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Gasdermin D (GSDMD)-mediated pyroptosis and downstream inflammation are

important self-protection mechanisms against stimuli and infections. Hosts can

defend against intracellular bacterial infections by inducing cell pyroptosis, which

triggers the clearance of pathogens. However, pyroptosis is a double-edged

sword. Numerous studies have revealed the relationship between abnormal

GSDMD activation and various inflammatory diseases, including sepsis,

coronavirus disease 2019 (COVID-19), neurodegenerative diseases,

nonalcoholic steatohepatitis (NASH), inflammatory bowel disease (IBD), and

malignant tumors. GSDMD, a key pyroptosis-executing protein, is linked to

inflammatory signal transduction, activation of various inflammasomes, and

the release of downstream inflammatory cytokines. Thus, inhibiting GSDMD

activation is considered an effective strategy for treating related inflammatory

diseases. The study of the mechanism of GSDMD activation, the formation of

GSDMD membrane pores, and the regulatory strategy of GSDMD-mediated

pyroptosis is currently a hot topic. Moreover, studies of the structure of

caspase-GSDMD complexes and more in-depth molecular mechanisms

provide multiple strategies for the development of GSDMD inhibitors. This

review will mainly discuss the structures of GSDMD and GSDMD pores,

activation pathways, GSDMD-mediated diseases, and the development of

GSDMD inhibitors.
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1 Introduction

The term “pyroptosis” was first proposed in 2001 and consists of “pyro” and “ptosis”,

which represent the features of inflammation (fire or fever) and programmed cell death

(falling), respectively (1). Due to the discovery of diverse pyroptosis-executing proteins,

pyroptosis has been redefined as a form of programmed necrosis mediated by gasdermin

proteins with the characteristics of cell swelling, membrane rupture, and the release of

cellular contents (2, 3). Gasdermins belong to the pore-forming protein family and consist
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of six gasdermin proteins, including gasdermins A-E and DFNB59

(4). Among them, DFNB59 is not associated with the formation of

membrane pores and pyroptosis (5). With the exception of

DFNB59, the members of the gasdermin family have two

domains: an N-terminal domain and a C-terminal domain linked

by a flexible peptide. Upon activation, the cleaved N-terminal

domain is responsible for inducing pyroptosis (6–8). This review

focuses on GSDMD, the most extensively studied executive

pyroptosis-executing protein with the clearest mechanism. More

detailed discussions of other members of the gasdermin family can

be found in other reviews (3, 4, 9, 10).

GSDMD serves as a direct substrate of inflammatory caspases,

including caspase-1/4/5 and murine caspase-11, and is cleaved into

an active N-terminal domain (GSDMD-NT) upon canonical or

noncanonical inflammasome activation induced by exogenous

stimuli or endogenous injuries (6). Recent studies have

demonstrated that caspase-8, which is responsible for apoptosis,

is also involved in GSDMD activation (11, 12). GSDMD-NT

oligomerizes and forms membrane pores, leading to the release of

inflammatory factors such as IL-1b and IL-18, as well as non-

selective ion fluxes (13–16). Massive membrane pore formation

compromises membrane integrity, causing lytic cell death and the

release of cytoplasmic contents that amplify inflammatory signals.

While GSDMD-induced pyroptosis has been shown to protect

the host against bacterial infection (17, 18), numerous studies have

demonstrated that abnormal GSDMD activation causes severe

inflammatory cascades such as disruption of ionic homeostasis,

organelle dysfunction, cell lysis, and sustained release of

inflammatory cytokines. Abnormal GSDMD activation can cause

persistent inflammation, which has been implicated in various

inflammatory diseases, including ischemic stroke (19, 20), familial

Mediterranean fever (FMF) (21), neonatal-onset multisystem

inflammatory disease (NOMID) (22), experimental autoimmune

encephalitis (EAE) (23), sepsis (24, 25), nonalcoholic fatty liver

disease (NAFLD) (26), cancer (27–29), human immunodeficiency

virus (HIV) infection (30), neurodegenerative diseases such as

Alzheimer’s disease (AD) (31, 32) and Parkinson’s disease (PD)

(33). Moreover, cell pyroptosis has been shown to play an

important role in a series of clinical symptoms caused by severe

acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)

infection. Excessive inflammation and cytokine storm are the main

causes of tissue damage and organ failure in COVID-19. GSDMD

serves as a regulatory protein upstream of cytokine storm and is

thus a promising target for the treatment of COVID-19 (34). Given

the important role of GSDMD in pyroptosis and inflammatory

disorders, we summarize the structure and activation mechanisms

of GSDMD and focus on the discovery of GSDMD inhibitors in

this review.
2 GSDMD and membrane pores

2.1 Structure of GSDMD

The full-length GSDMD protein has two characteristic

domains: a pore-forming GSDMD-NT (also known as p30) and
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an inhibitory C-terminal domain (GSDMD-CT, also called p20), as

shown in Figure 1A. These two domains are linked by a flexible loop

that contains the GSDMD activation site, 272FLTD275 of human

GSDMD (hGSDMD) or 273LLSD276 of murine GSDMD

(mGSDMD) (7, 35). In resting cells, GSDMD-NT binds to

GSDMD-CT through intramolecular interactions, leading to full-

length GSDMD in autoinhibition. The cleavage of GSDMD is often,

but not always, performed by inflammation-activated caspase-1 or

LPS-stimulated caspase-4/5/11, leading to the release of GSDMD-

NT and the subsequent formation of GSDMDmembrane pores (6).

