2.444434	Н	-2.59369770472984	4.09028084865715	0.17613609915882
С	13.360114	1.776944	1.119847	Н	-2.42159058637489	2.69262403380611	-0.91071762297392
С	12.217384	1.712650	0.081864	Н	3.13695187512087	3.02929018199617	-3.57111934216504
С	14.610358	1.074198	0.579665	Н	4.15466034049305	3.25086711373454	-2.12422033464792
С	9.362511	2.126133	3.039728	Н	2.44465719508141	3.79910448635656	-2.12924334276745
Н	-1.689002	2.184310	-2.876133	Н	2.32769114369914	3.31322981387958	0.10174369958160
Н	2.178332	0.995183	-1.481528	Н	0.35500731938662	1.04376195299603	0.62119322504885
Η	0.788742	-0.493218	-2.652118	Н	-0.69313034061251	1.28992902036142	-1.54580031700130
Н	-1.565508	0.536797	-1.003483	Н	1.08782575776260	1.48276053290220	-3.39240516042850
Η	-1.798637	-0.167990	-2.637692	Н	3.40023820091178	0.88337712806732	-2.44050423927910
Н	-0.713068	3.972350	-1.532431	С	3.70532894040005	2.30184813677120	2.03498458621463
i							

Н	1.649207	3.111424	-0.635966	0	2.39911819098802	1.90258643763448	1.60510735587281
Н	1.896096	2.729593	-4.867537	С	14.41864285732597	1.73735420411063	0.50858710496794
Н	1.275312	3.888384	-6.082963	С	17.51697773477702	-2.37637541978943	3.37695113323082
Н	2.507955	4.416317	-4.898464	С	16.10743838970394	-1.94520364686586	1.32687721849582
Η	0.825286	6.315006	-4.195973	С	17.05962665787698	-1.31867914001771	2.36816395369477
Н	-0.467649	5.689313	-5.264022	С	16.33739022698664	-0.12557217901018	3.03953302365596
Η	-0.752471	5.824586	-3.506999	С	14.82424844620027	-0.36459030693350	3.10370984969117
Н	-1.455600	0.424155	1.295400	0	15.23819485966179	-0.95848680604800	0.75899859210416
Η	-0.202672	-0.114208	2.449373	С	14.22914589091807	-0.55345231157940	1.69703191780804
Н	-0.978815	1.478609	2.655401	0	13.21294643858806	-1.54616885335287	1.79551665837519
Н	1.311050	2.670298	2.592374	С	13.50385317332830	0.64731110732148	1.06075405514701
Н	2.097310	1.069539	2.449284	С	6.38485859895222	1.18402023237978	-0.75705160994591
Н	2.433689	2.327171	1.243338	С	11.05776321044215	2.03848221283831	-0.02789622729585
Η	3.202584	-3.889050	-2.430615	0	2.53987833061398	-4.20309872507155	-1.55019975950005
Η	1.600812	-3.166105	-2.707903	0	2.11740309586103	-0.62145667834382	-4.13285097218277
Η	1.277791	-5.380876	-1.667308	0	1.11313350732856	-0.18647752321884	-2.13213798888389
Н	2.209539	-5.313970	0.891038	С	1.58507506618532	-0.99218042205554	-3.10866831610350
Н	3.148886	-6.047397	-0.407983	С	1.35782446198175	-2.44630348594819	-2.72518835252800
Η	1.781601	-1.765084	-0.722635	С	2.47139754891553	-3.03826749032888	-1.88393322113188
Н	3.260306	-1.552333	-1.666098	0	3.34135579905512	-2.06308302261884	-1.56171458199205
Η	5.292790	-5.684843	0.363014	С	12.59464651773149	-0.04057756331719	0.01633685941886
Η	7.009686	-3.746313	-0.109075	С	12.42068008639221	-1.48414213323793	0.58387058949330
Η	6.895293	-4.225115	1.575726	С	10.93888905031129	-1.65623818292496	0.94104347925094
Н	5.518007	-2.349751	2.163424	С	9.08318051463745	0.22831951906195	-1.63798673987735
Η	5.248646	-1.845848	-0.830180	С	10.59834255335747	0.04968647097046	-1.51348965636914
Н	7.837920	-1.790635	2.025454	С	11.15033137209020	0.51349513729770	-0.14334398213463
Н	5.581907	1.620621	0.689719	С	10.36298545168003	-0.22366827997556	0.97582154738676
Н	6.251740	0.562262	-0.553494	С	8.30297847606170	-0.51923348898132	-0.54105586276499
Н	3.828700	0.099939	-0.225756	С	8.83044208510199	-0.10690742412886	0.85188271673128
Н	4.083959	-0.204402	1.481812	С	8.13007060859200	-0.87320143990791	1.98347783227827
Н	8.732681	-2.258319	-0.166446	С	6.67744714671664	-1.13579368218047	1.73018574839585
Н	7.429409	-1.379784	-0.982814	С	6.21375498609169	-1.04431177521528	-1.92961828749909
Н	8.982869	0.412439	-0.955101	С	6.75731176002665	-0.31447705749665	-0.65689054124111
Н	8.063400	1.806935	0.744607	С	6.05258279808291	-0.91082263116304	0.56258396201634
Н	7.189897	0.029531	3.641771	С	4.60960399186266	-1.29797156418118	0.35015759890078
Н	6.231790	1.418096	3.068060	С	4.50133384485396	-2.41107255079637	-0.71320711633008
Н	5.507603	-0.198926	3.138727	С	5.73721668341881	-2.46243307556303	-1.61170518716400

