
DOI: http://dx.doi.org/10.14236/ewic/ICS2015.1

Extracting Vulnerabilities in Industrial Control
Systems using a Knowledge-Based System

Laurens Lemaire
KU Leuven, MSEC, iMinds-DistriNet
Department of Computer Science

Gebroeders Desmetstraat 1, 9000 Ghent, Belgium
laurens.lemaire@cs.kuleuven.be

Jan Vossaert
KU Leuven, MSEC, iMinds-DistriNet
Department of Computer Science

Gebroeders Desmetstraat 1, 9000 Ghent, Belgium
jan.vossaert@cs.kuleuven.be

Joachim Jansen
KU Leuven

Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium

joachim.jansen@cs.kuleuven.be

Vincent Naessens
KU Leuven, MSEC, iMinds-DistriNet
Department of Computer Science

Gebroeders Desmetstraat 1, 9000 Ghent, Belgium
vincent.naessens@cs.kuleuven.be

Industrial Control Systems (ICS) are used for monitoring and controlling critical infrastructures such as
power stations, waste water treatment facilities, traffic lights, and many more. Lately, these systems have
become a popular target for cyber attacks. Both during their design and while operational, security is often
an afterthought, leaving them vulnerable to all sorts of attacks.
This paper presents a formal approach for analysing the security of Industrial Control Systems. A
knowledge-based system, namely IDP, is used to analyse a model of the control system and extract system
vulnerabilities. In this paper we present the input model of the methodology and the inferences and queries
that allow the system to extract vulnerabilities. This methodology has been added to an existing framework
where the user can model his system in the modeling language SysML. This SysML model then gets parsed
into suitable IDP input. A fully working prototype has been developed and the approach has been validated
on a real case study.

Keywords: industrial control systems security, critical infrastructure protection, formal modeling, IDP

1. INTRODUCTION

Industrial control systems used to be isolated,
proprietary systems. The only security concern was
physical access to the system. With the evolution
of IT in these last decades, this is no longer
true. ICS now often consist of Commercial Off-The-
Shelf (COTS) components, and are connected to a
company network and the internet. These changes
have made them easier to use, but also more
vulnerable to attacks ENISA (2011).

Typical IT solutions are not always applicable
to these systems. Their critical nature introduces
additional requirements such as high determinism
and response times. Reliability of the network is
more important than in most IT applications. For
these reasons, applying patches to fix vulnerabilities
is not always possible, especially if they require
a reboot of the system Tom et al. (2008).
Patch management is often an important aspect of
maintaining ICS.

Due to their critical nature, attacks on these systems
could have disastrous consequences. Previous
attacks on ICS illustrate this. Famous examples are
the Maroochy Shire sewage spill in Australia Abrams
and Weiss (2008), and the Stuxnet worm in Iran
Matrosov et al. (2011); Falliere et al. (2011). The
former caused 800.000 litres of raw sewage to spill
into local parks and rivers, the latter was used to
sabotage the fuel enrichment plant of Natanz in Iran.
Langner (2013).

The Stuxnet worm was discovered in 2010. Industrial
control system security has been a popular research
topic since. Organisations such as NIST/ISA/ISO
have produced security standards and guidelines
for adequately protecting these systems Stouffer et
al. (2015); ANSI/ISA (2013); ISO/IEC (2008).
This work presents a tool that performs a security
analysis of an ICS model based on these standards
and guidelines. The modeling is done in SysML,
while the analysis is done using the Imperative
Declarative Programming (IDP) framework.

c© Lemaire et al. Published by
BCS Learning & Development Ltd. 1
Proceedings of the 3rd International Symposium for ICS & SCADA Cyber Security Research 2015

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

Contribution. This paper presents a model-based ap-
proach for the security analysis of industrial control
systems. The control systems are represented as
IDP instances. A logic theory inside the IDP frame-
work then extracts vulnerabilities from the system.
Vulnerability databases are included in the input
model to extract vulnerabilities at the component
level. Rules in the logic theory assess what the
impact of these component vulnerabilities is at the
system level. The methodology gives feedback about
the implications related to security in various set-
tings, for instance attackers of different skill levels
can be modeled. The security aspects we currently
focus on are authorization and authentication. Our
system checks if a provided policy specification is
respected by the control system. For instance if the
policy specifies that a certain user should not be able
to modify a parameter in the system, it is checked
whether this is actually the case. A prototype of the
tool has been created and has been validated on a
real case study.

