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O rgan replacement field is now solidly entrenched in 
modern medical therapy. Numerous patients have 

received new kidneys, livers, and hearts. Other organs (lung, 
pancreas, and intestine) are also routinely transplanted, 
although in less numbers. Organ replacement therapy 
have resulted in more active, productive, and meaningful 
lives of recipients of all organs.[1,2] Although a success, 
but transplantation raises a number of bioethical issues,[3] 
including obtaining consent and payment for an organ to be 
transplanted.[4,5] Other ethical issues include transplantation 
tourism and the socio‑economic context in which organ 
harvesting or transplantation may occur. Limited supply 
of organs is causing serious crime of organ trafficking. 
Compensated donation  (donors get money or other 
compensation in exchange for their organs) is common in 
Pakistan, India, China, and some other countries and helps in 
driving medical tourism.[6] The gap between organ need and 
organ availability continues to widen despite very substantial 
public education efforts on organ donation. This background 

needs to be dealt with immediate attention and demands for 
finding an alternative source of organ transplantation.

Groundbreaking achievements in regenerative medicine 
have generated interest in transplant researchers and they 
are exploring possible regenerative medicine applications in 
organ transplantation so that coming together of the two fields 
can benefit one another. New technologies consisting of stem 
cells and tissue‑engineering have potential for augmenting 
organ function or repairing damaged organ. If explored to 
their full potential organ bio‑engineering and regeneration 
technologies hold the promise to address two most urgent 
needs in organ transplantation, namely, the identification 
of a new, potentially inexhaustible source of organs and 
immunosuppression‑free transplantation of tissues and 
organs.[7] The present review aims to illustrate the strategies 
that are being implemented to regenerate or bio‑engineer 
human organs for clinical purposes.

A web‑based research on MEDLINE was done for collecting 
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data for the review. To limit our research to relevant articles, 
the search was filtered using terms Review, published in 
the last 10 years in MEDLINE journals. Keywords used for 
research were “regenerative medicine,” “tissue‑engineering,” 
“bio‑engineered organs,” “decellularized scaffold” and 
“three‑dimensional  (3D) printing.” This review screened 
about 170 articles to get the desired knowledge update. 
Important cross references were also studied and only relevant 
information was compiled.

Techniques for Organ Regeneration used in 
Regenerative Medicine

Regenerative medicine is the “process of replacing or 
regenerating human cells, tissues or organs to restore or 
establish normal function.”[8] It helps in regenerating damaged 
tissues and organs in the body by replacing damaged tissue or 
healing previously irreparable tissues or organs. The various 
techniques that are being used for organ regeneration include 
cell transplantation/cell therapies; organ generation using a 
single adult tissue stem cell, a blastocyst complementation 
system coupled with a specific stem cell niche, decellularization 
and recellularization of bio‑scaffold, in vitro grown organs and 
tissues through concepts of tissue‑engineering, organ printing, 
and xenotransplantation.

Cell therapy

Although, the goal of regenerating a functionally complex 
organ is still far‑off and controversial, cell transplantation/
cell therapy is a practical procedure. Cell therapy can be 
defined as a therapy in which cellular material is injected 
into a patient.[9] There are two divisions of cell therapy. The 
first category includes transplantation of human cells from a 
donor to a patient. It has strong prospects for future growth. 
Therapeutic applications include neural stem cell therapy, 
mesenchymal stem cells (MSCs) therapy and others such as 
hematopoietic stem cell transplantation. Such therapies have 
shown promising results in cases of osteogenesis imperfecta,[10] 
Hurler’s Syndrome patients,[11] myeloid malignancies[12] and 
other blood cell diseases. A milestone was hit in the field of 
neural stem cell therapy in 2009 when the US food and drug 
administration granted permission to the company Geron to 
initiate the world’s first human clinical trial of an embryonic 
stem cell‑based therapy for acute spinal cord injury. Initial 
preclinical testing showed the method was safe and efficient 
in improving locomotor skills in animal models.[13] However, 
Geron discontinued the clinical trials because of financial 
difficulties. Recently, functional regeneration of supraspinal 
connections in a patient with transected spinal cord was 
achieved following transplantation of autologous bulbar 
olfactory ensheathing cells with peripheral nerve bridging.[14] 
Cell transplantation method for replacing myocardium and 
clinical trials for cardiac cell therapy are being prioritized and 
funded in multiple countries.[15,16] Cell therapy can be performed 
with much less risk to the patient. Furthermore, it can also be 
applied to patients who are severely ill and would not be able to 
tolerate organ transplantation. This approach holds a promising 