In addition to activating GSDMD, caspase-1, a typical member of

the inflammatory caspase family, also cleaves pro-IL-1b and pro-IL-
18 into their active forms to promote their maturation and secretion

(36, 37). A recent report has shown that caspase-4/5 cleave IL-18 at

Asp36 to generate the active species, while caspase-11 is unable to

process IL-18 (38). However, caspase-4/5/11 cannot activate but

cleave IL-1b at Asp27 to form an inactive p27 fragment (38).

GSDMD is cleaved by caspase-1/4/5/11 at the tetrapeptide region
272FLTD275|G276 (273LLSD276|G277) for mouse GSDMD), inducing

subsequent pyroptosis and inflammatory responses (6, 39).

In 2020, Wang and colleagues analyzed the high-resolution

crystal structures of CASP-GSDMD complexes, revealing the

interaction between the exosites of caspases with GSDMD-CT

(25). Upon inflammasome activation or LPS stimulation, pro-

caspases self-cleave into activated caspase heterodimers, which

further dimerize to form tetramers. Two symmetrical protruding

intermolecular b-sheets, bIII and bIII’, are formed on the tetrameric

interface independent of the cysteine active sites of inflammatory

caspases. The bIII and bIII’, stretching outside of the tetramer,

insert like a key into a hydrophobic pocket of GSDMD-CT to form

2:2 enzyme-substrate complexes with GSDMD-CT. For the

complex of caspase-1-GSDMD-CT (PDB: 6KN0), two key amino

acid residues of caspase b-sheets, Trp294 on bIII and Ile318 on bIII’
of caspase-1, form hydrophobic interactions with the GSDMD-CT

groove (Leu304, Leu308, Val364, and Leu367), as shown in Figure 1B

(25). Mutations in either the key amino acids of the bIII/bIII’
strands or the hydrophobic residues of GSDMD-CT disrupted the

binding of caspases to GSDMD-CT, thereby inhibiting GSDMD

cleavage and pyroptosis. The crystal structure of the caspase-1-

mGSDMD complex (PDB: 6VIE) has been analyzed by Xiao’s

group, which further revealed the structural basis of the

interaction between caspase-1 and full-length GSDMD (40).

Activated human caspase-1 forms two distinct but adjacent

binding interfaces with the mGSDMD linker region and

mGSDMD-CT domain, respectively, but does not interact with

mGSDMD-NT. On the one hand, caspase-1 binds to the mGSDMD

cleavage site at the disordered linker region. On the other hand,

activated caspase-1 forms a protruding double b-strand that

interacts with the GSDMD-CT domain via hydrophobic

interactions and hydrogen bonding, as reported by Wang (25,

40). Mutations in the exosite-binding residues of mGSDMD-CT

(L306A, L310A, L361A, V367A, and L370A), as well as in caspase-1

(W294A, I318E, and K320E), have been discovered to prevent the

formation of the caspase-1-mGSDMD complex and subsequent

GSDMD cleavage. The dual-interface engagement of caspase-1 with

GSDMD suggests that the GSDMD-CT domain not only has an
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inhibitory function but also recruits caspase proteins, providing a

platform for GSDMD activation.
2.2 Structure of GSDMD pores

Upon cleaving of the linked region by inflammatory caspases,

the GSDMD-CT dissociates, exposing the b1-b2 loop which then

binds to acidic lipids. The hydrophobic tip, hGSDMD 48WFW50 or

mGSDMD 50FW51, of the b1-b2 loop anchors into the lipid bilayer,

and the surrounding basic residues interact with acidic lipids (41).

Mutational studies have shown that hydrophobic amino acid

mutations in the b1-b2 loop of GSDMD, including W48E and

W50E of hGSDMD and a double mutant F50G/W51G of

mGSDMD, impair pore formation (35, 41). In addition, basic

amino acid mutations in the b1-b2 loop of GSDMD, such as

basic patch 2 (BP2) (R42E/K43E/K51E/R53E) and BP3 (K204E/

R174E), also inhibit or even eliminate the formation of GSDMD

membrane pores (41).

Hao Wu and her collaborators analyzed the cryo-EM structures

of GSDMD pores and GSDMD prepores (41). GSDMD pore is 10-
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20% larger than the GSDMA3 pore and comprises 31-34 subunits

(41, 42). GSDMD pores with 33 subunits have the highest

resolution (Figure 1C). The GSDMD pore consists of a globular

region and a transmembrane region, the latter of which is also called

as b-barrel and is composed of 132 b-strands (41). As shown in

Figure 1E, each pore-forming GSDMD-NT subunit has a structure

resembling a human left hand, with “fingers” (b-barrel) inserted

into plasma membranes, one “thumb” (a1 helical, also known as

basic patch 1(BP1)), a “palm” (globular domain), and a “wrist” (b1-
b2 loop, BP2). However, the conformation of GSDMD prepores

differs considerably from that of GSDMD pores. The subunit of

GSDMD prepores lacks a b-barrel, similar to the inhibited globular

N-terminal domain in full-length GSDMD. The structural analysis

of GSDMD prepores indicated that GSDMD-NT first oligomerized

and subsequently underwent conformational changes after being

cleaved by inflammatory caspases. The pore-forming precursor may

be an intermediate in the process of GSDMD pore assembly, but the

precise method by which GSDMD pores are assembled in cells is

still unknown (41).