This logic has been added to a framework which
allows the user to model the system with SysML,
the Systems Modelling Language. The resulting XML
file gets parsed to input that is accepted by the IDP
framework. Then the security evaluation takes place
Lemaire et al. (2014).

Outline. The structure of this paper is as follows.
Section 2 gives an overview of related work. Our
case study, which will be used throughout the
remainder of this paper, is presented in Section 3.
Section 4 details the approach and introduces the
IDP system. In Section 5 we discuss the input model
that will formally represent the industrial control
systems in IDP. Section 6 contains the inferences
and queries that are used to extract vulnerabilities.
The validation on our case study is presented in
Section 7. Finally, Section 8 concludes the paper and
contains future work.

2. RELATED WORK

In Pai and Bechta (2002), the authors use UML
system models to automatically create dynamic fault
trees (DFTs). These DFTs are then analysed to
compute the reliability of a system. Our methodology
applies a similar approach. We use the Systems
Modeling Language (SysML) instead of UML. SysML
extends UML with several new or modified diagrams
and is more suited for modeling systems or systems-
of-systems. Further, our approach does not aim to
draw conclusions regarding reliability, but focuses
on security instead. Currently there is a lack of
attention for system security in model-based system
engineering, as discussed in Oates et al. (2013).
Our tool fills this gap.

Other tools exist that perform a security analysis
on industrial control systems. CySeMoL estimates
the probability that attacks succeed against an
enterprise system Sommestad et al. (2013, 2010).
Similar to our method, CySeMoL allows users to
change their system architecture and view the
resulting changes on the attack probabilities. For
their attack probabilities, CySeMoL assumes that the
attacker is a penetration tester who only has access
to public tools. More powerful attackers must be
considered. Our tool also incorporates vulnerability
databases to extract vulnerabilities at the software
and hardware level.

The ADVISE security modeling formalism LeMay
et al. (2011) establishes which way an attacker
is most likely to go about attacking a system.
To this end, both the system and the attacker
are modeled. ADVISE has been implemented in
the Möbius framework Ford et al. (2013) to
make use of its modeling formalisms and solution
techniques. ADVISE does not draw from vulnerability
databases, it assumes the vulnerabilities in the
system are already known. Our tool attempts to
find such vulnerabilities and could hence be used in
combination with ADVISE.

The result of our system analysis is also different
from the one in the above tools. ADVISE and
CySeMoL calculate the probability that certain
attacker goals can be reached. Our approach will
check whether a provided policy specification holds
true in the industrial control system. The modeler
will submit a policy matrix detailing which users can
do certain operations on the process parameters.
Our logic component will then check whether this
specification holds true in the control system. If this
is not the case, traces will be returned to detail which
vulnerabilities or component properties cause the
specification to not hold true.

Tools exist that take vulnerability databases into
account, but these focus mainly on network security
and are not tailored to ICS. For instance MulVAL
Ou et al. (2005) is a tool that models networks in
Datalog to perform a network vulnerability analysis.
The tool uses an OVAL scanner to find reported
software vulnerabilities in a network and returns their
impact on the system.

A similar tool is Cauldron Jajodia et al. (2011).
Cauldron contains several vulnerability databases,
such as NIST’s National Vulnerability Database
(NVD), the Bugtraq security database, Symantec
Deepsight, etc. It integrates with vulnerability
scanners such as Nessus, Retina, and Foundscan,
to populate its network model. Cauldron draws
on these sources to find the vulnerabilities in

2

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

a network and automatically generates mitigation
recommendations.