future, but is challenged by shortage of donor cells, poor cell 
survival as well as by low transplant efficiency and may lack 
true regeneration. The second category includes the practice 
of injecting animal materials to cure disease. This practice, 
lacks any medical evidence of effectiveness and can have very 
serious consequences.[9]

Generation of a functional organ from a single adult 
tissue stem cell

This approach involves the generation of an entire organ from a 
single stem cell purified from the tissue. Utilizing this concept 
successful generation of secretory mammary glands was achieved 
by transplanting single stem cells isolated from adult mouse 
mammary glands into the fat‑pad in mice.[17,18] Similarly, using 
a colony‑formation in vivo assay and an in vivo renal capsule 
transplantation approach, Leong et  al., have also reported 
that a single stem cell isolated from the adult mouse prostate 
epithelium has the capacity to generate a functional prostate.[19]

Generation of organs using a blastocyst complementation 
system

Originally reported by Chen et al.,[20] this approach can be used 
to create chimeric animals that have organs belonging to another 
species. This approach is based on the concept that a missing 
organ can be generated from exogenous cells when functionally 
normal pluripotent cells chimerize a cloned dysorganogenetic 
embryo. The concept was successfully applied to generate 
pluripotent stem cell (PSC) – derived rat pancreas and kidney.[21,22] 
This blastocyst complementation system may provide a novel 
approach for organ supply by generating specific human organs 
from various PSCs injected into xenogeneic sources.

Decellularization of matrix bioscaffolds and 
recellularization with stem cells

In this decellularization of tissues and organs is done 
to generate acellular biologic scaffolds with preserved 
extracellular matrix  (ECM) that can be recellularized with 
selected progenitor cell populations. Decellularized organs 
provide the ideal transplantable scaffold with all the necessary 
microstructure and extracellular cues for cell attachment, cell 
differentiation, cell vascularization, and cell function. In 2008, 
Macchiarini et  al. performed the first adult stem cell grown 
trachea transplant[23] obtained by decellularizing deceased 
donor trachea leaving behind connective tissue scaffold which 
was then re‑seeded with cells from the recipient (chondrocytes 
on the outer surface and epithelial cells on the inner surface). 
This approach has been extended to treat patients with tracheal 
cancer. Successful seeding of decellularized mouse heart as 
scaffolds with induced pluripotent stem cell  (iPSC)‑derived 
cardiovascular progenitor cells has also been reported.[24] One 
of the first reports to successfully recellularize decellularized 
scaffolds with human liver cells was by Baptista et  al., who 
demonstrated the potential for the colonization of human 
hepatocyte progenitors on a decellularized liver matrix.[25] 
Literature shows successful utilization of decellularized scaffolds 
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for tissue‑engineering of lung,[26] urinary bladder,[27] urethra,[28] 
and blood vessel.[29]

Decellularization‑recellularization technique can also be 
utilized for organ engineering for digestive tract regeneration 
and replacement. Isch et  al.,[30] used decellularized human 
skin for patch esophagoplasty and reported successful healing 
of epithelial injury of the esophagus. Badylak et  al.,[31] used 
decellularized xenogeneic urinary bladder as a scaffold 
re‑seeded with autologous muscle cells, resulting in functional 
reconstruction of the esophageal wall clinically. Mertsching 
et  al.,[32] investigated a transplantable intestine vascularized 
with human endothelial cells.