In hyperactivated cells without pyroptosis, the inner diameter of

GSDMD transmembrane pores determines the release of
A B

D EC

FIGURE 1

Structures of GSDMD, caspase-1-GSDMD complex, and GSDMD pore. (A) Crystal structure of human GSDMD (PDB: 6N9O). (B) Crystal structure of
the caspase-1 (C285A) p20/p10-hGSDMD-CT complex (PDB: 6KN0) and the binding surface. (C) Cryo-EM structure of human GSDMD pore
(PDB:6VFE). (D) Electrostatic surface (-74 to +74 kcal/mol) of the GSDMD pore. The acidic patches (APs) and basic patches (BPs) of the GSDMD pore
are marked in red and blue, respectively. (E) Cryo-EM structure of pore-formed GSDMD-NT, resembling a human left hand, with b-barrel (b3, b5, b7,
and b8) as “fingers”, the a1 helix as “thumb”, the globular domain as “palm”, and the b1-b2 sheets as “wrist”.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1178662
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2023.1178662
intracellular proteins, allowing the inflammatory cytokines IL-1b
and IL-18 to be released while larger proteins such as high-mobility

group box 1 (HMGB1, 150 kDa) and LDH (140 kDa) are filtered out

(13). Thus, the release of LDH is considered a symbolic event for

cell pyroptosis. Although the mature and precursor forms of IL-1

proteins with similar size (~ 4 nm) are significantly smaller than

GSDMD membrane pores (~20 nm), the transport rates of the two

forms differ. GSDMD membrane pores preferentially release

mature IL-1 over pro-IL-1, suggesting the involvement of other

factors in the transport process. The cryo-electron microscopy

study showed different charge distributions in the structure of

GSDMD transmembrane pores. As Figure 1D shows, the

GSDMD pore on the membrane-facing side (parallel to the cell

membrane) has three positively charged patches or basic patches

(BPs) that interact with acidic lipids, whereas the conduit (b-barrel)
inserted into the cell membrane with acid patches (APs) is

predominantly negatively charged. GSDMD pores filter against

negatively charged pro-IL-1b via electrostatic interaction, while

mature IL-1b without an acidic domain is released into the

extracellular environment (41). Recently, Wang’s group

demonstrated that the selectivity of GSDMD pores for IL-1b can

be regulated by modifying the degree of lipid binding of GSDMD

and salt concentration (43). Enhanced interaction between GSDMD

and lipids increases the selectivity of the membrane pores for the
Frontiers in Immunology 04
release of mature IL-1b, whereas a high concentration of salt

decreases the selectivity, allowing more non-selective release of

pro-IL-1b (43).
3 GSDMD activation pathways

3.1 Inflammasomes-mediated GSDMD
activation pathway

Since the discovery of the pyroptotic function of GSDMD

proteins, various regulatory pathways of GSDMD-mediated

pyroptosis have been revealed. These pathways can be classified

into canonical, noncanonical, and other pyroptosis pathways (2, 6,

7, 39, 44), as shown in Figure 2. Inflammasome-mediated GSDMD

cleavage and subsequent cell lysis are the major regulatory pathways

of pyroptosis. In the innate immune system, germline-encoded

pattern recognition receptors (PRRs) recognize and detect

pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs). Cytoplasmic receptor

proteins of PRR, mainly including the nucleotide-binding

oligomerization domain (NOD)-like receptors (NLRs) family,

absent in melanoma 2 (AIM2), pyrin protein, and CARD8, are

activated by intracellular PAMPs or DAMPs and assemble to form
FIGURE 2

Schematic diagram of the mechanisms of GSDMD activation and pyroptosis. In response to various PAMPs or DAMPs, inflammatory caspase-1/4/5/
11 is activated, leading to GSDMD cleavage and activation. In addition, apoptotic caspase-8 activation induced by Yersinia infection cleaves GSDMD
into GSDMD-NT. The activated GSDMD-NT oligomerizes and inserts into membranes, forming GSDMD pores that lead to ion fluxes, inflammatory
cytokine release, and pyroptosis. NLRP1, NOD-, LRR- and pyrin domain-containing protein 1; NLRP3, NOD-, LRR- and pyrin domain-containing
protein 3; NLRC4, NOD-like receptor family CARD-containing 4; AIM2, absent in melanoma 2; CARD-8, caspase activation and recruitment domain
8; ASC, apoptosis-associated speck-like protein containing a CARD; LPS, lipopolysaccharide; T. gondii, Toxoplasma gondii; T3SS, type III secretion
system; dsDNA, double-stranded DNA; YopJ, Yersinia effector protein, also called YopP in Yersinia enterocolitica; NSA, necrosulfonamide; DSF,
disulfiram; DMF, dimethyl fumarate.
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canonical inflammasomes. A typical inflammasome is a multimeric

complex generally composed of a sensor protein, an adaptor protein

(ASC, apoptosis-associated speck-like protein containing a CARD),

and an effector protein (caspase-1). The recognition and detection of

PAMP or DAMP by PRRs initiate the inflammasome signaling

pathway. Activated receptor proteins oligomerize and bind to ASC,

and then recruit the effector protein pro-caspase-1 to form canonical

inflammasome complexes. Pro-caspase-1 autoproteolyzes into active

caspase-1, inducing a cascade of inflammatory responses. ASC

oligomerizes to form insoluble polymers termed ASC speck during

inflammasome activation, which serves as a signaling platform for

significantly amplifying caspase-1 activation (45, 46). However, ASC

is dispensable for the formation of some inflammasomes. PRRs

containing a CARD domain, such as NLRP1b and NLRC4, can

directly bind to pro-caspase-1, but the activity of caspase-1 is

significantly enhanced in the presence of ASC (47). Activation of

caspase-1 in the absence of ASC cleaves GSDMD and induces

pyroptosis, but it cannot effectively cleave inflammatory cytokines

such as IL-18 and IL-1b.
In the noncanonical pathway, inflammatory caspases (caspase-