Both MulVAL and Cauldron focus on network secu-
rity. Our tool is aimed at industrial control systems,
the vulnerability databases we draw from reflect
this. Currently our logic theory only contains the
ICS-CERT vulnerability database, which contains
vulnerabilities in ICS components (PLCs, industrial
operating systems, HMIs, historians, . . .). More vul-
nerability databases will be incorporated later.

3. AN INDUSTRIAL HATCHERY

The approach presented in this paper has been
tested on a real case study. The case study is a
hatchery. The incubators used in this hatchery are
manufactured by one of our industry partners.

The hatchery consists of sixteen incubators, twelve
setters and four hatchers. Each incubator can hold
up to 115200 eggs. Eggs are initially put in one of
the setter incubators, where they are turned hourly.
Then they get transferred to the hatcher incubators
to hatch. Each incubator consists of various sensors
and actuators that are connected to a PLC. At
the front of the incubator a touchscreen is used
for monitoring and controlling the parameters. Each
incubator room has a switch that all PLCs in that
room are connected to. This switch is connected to
a wireless router which can be used for accessing
the incubators with a mobile device, using an app
that can take control of the touchscreens. The
room switches are all connected to a switch in a
centralized location. In this location we also find a
server that is used by the manufacturer to connect to
the hatchery remotely. There is also an industrial PC
that logs all the data and can be used to control all
incubators.

The touchscreens and industrial PC utilise role
based access control. There are currently four
different types of users in the hatchery. The least
privileged users can look at the different parameters,
but not change them. Additionally, they can reset
the incubator alarms or turn off the sound. This is
meant for cleaning personnel and technicians. The
second lowest level is used by the operators of the
hatchery. This usergroup can change all parameters
of the incubators, including the temperature settings,
humidity, CO2 levels, etc. The local managers make
up the third level. They are able to do all the above,
as well as change operator passwords, export data
regarding login lists and alarms to USB, and so on.
The highest level is reserved for the manufacturer
of the incubators. When they log on remotely using
their password, they also get access to additional

information regarding errors and failures, so they can
assist when problems occur.

4. APPROACH

In this section the approach is presented. Figure 1
gives an overview of the major components of the
modeling approach.

The System Independent Modeling part consists
of the Vocabulary (V) and the Theory (T). These
remain the same for all systems. The Vocabulary
consists of three parts, an input vocabulary to specify
the types, predicates and functions that are used in
the input model, a reasoning vocabulary that defines
the same constructs used in the theory, and finally
an output vocabulary to represent conclusions. The
theory contains the logic that will be applied to the
model to extract the vulnerabilities. There are two
sets of rules. One set is run on the input model
to expand it. A second set with queries then gets
applied to the expanded model to draw conclusions.

The Input Model (MI) consists of an ICS Model
(MS), a User Model (MU), a Policy Specification
(MP), and a Vulnerability Model (MV). The ICS
Model represents the industrial control system. This
is done in three layers. At the top layer we model
the process specification, which consists of the
process parameters and operations. For instance,
each incubator has a temperature parameter which
can be modified, and an alarm that can be turned
on or off. Then we model the architecture of the
control system. This includes all the components
and the modules they consist of. An example of
a component is a supervision PC which consists
of several software modules that allow users
to control or monitor system parameters. Finally,
security mechanisms of the control system are
modeled. This currently focuses on authorization
and authentication of users and components. In the
future, this framework can easily be expanded to
include additional security properties.

In the User Model, different user groups can be
defined by the modeler. Each group gets the
appropriate credentials associated with them, and
other properties that determine how powerful they
are. For instance, which components or networks in
the system they can access. Attackers are modeled
in the same way. They can be given the same
credentials and properties as one of the user groups
to reason about internal adversaries.

The Policy Specification is a list of user permissions.
The modeler will indicate which users should be
able to do operations on system parameters. This
specification will then be checked by the logic rules.

3

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

Figure 1: Framework for extracting vulnerabilities from industrial control systems.