Extracellular matrix scaffolds are currently used for arterial 
grafts, heart valves, dura mater grafts, skin reconstruction, 
urinary tract reconstitution, and orthopedic applications. 
Some of the scaffolds are available commercially including: 
Porcine heart valve  (Hancock II), bovine pericardium heart 
valve  (Perimount Magna), human heart valve  (Synegraft), 
human dermis  (Alloderm), porcine small intestinal 
scaffold (OaSIS), and decellularized bone (Allograft c‑ring).[33]

Tissue‑engineering

Concurrent growth in the fields of material bio‑engineering and 
cell biology has led to the possibility to grow tissue‑engineered 
organs. Bio‑engineered organs have advantage of not prone to 
transplant rejection as they rely on a patient’s own cells.

Tissue‑engineered small intestine

It offers a potential autologous therapy that avoids the 
problems of donor graft supply for intestinal transplant 
and long‑term immunosuppression. Originally described 
by Vacanti et  al., tissue‑engineered small intestine  (TESI) 
has been produced by in  vivo implantation of organoid 
units, which are multicellular clusters of epithelium and 
mesenchyme harvested from the native intestine. These 
organoid units are seeded onto a scaffold and implanted into 
the omentum of the host resulting in TESI.[34] TESI exactly 
recapitulates histology of the native intestine showing all four 
epithelial lineages in conjunction with lamina propria, nerve 
elements, and muscularis mucosa along with enteric neuronal 
plexuses. However, it did not regenerate the alignment of 
the circular and longitudinal smooth muscle that is crucial 
for generating appropriate force and motility to facilitate 
nutrient absorption.[35]

Bladder

Various natural and synthetic biomaterials such as gelatin 
sponge, plastic mold, lyophilized human dura, small intestinal 
submucosa etc., have been used for urinary bladder regeneration 
with a wide range of outcomes.[36] An alternative emerging 
method involves growing a bladder from autologous stem 
cells seeded on a bladder‑shaped scaffold.[37] In 2006, the first 
publication of experimental transplantation of bio‑engineered 
bladders appeared in The Lancet.[38] Researchers grew urothelial 

and muscle cells in culture and seeded these cells on a 
biodegradable bladder‑shaped scaffold comprising of collagen 
or composite of collagen and polyglycolic acid. They successfully 
produced bio‑engineered bladders which were then implanted 
back into the patients’ bodies.

Trachea

In June 2011, Macchiarini et  al., successfully implanted an 
artificial trachea in a 36‑year‑old patient with late‑stage tracheal 
cancer. Stem cells taken from the patient’s hip were treated 
with growth factors and incubated on a plastic replica of his 
natural trachea.[24] The advantage of using an artificial structure 
is that the donor is not required, and trachea can be replaced 
within days.

Heart

Tissue‑like cellular patches have been developed by using 
biomaterials acting as a delivery platform for the cells to improve 
the efficiency of stem cell therapies. Porous biomaterials, 
such as alginate or poly‑glycolide‑co‑lactide like polymers, 
have also been tested as cell scaffolds with human embryonic 
stem cell‑derived cardiomyocytes.[39] New strategies like micro 
templating or electrospinning have also been incorporated to 
create scaffolds to control a homogenous seeding of the cells 
allowing an organized and aligned distribution.[40] Scaffold‑free 
cell sheet‑based tissue‑engineering has been introduced by 
Shimizu et al.,[41] for construction of 3D tissue‑like structure. 
Gene therapy that includes direct introduction of transgenes 
into the vasculature or myocardium to control the symptoms 
of diseases and might also reverse the pathological conditions 
is also being studied as a potential treatment option.[42] 
Alternatively reprogramming of endogenous nonmyocytes into 
cardiomyocytes are also being explored but require validation 
before clinical trials.[43]

Kidney

Bio‑engineering has led to successful production of a renal 
assist device with human cells and was successfully used on 
humans in an extracorporeal setting.[44,45] In this approach, 
renal parenchymal cells are harvested and seeded onto the 
internal surface of hemodialysis hollow fibers to mimic the 
resorptive capacity of renal tubules. This bioartificial approach 
using human renal epithelial cells now is referred as renal bio 
replacement therapy and has been used in phase I/II clinical 
trials.[45] It is now being moved into a phase III clinical trial. 
To address the adverse effects of immunosuppressants, 
Lanza et  al.,[46] successfully used nuclear transplantation for 
renal regeneration. Recently researchers have pinpointed the 
precise cellular signaling responsible for kidney regeneration 
and exposing the multi‑layered nature of kidney growth.[47] 
This research opens the pathway to achieve human kidney 
regeneration.