4/5/11) serve as receptor proteins and directly respond to

intracellular LPS without requiring the recruitment of receptor

proteins or the adaptor protein ASC. The CARD domain of pro-

caspase-11 in rodents (pro-caspase-4/5 in humans) directly binds to

the lipid A of LPS, resulting in conformational change,

oligomerization, and autoproteolysis of pro-caspase-4/5/11 to

form noncanonical inflammasomes (48–50). The activation of

noncanonical inflammasomes induces GSDMD cleavage and

pyroptosis, which play an important role in the pathogenesis of

bacterial infections and sepsis (14, 51, 52). Caspase-4/5/11 are

unable to cleave pro-IL-1b into active forms, whereas caspase-4/5,

instead of caspase-11, has been found to cleave pro-IL-18 into

mature IL-18 (38, 53). Further studies are necessary to reveal the

molecular basis of IL-1b and IL-18 recognition and cleavage by

inflammatory caspases in noncanonical pathways. Moreover,

caspase-4/5/11 can also activate NLRP3 inflammasome through

downstream events such as GSDMD-NT pore-related K+ efflux,

leading to the maturation and secretion of IL-1b and IL-18 (54–57).

Considering multiple regulatory pathways, GSDMD activation

and related downstream effects are generally divided into the

following key steps (1): activation of effector caspases; (2)

GSDMD cleavage and activation; (3) GSDMD oligomerization

and pore formation; and (4) downstream inflammation

(hyperactivation or pyroptosis). The crucial event in GSDMD

activation is the cleavage of GSDMD at the active site 272FLTD275

(273LLSD276 for mGSDMD) by inflammatory caspase-1/4/5/11,

resulting in GSDMD-NT and GSDMD-CT fragments (2, 3, 6, 39,

58). The active GSDMD-NT fragments oligomerize and bind to

acidic lipids in the plasma membranes, forming transmembrane

pores that allow ion flux, water influx, and selective cytokine release.

Further cell membrane rupture releases massive cellular contents,

including IL-1b, IL-18, HMGB1, ATP, and LDH, causing severe

inflammatory responses. In addition, GSDMD-NT also binds to

mitochondrial cardiolipin to form mitochondrial GSDMD pores

that release mitochondrial ROS (mtROS) and mitochondrial DNA

(mtDNA), leading to mitochondrial dysfunction (2, 59, 60).
Frontiers in Immunology 05
3.2 Other GSDMD regulatory mechanism

In addition to inflammatory caspases, several studies have

revealed apoptotic caspases also play a role in GSDMD

regulation. During apoptosis, caspase-3/7 specifically blocks

pyroptosis by cleaving GSDMD at hGSDMD Asp87 (mGSDMD

Asp88) independent of the cleavage site and the exosite-binding

pocket to form an inactive p43 fragment, which is a general feature

of apoptosis in cells expressing GSDMD (61). Caspase-3/7

activation occurs after caspase-1-driven GSDMD cleavage and

pyroptosis, serving as a negative feedback mechanism to inhibit

excessive pyroptosis and inflammation (44, 61). These findings

suggest a complex interplay between cell death pathways in the

innate immune system. Pyroptotic stimuli can activate apoptosis

signaling through multiple mechanisms, while apoptotic stimuli

specifically prevent or even deactivate pyroptosis.

The activation pathway of caspase-8, responsible for apoptosis,

was successively described by Lien and Poltorak as a complementary

mechanism for GSDMD activation and pyroptosis (11, 12). GSDMD

and GSDME were significantly cleaved upon the activation of the

receptor-interacting serine-threonine protein kinase 1 (RIPK1)-

caspase-8 pathway. In addition to apoptosis, pyroptotic

morphological features such as plasma membrane rupture were also

observed in bonemarrow-derivedmacrophages (BMDMs) infected by

Yersinia pseudotuberculosis or treated with LPS and 5z-7-oxozaeenol

(5z7), a transforming growth factor-b-activated kinase 1 (TAK1)

inhibitor (11, 12). The deficiency of GSDMD delays membrane

rupture and converts cell pyroptosis to apoptosis (12). This suggests

that TAK1 inhibition-mediated activation of caspase-8 induces both

apoptosis and pyroptosis, which breaks the cognition that only

inflammatory caspases activate GSDMD. Broz’s group further

demonstrated that TAK1 inhibition or inhibitors of apoptosis

proteins (IAPs) depletion promotes activation of caspase-8, resulting

in the cleavage of GSDMD at the same active site as caspase-1 and cell

pyroptosis (62). In addition, caspase-8-mediated inflammatory

regulatory functions can be blocked by caspase-3-dependent

cleavage at mGSDMD Asp88, which is essential for caspase-8-

dependent apoptosis (62). However, a separate study found that

TLR priming in TAK1-deficient cells triggers caspase-8 activation

and GSDMD-dependent pyroptosis independently of the kinase

activity of RIPK1 (63). Therefore, the pathways by which the

presence and absence of TAK1 regulate RIPK1 function and

subsequent cell death need to be further explored.In a separate

study, Poltorak et al. found that cellular FLICE-like inhibitory

protein (cFLIP) downstream of TAK1 protein plays a role in

inflammation and cell death by regulating the formation of

apoptosis-related complex II (also called ripoptosome) consisting of

RIPK1, TRADD, Fas-associated death domain (FADD), and caspase-

8 (64). A low level or deficiency of cFLIPL promotes the formation of

complex II, auto-processing caspase-8 to form an active homodimer.