The Vulnerability Model contains vulnerability data-
bases that will identify component vulnerabilities in
the system. Currently only the ICS-CSR database
is included, but the framework allows for other data-
bases to be added in the future. It is also possible
for the modeler to introduce vulnerabilities in compo-
nents to check their impact on the system security as
a whole. For example, a user can mark a certain HMI
as being vulnerable to a Denial of Service attack,
and then check if the control system can still have
its desired functionality, e.g. whether the appropriate
user groups can still read and modify parameters
they are authorized to.

The Logic Component is a logic tool that automates
the reasoning on formal models. For our work
we have chosen to use the IDP system. IDP is
a state-of-the-art declarative programming system
developed at KU Leuven. IDP supports reasoning
on expressions in a high-level formal language that
extends first-order logic, called “The IDP language”.
This language adds aggregates, partial functions,
inductive definitions, etc. to first order logic to make
it easier for users to specify their problem. IDP is
used to solve search problems using, amongst other
methods, model expansion Wittocx et al. (2008);
Bogaerts et al. (2012).

Once a control system is modeled in the IDP
framework, the logic theory can be used to expand
this model, finding a value for previously unknown
data that complies with the theory. If at least one
such expansion exists, the set of resulting models
is returned. If there is no expansion possible from
the structure that does not violate the components

in the theory, it is possible to identify which theory
components were violated by the model.

The major strength of the IDP framework is an
intuitive input language, which allows us to model
problems fluently. The use of inductive definitions,
for example, is very helpful for modeling transitive
closures and other recursive predicates.

Once the logic component has finished analysing
the model, the conclusions are returned. These are
the predicates and functions defined in the output
vocabulary.

5. SPECIFYING THE INPUT MODEL

In this section we show which information the
modeler has to input in order to analyse a particular
system. We use the hatchery from Section 3 as an
example. Not all predicates and functions are shown
here due to space limitations.

5.1. The ICS Model

The ICS Model specifies the control system. This is
split up in three parts. In the Process Specification,
the modeler lists out the Parameters and Operations.
Parameters are the variables of the environment
that the control system interacts with. For instance,
the temperature or humidity inside an incubator, the
status of incubator lights/alarms, etc. The modeler
is free to use his own naming conventions for these
parameters. Here we will refer to the temperature
of the first setter incubator as parameter TempS1,
and so on. Operations are the actions that users of

4

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

the system can perform on these parameters. We
consider two operations: Read and Modify.

type Parameter
Parameter = {TempS1, AlarmS1 , T empS2, . . .}

type Operation
Operation = {Read, Modify}

In the Architecture, the physical parts of the
control system are modeled. A type SystemPart is
created which will contain all the building blocks
of the system. Type Component is a subtype of
SystemPart. Components are the basic elements of
the systems, for instance a PLC, a touchscreen, a
supervision PC,

type SystemPart
type Component isa SystemPart
Component = {PLCS1, SwitchHatchery, . . .}

Components can consist of several software
processes, which are called modules in our model.
Consider the industrial PC that is used for monitoring
and controlling the incubators at the hatchery. In this
PC we will distinguish two modules, one to represent
the operating system (OS), and one to represent the
software process that can influence the parameters
of the control system.

type Module isa SystemPart
Module = {ControlIndPC , OSIndPC , . . .}

Modules are associated with components using a
SoftwareModule predicate:

SoftwareModule(Module, Component)

Components have their product and version informa-
tion associated with them using a predicate. This will
be used to find component vulnerabilities, which is
explained in the next section.

type Product
type V ersion
Switch(SystemPart, Product, V ersion)

Using predicates Measure and Control, components
and modules are connected to the parameters they
measure or control.

Measure(Component, Parameter)
Measure = {(AlarmSensorS1 , AlarmS1), . . .}

Control(Module, Parameter)
Control = {(ControlIndPC , T empS1), . . .}

The modeler also indicates which Networks are con-
sidered in the control system and what components
are placed in them. In this context a Network is any

collection of components that are connected to each
other and can exchange information.