Н	3.330616	-2.469273	2.407574	С	-0.09380774298640	5.25812087882495	-0.47982293044764
Н	2.267362	-1.367585	1.468342	С	-2.11665656238524	3.73630653933157	-0.74888947570981
Н	1.885838	-3.088259	1.581302	С	-0.59827607787864	3.83099356791868	-0.62129731636237
Н	9.225635	-0.027275	2.878213	0	-0.18647259159309	3.04161189282354	0.52542458941754
Н	11.509652	-0.443128	3.103970	0	0.04723929918800	3.24030594301786	-1.76626790499797
Н	12.303474	-0.754384	1.555696	С	3.13718048503659	3.01919575934996	-2.47072416564640
Н	13.705678	0.767757	3.029131	0	2.93852893310329	1.43122188439064	-0.56528355834624
Н	12.377616	1.934261	3.057625	С	2.11003325828074	2.23999178854693	0.28920254550097
Н	13.604884	2.835928	1.307633	С	0.61713239461915	1.95317242369231	0.06026747688044
Н	12.278926	0.772656	-0.499576	С	0.24465685831125	1.86547693254796	-1.42599294661110
Н	12.263051	2.552833	-0.626097	С	1.29765722839442	1.24526515135869	-2.33850895663451
Н	14.430045	-0.006617	0.452248	С	2.73751353370149	1.62774122139385	-1.97540485364361
Н	14.906292	1.477478	-0.402025	С	-2.47264019654417	-5.96988356540982	-0.87366429536002
Н	15.463710	1.196579	1.264599	С	-2.78157995002981	-4.57448347036674	-0.65425357207575
Н	10.156301	2.088084	3.802958	С	-1.23310422555540	-6.32205051637021	-1.43049461766510
Н	8.408731	2.285330	3.563014	С	-1.83587851405585	-3.59744369189936	-1.00158526996953
Н	9.556387	2.990387	2.389436	С	-3.68876862265807	-6.63629006686621	-1.31251610757149
С	-6.372331	-3.905982	2.785478	С	-4.19087190031634	-4.36550835232650	-0.95488088068630
С	-6.904287	-4.529730	3.986449	С	-0.53713178859606	-3.96373990863504	-1.52004505160632
С	-6.076265	-4.951671	1.831482	С	-4.75267464660739	-5.64377325336042	-1.36324196298305
С	-6.938020	-5.968823	3.768536	С	-0.25534845214576	-5.30342583057316	-1.76501974099447
С	-6.424096	-6.229975	2.433107	С	-1.16912532538552	-7.36471517408757	-2.44210418356941
С	-5.510179	-2.802630	2.886740	С	-3.62254845171217	-7.63953299515313	-2.28800428576530
С	-6.566045	-4.021560	5.247669	С	-2.27104178905679	-2.37276268670975	-1.65174899292539
С	-4.933497	-4.843133	1.023052	С	-4.60825202486077	-3.18390125195240	-1.57901763218548
С	-6.630074	-6.844321	4.818948	С	-2.33649963459374	-8.01500470760260	-2.85958038740203
С	-5.628355	-7.356574	2.195132	С	-3.63060223985811	-2.16546314608459	-1.93076421077740
С	-5.163402	-2.277009	4.197072	С	-0.07434118226944	-2.86359419572715	-2.41710084438260
С	-5.683740	-2.867859	5.354809	С	0.42030247866586	-5.72144108781413	-3.00483263960964
С	-4.082656	-3.676958	1.082809	С	-5.70826757080460	-5.69153396072732	-2.38720851318226
С	-4.347160	-2.692686	2.028533	С	-0.15253347956691	-6.98988184013315	-3.41202286063908
С	-6.251105	-4.928939	6.336988	С	-1.25327236453662	-1.96704098557156	-2.58923417352531
С	-6.281126	-6.314710	6.127304	С	-4.61502844407939	-7.69124102769694	-3.34751832312752
С	-4.107190	-6.012144	0.777944	С	-5.60170110035516	-3.23093774295684	-2.64033500699389
С	-4.450005	-7.247634	1.348168	С	-5.63859627032629	-6.73509656805264	-3.39762710167552
С	-5.801284	-8.015448	4.572091	С	-6.13995586579297	-4.46248283912990	-3.03793212548612
С	-5.309785	-8.266594	3.283882	С	0.79987898877532	-4.78848127588176	-3.96431231232339