The activated caspase-8 cleaves GSDMD to induce pyroptosis and

activates the NLRP3 inflammasome, resulting in the maturation and

release of IL-1b (64). In 2021, further studies revealed the molecular

mechanism of the RIPK1-caspase-8-GSDMD pathway activated by

TAK1 inhibition (65). Through a genome-wide CRISPR-Cas9 screen,

Liu et al. identified the Rag-Ragulator complex, consisting of RagA,
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RagC, and Lamtor1-5, as a key factor in Yersinia infection and

pyroptosis initiation. In response to pathogenic Yersinia or the

TAK1 inhibitor 5z7, the FADD-RIPK1-pro-caspase-8 complex is

recruited to the lysosomal membrane via the Rag-Ragulator

complex (65). The binding of FADD-RIPK1-caspase-8 to the Rag-

Ragulator complex licenses RIPK1 phosphorylation, caspase-8

activation, cleavage of GSDMD and GSDME, and subsequent

pyroptosis, which depends on Rag GTPase activity and Rag-

Ragulator lysosomal binding but not on rapamycin complex 1

(mTORC1) (65). It is worth mentioning that Kagan and his

collaborators also successively confirmed the important role of the

Rag-Ragulator complex in GSDMD membrane pores and cell

pyroptosis in the same year (66). In contrast to Liu’s conclusion,

Kagan et al. found that the activity of the downstream effector

mTORC1 is required for the formation of GSDMD-NT pores. The

findings showed that the Rag-Ragulator-mTORC1 played an

important role in GSDMD pore formation and pyroptosis by

promoting GSDMD-NT oligomerization without affecting the

cleavage of GSDMD or the anchoring of GSDMD to the plasma

membrane. Furthermore, the activation of the Rag-Ragulator complex

leads to mitochondrial damage and ROS production in macrophages,

which triggers GSDMD-NT oligomerization, membrane pore

formation, and pyroptosis (66). Overall, caspase-8 is a molecular

switch that controls multiple cell death processes, including

apoptosis, necroptosis, and pyroptosis, and performs various

functions in the cell death process. In the case of compromised

apoptosis and necroptosis, caspase-8 activates the inflammasome

and induces pyroptosis as an alternative death mechanism (67, 68).

Besides the regulation of GSDMD by caspases, other pathways

for GSDMD activation have also been found (69–71). In

neutrophils, ELANE, a specific neutrophil serine protease (NSP)

in cytoplasmic granules, cleaves hGSDMD at Cys268 and mGSDMD

at residue Val251, suggesting that GSDMD is recognized by ELANE

probably through tertiary structures rather than specific amino acid

sequences (69). The ELANE-mediated cleavage of GSDMD yields

ELANE-derived NT fragments (GSDMD-eNT) with slightly

smaller molecular weights but comparable activity to common

GSDMD-NT, contributing to neutrophil death (69, 71).

Cathepsin G is another NSP that activates GSDMD and induce

pyroptosis (70). Cathepsin G cleaves Leu274 of mGSDMD to

generate the specific nitrogen-terminal domain p30, which is

blocked by Serpinb1 and Serpinb6, the key survival factors in

neutrophils and monocytes, suggesting that tight regulation of cell

death pathways and inflammatory responses (70, 72). In addition,

Zika virus (ZIKV), an oncolytic virus targeting glioblastoma (GBM)

cells, induces cytolysis by caspase-independent pyroptosis. ZIKV

NS2B3 protease specifically cleaves GSDMD at residue Arg249 into

an active N-terminal fragment for pyroptosis, thus inducing

infected and nearby uninfected cell death (73, 74).

Posttranslational modifications of GSDMD, including

succination, palmitoylation, ubiquitination, and oxidation, have

been shown to play a critical role in the regulation of GSDMD

activation. Fitzgerald et al. have revealed that dimethyl fumarate

(DMF) or accumulation of endogenous fumarate modifies GSDMD

irreversibly at key cysteine residues to generate 2-(succinyl)-

cysteine (75). This GSDMD succination blocks the interaction of
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GSDMD with caspases, GSDMD processing, and oligomerization,

thereby preventing GSDMD pore formation and pyroptosis (75).

Recently, Luo et al. and Wu’s group independently discovered that

palmitoylation of GSDMD, a reversible post-translational lipid

modification, plays an important role in the biological processes

of membrane translocation and pore formation (76, 77). Full-length

GSDMD and GSDMD-NT are palmitoylated at Cys191/Cys192

(human/mouse), which leads to membrane translocation of

GSDMD-NT but not full-length GSDMD and promotes pore

formation (76, 77). GSDMD palmitoylation is primarily mediated

by two palmitoyl acyl transferases (PAT), ZDHHC5 and ZDHHC9,

and is regulated by ROS stress. Alanine mutation of Cys191/Cys192

and inhibition of GSDMD palmitoylation by 2-bromopalmitate (2-

BP) or the GSDMD palmitoylation-specific competitive peptide

(CPP-W) can effectively abrogate membrane localization,

pyroptosis, and IL-1b release without affecting upstream

transcription and cleavage of GSDMD. Furthermore, in a mouse

sepsis model, inhibition of GSDMD palmitoylation alleviated organ

injury and extended the survival of septic mice (76). Synoviolin

(SYVN1), one of the RING E3 ligases, was shown to promote

canonical and noncanonical inflammasome-induced pyroptosis by

regulating GSDMD ubiquitination. SYVN1 interacts with GSDMD

and ubiquitinates GSDMD at Lys203 and Lys204 residues with K27-

linked polyubiquitin chains (78). Another type of posttranslational

modification, GSDMD oxidation, has been shown to play an

important role in regulating the cleavage of GSDMD and pore

formation (79, 80). After NLRP3 inflammasome activation, mtROS

oxidatively modifies Cys38, Cys56, Cys268 and Cys467 of human

GSDMD (Cys39, Cys57, Cys265 and Cys487 of mouse GSDMD),

thereby enhancing the release of GSDMD-NT domain and NLRP3

inflammasome-dependent pyroptosis (79). In addition, a recent

report revealed that GSDMD oxidation at Cys192 by ROS promotes

GSDMD oligomerization, pore formation, and pyroptosis (80).