Network = {NetworkHatchery , . . .}
NetworkLocation = {(PLCS1 ,
NetworkHatchery), . . .}

Finally, the relevant Security Properties are asso-
ciated with the components and modules by using
predicates. Currently the focus lies on Authentica-
tion, Authorization, and Vulnerabilities introduced by
the modeler, but the framework allows for adding
more categories of properties.

Authentication is achieved by using tokens (pass-
words, keys, . . .). Modules get tokens associated
with them. If users possess the correct tokens, they
can authenticate themselves to these modules and
make use of their functionality.

type Token
Token = {PasswordIndPC , . . .}
Authentication(SystemPart, T oken)

Authorization specifies which tokens are required on
a certain module to control process parameters. For
instance, a certain password PwTechnician might give
the user access to the alarm parameters, but not the
temperature, whereas password PwManager gives
access to all.

Authorization(PwManager , ControlIndPC , T empS1)

If a manager now successfully authenticates to the
module using PwManager , he will be able to control
the parameter. Which operations the manager can
do on this parameter is modeled in the policy
specification explained below.

5.2. The User Model

The User Model lists the users in the system and
assigns properties to them. Various Attackers of
different strength can be included in the model. They
are modelled in the same way as other users and
only differ in name.

type User
User = {Technician, Operator, Manager,
InternalAttacker, . . .}

Credentials and properties can then be associated
with the different user groups or attackers by using
the predicates provided in the vocabulary. For
instance if we want to specify that the manager has
the password required to access the industrial PC,
the following lines are added to the model:

HasToken(User, T oken)
HasToken = {(Manager, PasswordIndPC), . . .}

5

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

Table 1: Part of the Policy Specification.

Similarly, other predicates allow the modeler to
specify which networks a user has access to, or
what components he can physically access. All these
predicates can also be assigned to the attackers.

5.3. The Policy Specification

The Policy Specification details the permissions of
the users. By this we mean which operations the
users should be able to do on the control system
parameters. The modeler provides this list when
modeling the system and then the logic theory will
check whether the control system complies to this
specification.

Permission(User, Parameter, Operation)

Table 1 shows a list of permissions from the hatchery
case study. This is not the full policy specification,
the full example contains too many parameters to list
here.

An attacker should not be able to read or modify
any parameters in the system. Technicians are able
to turn the incubator alarms on or off, but they are
not authorized to make any other modifications. The
operators and managers have full control over all
parameters.

5.4. The Vulnerability Model

The Vulnerability Model consists of two parts.
One part contains Vulnerability Databases that will
find Component Vulnerabilities. The other part are
vulnerabilities introduced by the modeler, allowing
the modeler to simulate attacks on the system.

Component vulnerabilities are associated with the
software or the hardware of a certain component.
For example, a certain version of a PLC might have
an error in it that causes a denial of service attack.
If this PLC is present in the control system that is
being modeled, the user should be made aware of
this vulnerability.

To make this possible, the vulnerabilities in the
ICS-CERT database have been converted into IDP
rules. The database contains alerts and advisories.
Alerts inform the user about newly discovered
vulnerabilities in ICS equipment, whereas advisories
contain fixes and mitigations. Both have been

included in IDP Lemaire et al. (2014). Additional
vulnerability databases will be included in the logic
theory in the future.

Component vulnerabilities are represented with the
following predicate:

HasV ulnerability(SystemPart, V ulnerability)

Simulation. We want the user to have the
possibility to flag components with a certain type
of vulnerability. For instance, if a user wants to find
out what would happen if a supervision PC was
vulnerable to a denial of service attack, he should
be able to flag this PC as vulnerable. This is done by
adding a simple predicate:

SimulateDoS(SystemPart)

There are several categories of component vulnera-
bilities, and they each have their Simulate predicate.
This is explained further in the next section.