Liver

The “cell sheet” technology developed by Okano et al.,[48] has 
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the potential for successful clinical translation. It consists 
of stacking of upto four hepatocyte cell sheets that can be 
readily engrafted and provide a specific metabolic relief to the 
recipient.[49] Until recently, it was generally believed that liver 
organogenesis could not be reproduced in vitro, but a major 
breakthrough in the production of bio‑engineered livers was 
registered with a study by Takabe et al.,[50] in which they were 
able to construct a liver in a petri dish and hepatic endoderm 
cells  (HEs) derived from human iPSCs  (iPSC‑HEs) were 
cultured with human umbilical vein endothelial cells and 
human MSCs. Such bio‑engineered livers could also be useful 
for evaluating the safety of new drugs.

Ovaries

A precursory human ovary has been developed[51] with 
self‑assembled microtissues created using novel 3D petri dish 
technology with intention of studying in vitro maturation of 
immature oocytes and the development of a system to study the 
effect of environmental toxins on folliculogenesis. Researchers 
in the US have bio‑engineered an artificial ovary that makes 
sex hormones in the same proportions as a healthy one. The 
bio‑engineered ovary shows sustained released of sex hormones 
estrogen and progesterone in vitro. Such bio‑engineered ovaries 
may provide a more natural option for women than hormone 
replacement therapy.[52]

Thymus

Researchers succeeded in rejuvenating a fully involute aged 
thymus.[53] Rejuvenated thymus closely resembled juvenile 
thymus in terms of architecture and gene expression profile. 
The study establishes that upregulation of a single transcription 
factor can substantially reverse age‑related thymic involution. 
The breakthrough can have a broad impact in areas of 
regenerative medicine.

Ear

In 2006, Wada et  al., successfully reconstructed inner ear 
tympanic cavity and mastoid cavity in rats using a biodegradable 
collagen scaffold. Outer ear has also been successfully regrown 
controlling the shape of the ear through shaping of the scaffold 
structure.[54]

Tissue‑engineered skin

An artificial complete skin  (dermis and epidermis) model 
has been developed for the treatment of severe epithelial 
injuries.[55]

Organ printing

Organ printing is a new emerging technology which represents 
an alternative to classic biodegradable solid scaffold‑based 
approaches in tissue‑engineering. Organ printing can be defined 
as layer‑by‑layer additive robotic biofabrication of 3D functional 
living macrotissues and organ constructs using tissue spheroids 
as building blocks.[56] Organ printing involves three sequential 

steps: Preprocessing or development of blueprints for organs in 
which digitized image reconstruction of a natural organ or tissue 
is obtained; processing in which actual organ printing is done 
by layer‑by‑layer placement of cells or cell aggregates into a 3D 
environment; and post‑processing involving perfusion of printed 
organ and accelerated organ maturation.[57] It uses the principle 
of cellular self‑assembly into tissues.[58] Organovo company was 
the first to commercialize 3D bioprinting technology[59] and 
utilizes NovoGen MMX Bioprinter manufactured by Invetech 
partnered with Organovo, which is capable of printing heart 
tissue, blood vessels, skin tissue, etc., Bioprinting technology is 
also being used to produce soft tissues and artificial bones for 
eventual use in reconstructive surgery.[60] Several studies have 
demonstrated the capacity of 3D bioprinting for the generation 
of 3D structures for various tissue regeneration applications, 
including skin,[61] bone tissue constructs[62] and cartilaginous 
structures.[63] Recently a bioresorbable customized tracheal 
splint was fabricated with the use of laser‑based 3D printing, 
to treat a life‑threatening condition in an infant.[64] The 
feasibility of building bioartificial blood vessel‑like constructs for 
research and potential clinical uses has also been demonstrated 
by Bioprinting vessel‑like constructs using hyaluronan 
hydrogels cross‑linked with tetrahedral polyethylene glycol 
tetraacrylates.[65] Duan et  al. fabricated mechanically living 
tri‑leaflet heart valves using 3D printing and multiple valve cell 
populations.[66] Currently, scientists are working on developing 
kidneys, bladders, and hearts using this technique. Though they 
have not yet been able to recreate a fully functional organ, they 
have succeeded in creating small organ models of human heart 
and kidney. The major drawback of these organ models is that 
their lifespan is limited to days rather than years.[67]