In recent years, the virulence mechanisms of some pathogens that

maintain infection by preventing GSDMD-induced pyroptosis have

been successively revealed. The 3C-like protease nonstructural protein

5 (Nsp5) from coronaviruses (CoVs), including SARS-CoV-2, Middle

East respiratory syndrome coronavirus (MERS-CoV), porcine

deltacoronavirus (PDCoV), and porcine epidemic diarrhea virus

(PEDV), can cleave porcine GSDMD at the Gln193-Gln194 junction

into two inactive fragments, thereby inhibiting pyroptosis (81). The

inhibition of pyroptosis by Nsp5 facilitates the replication of

coronaviruses during the initial period to evade host immune

responses. In addition to Nsp5, SARS-CoV-2 nucleocapsid protein

also inhibits GSDMD-mediated pyroptosis. Mechanistically, SARS-

CoV-2 nucleocapsid directly binds the GSDMD linker region to

hinder the recognition and cleavage of the GSDMD tetrapeptide by

caspase-1 (82). Furthermore, Shigella IpaH7.8, a bacterial ubiquitin

ligase, was identified as an inhibitor of GSDMD-dependent pyroptosis

and sustains pathogen infections by targeting human GSDMD-NT

domain and ubiquitinating GSDMD for proteasomal degradation (83).

3.3 GSDMD pore formation and repair

A growing number of studies have revealed the regulatory

mechanism of GSDMD membrane pore formation. In LPS-
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induced noncanonical inflammasome activation and pyroptosis

pathways, guanylate-binding proteins (GBPs) have been shown to

control multiple key steps (84). Among them, Gbp2 is responsible

for recruiting caspase-11 for cytosolic LPS recognition and

activation. After GSDMD cleavage by caspase-11, Gbp3 facilitates

GSDMD-NT assembly and trafficking to form pores (84). In 2022,

Liu and colleagues reported that tyrosine phosphatase B (PtpB)

from Mycobacterium tuberculosis (Mtb) impairs GSDMD-NT

membrane localization and pore formation to evade host

GSDMD-dependent immunity and facilitate Mtb intracellular

survival (85). Mechanistically, the Ub-interacting motif (UIM)–

like region of PtpB binds to host ubiquitin through hydrophobic

in terac t ions . Then , the ac t iva ted PtpB-Ub complex

dephosphorylates phosphatidylinositol-4-monophosphate and

phosphatidylinositol- (4, 5)-bisphosphate, leading to a significant

decrease in the abundance of these phosphoinositides in host cell

membranes, thereby disrupting the membrane localization of

GSDMD-NT and inhibiting pyroptosis (85).

Cell pyroptosis is a type of lytic cell death that eventually leads

to plasma membrane rupture (PMR) and promotes inflammatory

responses. The processes of PMR and repair of GSDMD pores are

tightly regulated, as shown in Figure 3. Dixit and his colleagues

discovered that ninjurin-1 (NINJ1), a 16-kDa cell surface protein

with two transmembrane regions, plays an important regulatory

role in PMR, revealing that cell death-driven PMR is an active event

rather than a passive process (86). In unstimulated BMDMs, NINJ1

dimerizes or trimerizes, and it further oligomerizes in response to

cell death signals. NINJ1 deficiency significantly reduces the release

of GSDMD-related macromolecular proteins, including LDH and

HMGB1, without affecting IL-1b secretion. This indicates that

NINJ1 is indispensable for PMR, the final step of cell pyroptosis,

but does not affect the formation and integrity of GSDMD

pores (86).

Maintenance of plasma membrane integrity (PMI) is essential

for cell survival and normal cellular function. Massive GSDMD

membrane pores can cause severe loss of PMI and lytic cell death,

but not all pore formation leads to pyroptosis. Cells with membrane

pore repair mechanisms can tolerate limited plasma membrane

damage. Several studies have shown that ESCRT-III can repair

membrane damage caused by GSDMD pores, phosphorylated-

mixed lineage kinase domain-like protein (pMLKL), detergents,

pore-forming toxins, perforin, or laser light (87–89). Various forms

of cell membrane damage, including damage caused by GSDMD

pore formation, can result in Ca2+ influx, which then triggers the

ESCRT repair program, leading to the shedding of damaged plasma

membranes in the form of exosomes (88). Furthermore, the ESCRT

system only performs the membrane repair process against cell lysis

without affecting the activation of GSDMD (88).

In addition to restoring membrane integrity, the cell membrane

repair mechanism also triggers PMI responses (90). Following sub-

lethal plasma membrane damage, Ca2+ influx recruits Ser660-

phosphorylated protein kinase C (PKC), which activates the

downstream NF-kB signaling pathway and the RelA/Cux

transcription factors to promote the expression and secretion of

chemokines, such as CXCL1 and CXCL10. The massive release of

chemokines recruits macrophages, converting cell membrane
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damage signals into immune signals to alert the surrounding

microenvironment (90). Thus, the formation of GSDMD pores is

in dynamic equilibrium with the membrane repair protein ESCRT-

III. Cell pyroptosis or hyperactivation depends on the magnitude of

the danger signals and the number of GSDMD pores. Under low-

concentration stimulation, a limited level of cell membrane damage

can be repaired, and the cell can survive danger signals.
3.4 Physiological functions of GSDMD

In addition to executing pyroptosis and inflammation, the

physiologic function of GSDMD has been revealed by Wang’s

group in 2022. Specifically, epithelial GSDMD maintains

intestinal system homeostasis by regulating the secretion of

mucin from goblet cells and the formation of mucus layers that

spatially isolate the gut microbiota from colonic epithelial cells (91).