6. FINDING VULNERABILITIES IN THE ICS

In this section we will focus on the rules in the Theory
that extract vulnerabilities. We show the interaction
between component and system vulnerabilities.

Component Vulnerabilities. The component vul-
nerabilities are grouped in categories which will be
used later. For instance, BufferOverflow, HeapOver-
flow, MemoryCorruption, . . . are all vulnerabilities
that can potentially cause a Denial of Service. Hence
we can group them together as follows:

∀x[SystemPart] : HasDoSV uln(x) ←
HasV ulnerability(x, BufferOverflow) ∨
HasV ulnerability(x, HeapOverflow) ∨ . . .

All component vulnerabilities are assigned to
one or more categories. Other categories include
Escalation of Privilege, Data Leakage, Bypass of
Authentication, . . . The categories are based on
the threats we currently consider in the system
vulnerability rules.

Remember the user is also able to directly
flag components as vulnerable. Both ways of
finding vulnerabilities are combined with one final
disjunction:

∀x[SystemPart] : DoS(x) ← HasDoSV uln(x) ∨
SimulateDoS(x)

Now these various categories can be used in system
vulnerabilities.

System Vulnerabilities. The vulnerabilities in the
previous section are at the component level.

6

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

Figure 2: A conceptual representation of parameter
accessibility.

Having an overview of which components contain
vulnerabilities is useful, but system security as a
whole is even more important. A set of rules is
present in the theory which evaluates this, we refer
to these as system rules.

Currently the system rules focus on authentication
and authorization. To give the reader a feel for these
rules, the rest of this section will give an example
of a set of system rules related to authorization
that deal with parameter accessibility. By this we
mean the ability for users to read or modify process
parameters, for example reading the temperature of
an incubator, or turning of an incubator alarm. The
desirable situation is that users are able to control the
parameters that they are authorized to control, which
is specified by the modeler in the policy specification.

Figure 2 shows the parts of the system that are
considered in this parameter accessibility example.

If a certain software module is able to control a
parameter, a credential needs to be authorized to
use the software to change said parameter, the user
must also be able to authenticate to the module, and
the user must have access to the component that
contains the module. The component containing the
module must also be able to reach the network of the
actuator that controls the parameter in order to send
commands to it.

Some of this information is taken directly from the
model and represented as predicates. These are
listed below:

– Control(Module, Parameter). This predicate
associates software modules with the parame-
ters they can control. For instance, the control
module inside the Industrial PC in the hatchery
is able to change all incubator parameters, this
is represented in the structure as Control =
{(ControlIndPC , T empS1), . . .}.

– LocationRequirement(Parameter, Network).
A predicate that indicates what network
components have to reach in order to control
a given parameter.

– NetworkLocation(SystemPart, Network).
Associates system parts with the network they
are in.

– Authorization(Token, Module, Parameter).
This predicate lists tokens that are re-
quired to control parameters on a mod-
ule. Authorization(PwManager , ControlIndPC ,
S1T) indicates that when logging in using the
manager password on the industrial PC, it is
possible to control the temperature of setter 1.

– Authentication(SystemPart, Token). These
pairs indicate the authentication details of the
components.

The other predicates are initially empty, and
get filled up based on the information in the
model. Definitions are provided in the logic theory
for filling up these predicates. The end result
is a predicate ModifyParameter(User, SystemPart,
Parameter) which includes all triples of users that
can control parameters through a certain system
part. The definition of this predicate is provided
in IDP Listing 6. The different parts are explained
below.

The first three predicates on the right side of
the definition, Control(x,z), Authorization(t,x,z), and
HasToken(u,t) are simple checks on the model to
see if a user is authorized to use a certain software
module that is able to control the parameter.

Next is authentication, the definition says that
either the user can prove all credentials of
the Module (AllCredsProven(x,u)), or there
are no credentials required (NoCreds(x)).
AllCredsProven(Module,User) is defined as follows:

∀x[Module] u[User] : AllCredsProven(x, u) ←
(∀ o[Token] : (Authentication(x, o) =⇒
HasToken(u, o))).