С	-3.776466	-1.842332	4.155612	С	0.66603790423261	-3.31319016371027	-3.75902364755404
---	-----------	-----------	----------	---	-------------------	-------------------	-------------------
С	-3.261914	-2.091094	2.820823	С	-2.53973175504895	-8.30868934131533	-4.27190631884964
С	-4.830137	-3.060070	6.519294	С	-4.01537673338177	-1.58208786826778	-3.19740387500274
С	-2.695467	-4.097549	0.716318	С	-0.34396134786183	-7.28612518207235	-4.77027286109916
С	-5.177874	-4.334573	7.123223	С	-3.94543321132898	-8.10478433880167	-4.57407605590526
С	-2.730052	-5.591338	0.688499	С	-1.61879711679634	-1.42854834631578	-3.81841130087646
С	-5.238091	-7.158152	6.690627	С	-5.23426953812302	-2.23966032357941	-3.64204616196952
С	-4.941303	-8.208961	5.728783	С	-1.56072805159391	-7.95226105759487	-5.20883353025634
С	-3.410846	-8.087482	1.902669	С	-3.02325973433950	-1.23120505263524	-4.12778119208606
С	-3.937620	-8.718705	3.102445	С	-6.02817294391944	-6.15267089006965	-4.67328604978154
С	-2.959509	-2.017046	5.283709	С	-6.33614413053436	-4.74761294161935	-4.45010176958658
С	-3.493420	-2.640670	6.484580	С	0.54437375864413	-5.06867980559272	-5.35918683036860
С	-1.941825	-2.496856	2.650760	С	0.08225431889156	-2.78799553870068	-5.02902865808718
С	-1.517580	-3.455742	1.586826	С	0.01212742237553	-6.30186599524462	-5.76790267065251
С	-4.175648	-5.149122	7.668197	С	-0.94068479663194	-1.84726986197933	-5.05925130944279
С	-1.731810	-6.383495	1.247568	С	-4.32549450724607	-7.54771105545177	-5.80321109628182
С	-4.206175	-6.586777	7.446762	С	-5.42226253486774	-2.51779376492944	-5.00234010908745
С	-2.075891	-7.654159	1.861254	С	0.11061400849515	-3.84426658246755	-6.00991097452617
С	-3.620755	-8.645650	5.553978	С	-5.38443516810954	-6.55058383971388	-5.85218333843495
С	-3.110566	-8.902582	4.218459	С	-5.98523692751269	-3.79184539667726	-5.41365260677835
С	-1.597886	-2.473725	5.109765	С	-1.95462635631640	-7.37387324890139	-6.48499223633721
С	-1.118322	-2.732094	3.816464	С	-3.22309482361740	-1.52017848485913	-5.53930385831480
С	-2.452508	-3.485797	7.052322	С	-0.98002205325306	-6.35138151575872	-6.83177219858765
С	-2.787529	-4.717187	7.632336	С	-1.94039557646309	-1.90077023770592	-6.10979713776502
С	-0.647368	-5.784947	2.047045	С	-3.31100176389679	-7.17429359961262	-6.77592342594849
С	-0.598006	-4.413113	2.262218	С	-4.39986820284173	-2.14580630427716	-5.97009246668411
С	-2.835755	-7.043010	7.270928	С	-5.02329736657400	-5.55999386011455	-6.85498625806759
С	-1.219888	-7.848329	3.021687	С	-5.31585758244571	-4.20630361933389	-6.64004676049381
С	-2.547753	-8.051098	6.340153	С	-0.83619930195540	-3.89333408766307	-7.04433765565934
С	-1.723910	-8.462314	4.175372	С	-1.39534484004109	-5.17104478774897	-7.45906917568587
С	-1.277003	-3.381589	6.201887	С	-1.88584484708928	-2.89939243980371	-7.09512001387201
С	-0.292623	-3.902358	3.574583	С	-3.74332542919015	-5.94535227999740	-7.42682303975391
С	-1.958392	-5.888263	7.385993	С	-4.34007201410337	-3.18729566657593	-6.98596328698350
С	-0.342457	-6.694695	3.134780	С	-2.80266789423193	-4.96235188642467	-7.76325292975008
С	-1.374650	-7.942964	5.489835	С	-3.10561079969342	-3.55629254488132	-7.53708355907687
С	-0.479854	-4.508223	5.966114				
С	0.028624	-4.771469	4.628677				