The researchers detected significant GSDMD expression and

activation in the gut, which is regulated by commensal microbiota

and the NLRP6 inflammasome. In mice with the specific knockout

of intestinal epithelial cells (GSDMDDIEC), the mucous layers in the

intestine almost disappeared, accompanied by severe bacterial

infection. The mechanism studies have shown that GSDMD

pores-driven calcium ion influx activates scinderin-mediated F-

actin breakdown and mucus secretion, leading to mucin granule

exocytosis and mucus layer formation (91). It is worth mentioning

that GSDMB, another member of the gasdermin family, has been

proven to play a significant protective role in IBD independent of

pyroptosis. In a recent study, GSDMB was found to repair epithelial

barrier function and reduce inflammation by promoting the

proliferation, migration, and adhesion of intestinal epithelial cells

(IECs) (92). These findings show the important role of the
FIGURE 3

Schematic diagram of the mechanisms of formation and repair of
GSDMD pores. (1) NINJ1 oligomerization licenses plasma membrane
rupture and cell pyroptosis downstream of GSDMD pore formation.
(2) In response to Ca2+ influx, ESCRT-III assembly is initiated and
dynamically repairs GSDMD pores by exocytosis secretion to
maintain membrane integrity.
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gasdermin family in maintaining the homeostasis of the intestinal

system, and other physiological functions of GSDMD remain to

be explored.
4 GSDMD-driven diseases

GSDMD-induced pyroptosis plays an important role in

defending against pathogen infection and DAMPs stimulation by

facilitating the removal of infected or damaged cells. However,

persistent GSDMD-mediated pyroptosis can lead to ion flow

disturbances, organelle dysfunction, and excessive inflammatory

responses, and is involved in the onset and development of a variety

of diseases, including COVID-19 (93), HIV infection (30),

neurodegenerative diseases (94), metabolic diseases (26), cancers

(27, 29), IBD, and others (95).
4.1 Infectious diseases

COVID-19, caused by SARS-CoV-2 infection, has caused

serious life-threatening and heavy economic burdens for humans.

As of the time this manuscript was submitted, over 764 million

confirmed cases and more than 6.9 million deaths had been

reported globally, with case numbers continuing to rise (96).

Severe SARS-CoV-2 infection can result in a range of symptoms,

including dysregulated cytokines release, pneumonia, acute kidney

injury (AKI), which can rapidly progress to acute respiratory

distress syndrome (ARDS), disseminated intravascular

coagulation, multisystem failure, and even death (93, 97). SARS-

CoV-2 invades host cells by Fcg receptors in monocytes or

angiotensin-converting enzyme 2 (ACE2) in epithelial cells, which

induces inflammasome activation and downstream GSDMD-

mediated pyroptosis through multiple pathways (98, 99). Open

reading frames 3a (ORF3a) of SARS-CoV-2 activates the NLRP3

inflammasome by inducing potassium efflux and mitochondrial

ROS production (100). Both nucleocapsid (N) proteins and ORF8b

can directly bind to NLRP3, leading to NLRP3 inflammasome

activation and cytokine production (101, 102). In addition, non-

structural protein 6 (NSP6) of SARS-CoV-2 interacts with

ATP6AP1, a subunit of the lysosomal proton pump v-ATPase, to

inhibit the lysosome autophagy system, thereby activating the

NLRP3 inflammasome-mediated pyroptosis pathway (103, 104).

In addition to NLRP3 inflammasome, AIM2 inflammasome and

caspase-11/4 were also activated during SARS-CoV-2 infection (98,

105). The activation of both these canonical and noncanonical

inflammasomes triggers GSDMD cleavage and pyroptosis, which in

turn activates inflammasomes and amplifies inflammatory signaling

(98, 99). Inflammasome activation and pyroptosis form a positive

feedback loop, which leads to abnormal activation of the immune

system, resulting in a severe inflammatory cascade and cytokine

storm, also known as cytokine release syndrome (CRS) (106). In

severe cases of COVID-19, the levels of serum LDH and

inflammatory factors, particularly IL-6, TNF-a, IL-1b, and IL-18,

were significantly increased, suggesting the occurrence of pyroptosis

and other forms of necrotic cell death (98, 99, 107). The main causes
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of cytokine storm are considered to be extensive pyroptosis and

subsequent recruitment of immune cells, which lead to excessive

tissue inflammation, organ failure, and even death. Therefore,

blocking GSDMD-mediated pyroptosis and cytokine storm is a

promising strategy to ameliorate severe COVID-19.

Excessive pyroptosis is also involved in sepsis, a common

complication of infection. Deletion of GSDMD has been shown

to protect against sepsis and improve survival in mouse models of

sepsis, indicating the critical role of GSDMD in sepsis (39, 108–

110). LPS-induced sepsis is predominantly associated with

noncanonical inflammasome activation (39), and deficiency of

caspase-11 or GSDMD protects from sepsis-induced death (39,

49, 69, 109). A recent study revealed that sepsis-derived S100A8/A9

induces GSDMD-dependent platelet pyroptosis in severe sepsis by

upregulating the TLR4/NLRP3 signaling pathway, which leads to

the release of oxidized mtDNA and promotes NETs formation

(111). Moreover, NETs were shown to release S100A8/A9 to further

induce GSDMD-dependent platelet pyroptosis, forming a

deleterious positive feedback loop that exacerbates the

inflammatory response after infection (111). Several GSDMD

inhibitors, including disulfiram, necrosulfonamide (NSA), and

dimethyl fumarate (DMF), have been shown to be effective in

relieving sepsis (75, 108, 109). This suggests that the blockade of

the GSDMD-related pyroptotic pathway could be a potential

therapeutic for sepsis.
4.2 Neurodegenerative diseases

The pathogenesis of neurodegenerative diseases is a complex

process in which neuroinflammation is considered to be a

significant driving force. The link between GSDMD-related

inflammation and neurodegenerative diseases has been

highlighted since the mechanism of pyroptosis was revealed.