In order to authenticate to a module, the system
checks which tokens are required, and then confirms
the user possesses all these tokens.

Reachable(User,Module) indicates whether a user
has access to a module. This can be either physical
access to the module or logical access from a remote
component.

(SoftwareModule(x, y) ∧
LocationRequirement(z, n)) =⇒
NetworkLocation(y, n) says that if module x is
on component y, and the parameter can only be
controlled from network n, then component y must
be in network n to modify the parameter using
module x.

7

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

IDP Listing 1: The definition for parameter accessibility.

Finally, if there are component vulnerabilities that
allow an attacker to take down a module by
performing a Denial of Service (DoS) attack, it is
possible that the module can not be used, and hence
the user can not reach the parameter through the
module. This is represented by DoS(x).

Queries. Once the definitions have completed all
the predicates and the model is fully expanded, it
is possible to check whether certain properties hold.
A second theory contains logic rules that do exactly
this. These rules are referred to as queries.

For the above example, we could check whether the
triples in ModifyParameter are consistent with the
policy specification submitted by the modeler. This
would indicate that no unauthorized users are able
to change parameters, and the authorized users can.
Such a query is constructed as follows:

∀u[User] s[SystemPart] p[Parameter]
: ModifyParameter(u, s, p) . . .
P ermission(u, p, “Modify”).

Other queries check various other security proper-
ties of the model, e.g. whether users have access to
networks they should not have access to, or physical
access to protected components; whether users can
change device configurations they are not authorized
to, etc.

When IDP evaluates and there are no models that
satisfy the queries, it can be asked to print a minimal
subset of the given theory that is unsatisfiable given
the structure. It is shown step by step how a rule in
the theory fails. This allows an operator to identify
which vulnerabilities are critical when it comes to
system security. The printing is achieved by adding
the printcore(theory,structure) command in the main
call.

7. EVALUATION

The case study from Section 3 has been modeled
and analysed in IDP. Several vulnerabilities were
found.

Our modeling approach works in two iterations.
During the first iteration, we use our logic rules
to complete all the predicates in the model. This
includes the HasVulnerability predicate, hence we

already identify component vulnerabilities during this
iteration. Then, during a second iteration, the queries
are run on this completed model, to find security
vulnerabilities at the system level.

No component vulnerabilities were found. None of
the components used in this hatchery are present in
the vulnerability databases that are checked.

At the system level, an authorization vulnerability
was found. The HMI touchscreens on the incuba-
tors have role-based access control implemented.
However, the PLCs they are connected to do not.
If an attacker finds a way to overwrite flags in the
PLC directly, he can change the parameters of the
incubators without being authorized to do so. The
PLC programming software provides such a way.
The PLC manufacturer provides a free trial download
of the programming software on their website. Some
basic registration is required, but anyone can access
the software. It is then sufficient to get access to
the network the target PLC is part of, and know the
PLC IP address. Various network scanners can be
used to find out the IP address. Once known, the
programming software can be used to change this
PLC directly.

The way our tool inferred this vulnerability is
illustrated in the following listings. The query that is
violated is shown in IDP Listing 6, which states that
users should only be able to change a configuration
of a module, if they have the authorization to use that
module for modifying parameters. When the query
fails, the trace in IDP Listing is returned, allowing the
user to infer why the query has failed. In this case, we
see that the configuration of setter 1 can be changed
by technicians, allowing them to change parameters
of this setter, which they are not authorized to do.
The system has inferred the fact that technicians can
change this configuration by noting that they have
network access to the hatchery network, and access
to the PLC programming software.

The full evaluation process takes 2.24 seconds.
Further tests suggest the runtime scales well with
more rules or bigger systems.

This approach has been added to the framework
described in Lemaire et al. (2014). The framework
allows the user to model the control system in SysML
rather than straight in IDP, which can be useful for

8

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

IDP Listing 2: The IDP query that was not satisfied

IDP Listing 3: The final lines of the output, showing the trace of the failed model

complex systems. A parser has been written that
is able to convert a SysML model XML file into the
correct input for the IDP system.