С	-0.824107	-5.785836	6.569328		
С	0.002246	-6.200328	4.403740		
С	-0.526279	-6.833022	5.601322		

Table S3. XYZ of atom coordinates of compounds 6

6					
	х	Y	z		
С	8.660734	0.783101	0.537639		
С	8.114757	-0.567298	1.085216		
С	5.841391	-0.220894	-0.067303		
С	6.578490	-0.620939	1.232476		
С	6.132460	-1.995335	1.756163		
С	4.678160	-2.282986	1.548486		
С	3.595366	-0.205548	-1.296196		
С	4.289062	-0.242296	0.106133		
С	3.852207	-1.528803	0.806431		
С	2.439125	-1.959856	0.508111		
С	2.348916	-2.373389	-0.975960		
С	3.355982	-1.614880	-1.842341		
0	-1.585456	3.674716	-3.851024		
0	-2.637192	1.222117	-4.150792		
С	0.121143	1.673156	0.012534		
0	-1.113410	3.444635	-0.976949		
С	-2.298158	3.938209	-1.594251		
С	-2.583015	3.256151	-2.931481		
С	-2.560668	1.719419	-2.808893		
С	-1.302355	1.281262	-2.059583		
С	-1.155228	2.032427	-0.726198		
Н	-3.342619	5.601641	0.186243		
Н	-2.557222	4.235905	1.049679		
Н	-4.350739	4.317638	0.940305		
Н	12.506937	2.017707	0.424202		
Н	11.280983	2.680819	1.541473		
Н	12.692621	1.812904	2.181795		
Н	16.422432	-2.818529	1.513582		

Н	15.931231	-3.180876	-0.157662
Н	14.816139	-3.519056	1.182962
Н	14.285809	-1.169329	-1.393576
Н	13.368259	-2.367542	-0.442822
Н	15.778104	-0.704860	0.384344
Н	14.441479	0.208956	2.052336
Н	14.944282	-1.278703	2.867897
Н	12.796838	-2.395477	2.095674
Н	12.463356	-0.973551	3.091448
Н	10.709380	0.303600	2.239468
Н	3.883010	1.904031	0.374900
Н	4.359234	1.059922	1.875957
Н	2.732870	0.838677	1.203431
Н	7.487768	2.111528	1.822716
Н	8.942114	2.863281	1.141267
Н	9.076684	1.699449	2.483687
Н	10.460453	1.067935	-0.694748
Н	10.370773	-1.238249	-1.290956
Н	8.114127	-1.748257	-0.762517
Н	8.845942	-2.609148	0.602484
Н	6.095968	1.917937	0.169534
Н	5.876792	1.422648	-1.506408
Н	8.147488	0.418585	-1.550693
Н	8.226780	2.126269	-1.112579
Н	8.549372	-0.727170	2.091804
Н	6.078587	-0.979702	-0.839534
Н	6.298530	0.127541	1.996643
Н	6.394232	-2.084368	2.826563
Н	6.710537	-2.795503	1.256239
Н	4.285615	-3.201830	2.000606
Н	4.203401	0.383487	-1.999083
Н	2.626421	0.315167	-1.221046
Н	2.111887	-2.784043	1.156566
Н	1.739385	-1.119461	0.662316
Н	2.459220	-3.462092	-1.080378
Н	2.990219	-1.596036	-2.880119
Н	4.302641	-2.180908	-1.844284
i	1		