Regenerative Applications in Dentistry

Although, in recent years regenerative medicine has undergone 
significant advancement but dentistry is not far behind. 
Regenerative Dentistry promises number of clinical benefits 
that include strategies to repair teeth and restore teeth after 
carious damage, resolve intraosseous periodontal defects and 
advanced grafting procedures for maxilla and mandible.[68] 
Most research is directed towards dentin regeneration, pulp 
regeneration, periodontal regeneration, restoring the resorbed 
root, and repairing the root perforations. In addition, 
tissue‑engineering applications to promote healing of oral 
wounds/ulcers as well as gene‑transfer methods to manipulate 
salivary proteins and oral microbial colonization patterns 
are being studied.[69] Wei et  al., successfully regenerated a 
functional bio‑root structure for artificial crown restoration by 
using allogenic dental stem cells.[70] Successfully functioning 
tooth in a mouse achieved through the transplantation of 
bio‑engineered tooth germ into the alveolar bone have also been 
reported.[71] The feasibility of dental stem cells of American 
alligators to regenerate teeth in humans is also being studied.[72] 
Nondental stem cells for dental applications have also been 
explored. Cai et al., reported a method for growing teeth from 
stem cells obtained in urine.[73] Whole tooth regeneration to 
replace the traditional dental implants is also in pipeline.[74] 
Various regenerative approaches used in endodontics are root 
canal revascularization, postnatal stem cell therapy, scaffold 
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implantation, injectable scaffold delivery, pulp implantation, 3D 
cell printing, and gene therapy.[75] Of all these, only root canal 
revascularization approach is clinically feasible while rest others 
exist in research fields.[76] With new discoveries, innovative 
ideas, and high‑quality research, regenerative therapies have 
the potential to revolutionize dentistry.

Limitations of Organ Bio‑Engineering

Until date, all the successful implanted bio‑engineered organs 
are hollow organs, whereas the bio‑engineering of modular 
organs such as cardiac, renal, hepatic, and pancreatic is still 
far from the realm of possibility.[7] There are certain weak 
links that need to be addressed for achieving success in organ 
bio‑engineering and regeneration. The reported clinical 
implantations of bio‑engineered organs are with short follow‑up 
and insufficient discussion of complications and limitations 
that may occur with time. The iPS cell technology has great 
potential, but it is important to evaluate the methodologies for 
iPS cell generation for their safety and efficacy.[77] The present 
technology does not seem to produce adequate bioreactors 
to mimic in  vivo conditions, i.e., temperature, nutrient, 
and oxygen concentration required for the maturation 
of bio‑engineered organ.[7] Vascularization of implanted 
bio‑engineered constructs is required. Decellularizing process 
to produce accellular scaffold subjects the tissue to number of 
detrimental factors that result in disruption of architecture and 
potential loss of surface structure and composition resulting 
in reduced mechanical properties as compared with those 
of the normal native organs.[78] Thus, optimal methods of 
decellularization should be employed. Furthermore, a wide 
range of non‑ECM proteins are retained in decellularized 
scaffolds with the current techniques of which several retained 
proteins (e.g. histones) are known to be immunogenic.[79]

Seeding techniques, number and types of cells required for 
seeding, and composition and architecture of biomaterials 
are key factors for success in organ bio‑engineering and 
regeneration, and lack or impairment of just one of these factors 
may lead to failure, regardless of whether all other factors are 
appropriate.

Conclusion

The march of regenerative technology has changed our 
concepts of organ transplantation. Although we are not 
theoretically far‑off from beginning to understand human 
regeneration, it still remains a science of future due to ethical 
limitations. Regardless of whether regenerative organ therapy 
succeeds, we believe it may generate new knowledge and new 
visions about how organs may be replaced in the future. It is the 
shared hope that regenerative medicine may one day augment 
organ transplantation by developing a new source of organs 
or potentially rehabilitating those that are not transplantable.
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