8. CONCLUSIONS

This paper presents a tool that automates the
security analysis of industrial control systems. The
approach uses modeling and formal reasoning
to accomplish its goal. A logic theory in a
knowledge-based system extracts vulnerabilities on
a component and system level. The rules in the
logic theory are taken from vulnerability databases
and ICS security standards and guidelines. Once
the vulnerabilities are extracted, the user can
change the model accordingly to reason about the
effects of component changes or newly introduced
vulnerabilities on system security.

A first version of the tool is ready and has been
tested on a real case study.

Currently the results are being displayed in a text
file as standard IDP output. Future work will include
representing the vulnerabilities in a SysML diagram
that is part of the model. There are also additional
sets of system rules that still need to be included in
the logic theory.

REFERENCES

Abrams, M. and Weiss, J. (2008) Malicious
control system cyber security attack case study–
Maroochy water services, Australia.

ANSI/ISA-62443-3-3 (99.03.03) (2013) Security for
industrial automation and control systems part
3-3: System security requirements and security
levels.

Bogaerts, B. et al. (2012) The IDP framework
reference manual.

ENISA (2011) Protecting industrial control systems:
Recommendations for Europe and member states.

Falliere, N., Murchu, L., and Chien, E. (2011)
W32.Stuxnet Dossier.

Ford, M. D. et al. (2013) Implementing the ADVISE
security modeling formalism in Möbius. In: 2013
43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN),
1–8.

ISO/IEC 21827 (2008) Information technology – se-
curity techniques – systems security engineering
– capability maturity model (SSECMM) Geneva,
Switzerland.

Jajodia, S. et al. (2011) Cauldron mission-centric
cyber situational awareness with defense in depth.
In: Military Communications Conference, 2011-
MILCOM 2011 1339–1344.

Langner, R. (2013) To kill a centrifuge: A technical
analysis of what stuxnets creators tried to achieve.

Lemaire, L. et al. (2014) A SysML extension for
security analysis of industrial control systems. In:
Proceedings of the 2nd International Symposium
for ICS & SCADA Cyber Security Research, 1–9.

LeMay, E. et al. (2011) Model-based security met-
rics using adversary view security evaluation
(ADVISE). In: 2011 Eighth International Confer-
ence on IEEE Quantitative Evaluation of Systems
(QEST), 191–200.

Matrosov, A. et al. (2011) Stuxnet under the
microscope.

9

Extracting Vulnerabilities in Industrial Control Systems using a Knowledge-Based System
Lemaire • Vossaert • Jansen • Naessens

Oates, R., Thom, F., and Herries G. (2013) Security-
aware, model-based systems engineering with
SysML. In: Proceedings of the 1st International
Symposium for ICS & SCADA Cyber Security
Research. 78.

Ou, X., Govindavajhala, S., and Appel, A. W. (2005)
MulVAL: A logic-based network security analyzer.
In USENIX security

Pai, G. J. and Bechta D. J. (2002). Automatic
synthesis of dynamic fault trees from UML system
models. In:ISSRE 2003 Proceedings 13th IEEE
International Symposium on Software Reliability
Engineering, 243–254.

Sommestad, T., Ekstedt, M., and Holm H. (2013)
The cyber security modeling language: A tool for
assessing the vulnerability of enterprise system
architectures. IEEE Syst. J., 7 (3), 363–373.

Sommestad, T., Ekstedt, M., and Nordström L.
(2010) A case study applying the cyber security
modeling language.

Stouffer, K. et al. (2015) Guide to industrial control
systems (ICS) security.

Tom, S., Christiansen, D., and Berrett, D. (2008)
Recommended practice for patch management of
control systems.

Wittocx, J., Mariën, M., and Denecker M. (2008).
The IDP system: A model expansion system for
an extension of classical logic. In: Proceedings of
the 2nd Workshop on Logic and Search. 153–165.

10