Η	-1.689364	3.048251	-4.594764
Н	-1.984425	0.496962	-4.245393
Н	0.141474	0.597722	0.237645
Н	0.182058	2.235347	0.954082
Н	0.998492	1.929592	-0.600567
Н	-2.085673	5.010304	-1.755711
Н	-3.594971	3.560724	-3.262214
Η	-3.440141	1.382393	-2.229201
Η	-0.407284	1.418180	-2.686387
Η	-2.039275	1.791328	-0.106827
С	-3.410864	4.520422	0.410956
0	-3.446178	3.752502	-0.793104
С	11.959734	1.835530	1.359577
С	15.572045	-2.805924	0.814379
С	13.874460	-1.384622	-0.397323
С	14.976599	-1.399934	0.685911
С	14.367812	-0.889093	2.013529
С	12.894872	-1.298175	2.132178
0	12.899527	-0.367115	-0.138514
С	12.062565	-0.718525	0.973947
0	11.116333	-1.711243	0.592610
С	11.193237	0.518845	1.270081
С	3.793899	0.962522	0.938624
С	8.537150	1.924563	1.551731
0	0.137919	-3.964016	-0.661041
0	-0.835541	-0.867339	-3.755533
0	-1.401293	-0.133533	-1.671132
С	-1.118583	-1.071300	-2.586830
С	-1.233211	-2.449481	-1.962447
С	0.029240	-2.927963	-1.283227
0	1.013484	-2.032540	-1.503190
С	10.128945	0.443860	0.150889
С	10.114072	-1.069077	-0.232405
С	8.732427	-1.619936	0.138864
С	6.367818	1.138909	-0.561421
С	7.886688	1.138739	-0.755728
С	-4.656604	-5.592111	1.019467

С	-4.943539	-4.175515	1.066813
С	-3.521706	-6.043228	0.327210
С	-4.081289	-3.276902	0.419133
С	-5.919399	-6.303219	0.895779
С	-6.385761	-3.998406	0.973595
С	-2.881192	-3.737507	-0.241314
С	-6.989974	-5.317758	0.866794
С	-2.625687	-5.102209	-0.317377
С	-3.609844	-7.232238	-0.504945
С	-6.001135	-7.447603	0.091516
С	-4.633883	-2.164362	-0.334735
С	-6.915626	-2.924628	0.248193
С	-4.821659	-7.924111	-0.618319
С	-6.023485	-1.985875	-0.414820
С	-2.586835	-2.799453	-1.364617
С	-2.156368	-5.716060	-1.571124
С	-8.100705	-5.512961	0.034707
С	-2.771617	-7.026180	-1.675419
С	-3.790956	-1.924005	-1.479772
С	-7.153738	-7.651862	-0.768190
С	-8.069361	-3.124828	-0.614681
С	-8.184081	-6.702048	-0.797680
С	-8.651258	-4.395645	-0.719939
С	-1.954150	-4.949759	-2.715112
С	-2.079190	-3.459994	-2.723362
С	-5.250730	-8.431882	-1.913518
С	-6.619146	-1.603817	-1.676937
С	-3.182620	-7.526727	-2.920696
С	-6.689780	-8.260727	-2.008021
С	-4.361762	-1.580797	-2.700617
С	-7.884997	-2.307447	-1.805413
С	-4.444856	-8.238539	-3.042958
С	-5.799952	-1.414357	-2.801435
С	-8.786658	-6.321667	-2.066426
С	-9.073894	-4.895841	-2.018307
С	-2.431581	-5.441380	-3.988371
С	-2.867317	-3.132128	-3.947830

С	-3.008669	-6.715739	-4.105111
С	-3.891992	-2.193211	-3.956469
С	-7.274289	-7.897250	-3.229311
С	-8.292557	-2.791768	-3.055695
С	-2.984541	-4.328887	-4.742061
С	-8.340115	-6.907039	-3.258207
С	-8.899077	-4.107264	-3.164168
С	-5.050977	-7.862773	-4.312137
С	-6.226135	-1.916935	-4.097481
С	-4.161144	-6.919501	-4.970865
С	-5.050279	-2.398550	-4.805363
С	-6.439454	-7.693641	-4.402853
С	-7.448764	-2.588185	-4.224806
С	-8.163218	-6.090723	-4.449763
С	-8.434949	-4.716299	-4.404104
С	-4.088211	-4.527179	-5.585589
С	-4.690533	-5.847194	-5.698504
С	-5.144903	-3.540377	-5.617121
С	-6.990232	-6.577175	-5.157763
С	-7.542365	-3.776880	-5.060290
С	-6.131567	-5.671142	-5.795341
С	-6.411781	-4.243166	-5.744227

S74

19. Molecular docking calculations

Table S4. Representative conformations of fullerene derivatives bound to Mpro.