Alzheimer’s disease (AD) is the most prevalent neurodegenerative

disease worldwide, with the dual pathological features of

neuroinflammatory plaques formed by Ab aggregation and

neurofibrillary tangles (NFTs) composed of hyperphosphorylated

tau (p-tau). Clinical manifestations of AD patients include obvious

memory loss, cognitive decline, language difficulties, movement

disorders, emotional changes, etc. Pyroptosis is involved in early Ab
deposition and neuronal death, promoting the occurrence and

progression of AD (112, 113). The caspase-1 inhibitor VX-765

was shown to reduce neuronal death with significant protective

effects in mouse models of AD (114), and NLRP3 deficiency also

significantly reduces Ab aggregation and cognitive impairment

(115–117). Therefore, inhibiting the inflammasome and

pyroptosis pathways is a potential strategy for alleviating and

treating AD.

GSDMD-mediated pyroptosis has also been implicated in the

pathogenesis of Parkinson’s disease (PD), the second most common

neurodegenerative disease characterized by the presence of lewy

bodies rich in a-synuclein aggregates, loss of dopaminergic

neurons, and motor dysfunction. In a mouse model of PD

induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP), Shi et al. demonstrated that baicalein inhibited nigral
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dopaminergic neuron death, glial activation, and motor dysfunction

by blocking the NLRP3-caspase-1-GSDMD pathway and reducing

neuroinflammation (33). A recent study showed that Prussian blue

nanozyme (PBzyme) inhibited the upstream ROS-NLRP3-GSDMD

pathway and microglia pyroptosis, thereby reducing dopaminergic

degeneration, neuroinflammation, and motor dysfunction in the

MPTP-induced PD mouse model (118).
4.3 Cancer

Pyroptosis, induced by the gasdermin family, is a form of lytic

cell death that can inhibit the development of cancer by inducing

tumor cell death. Several studies have revealed the role of different

members of the gasdermin family, such as GSDMB, GSDME, and

GSDMD, in antitumor immunity (9, 119, 120). While GSDMD-

dependent pyroptosis has been shown to promote tumor cell death

and inhibit the proliferation of gastric cancer cells (121), its role in

other types of tumors is more complex. Cucurbitacin B, a natural

bioactive product extracted from the muskmelon pedicel, was

reported to exert anti-lung cancer activity by activating TLR4/

NLRP3/GSDMD-driven pyroptosis in non-small cell lung cancer

(NSCLC) cells and mouse models (122). Paradoxically, another

study showed that inhibition of GSDMD expression inhibited

tumor cell proliferation in NSCLC (29). In addition,

overexpression of GSDMD also promotes tumor proliferation in

bladder cancer (123). Therefore, GSDMD-mediated pyroptosis is a

double-edged sword for tumor development, and the detailed

mechanisms of whether it promotes or inhibits tumor survival in

different tissues and genetic backgrounds need further exploration.
4.4 Metabolic diseases

Diabetic nephropathy (DN) is a common complication of type

2 diabetes (T2D), which eventually leads to renal failure and end-

stage renal disease (ESRD). In a high-fat diet (HFD)/streptozotocin

(STZ)-induced diabetic mouse model, GSDMD-mediated

pyroptosis was activated and involved in the development of DN.

Knockdown of caspase-11/4 or GSDMD significantly alleviated

symptoms in diabetic mice (124, 125). Some active substances,

such as hirudin and punicalagin, have been shown to attenuate

diabetic nephropathy and ameliorate kidney damage in mice by

inhibiting the GSDMD-mediated pyroptosis pathway (125, 126).

Nonalcoholic steatohepatitis (NASH) is a progressive form of

nonalcoholic fatty liver disease (NAFLD) characterized by toxic

lipid accumulation in the liver and liver inflammation. The role of

GSDMD in the pathogenesis of steatohepatitis has been revealed.

GSDMD and its active fragment GSDMD-NT have been found to

be up-regulated in the liver tissues of NAFLD/NASH patients (26).

In addition, significantly elevated GSDMD-NT protein levels in the

liver positively correlated with the NAFLD activity score (NAS) and

progression of fibrosis. In methionine-and-choline-deficient

(MCD)-fed mice, knockout of GSDMD reduced liver triglycerides

and significantly alleviated liver inflammation and liver fibrosis,

suggesting that GSDMD plays an important role in the
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development of steatohepatitis (26). Furthermore, GSDMD-

mediated pyroptosis is also activated in alcoholic hepatitis (AH).

The deficiency of caspase-11 or GSDMD prevents membrane pore

formation and excessive IL-1b secretion, thereby ameliorating

alcohol-induced liver injury (127, 128).
4.5 Other inflammatory diseases

Inflammatory bowel disease (IBD), including ulcerative colitis

(UC) and Crohn’s disease (CD), is associated with the disruption of

intestinal epithelial barrier. Dextran sulfate sodium (DSS) is a

commonly used inducer for the construction of acute ulcerative

colitis models. In a DSS-induced IBD model, the NLRP3

inflammasome has been shown to be involved in the development

of experimental IBD and plays an important role in protecting the

integrity of the intestinal mucosal barrier (129). The expression of

GSDMD is increased in IECs from both DSS-induced colitis mice

and IBD patients, and GSDMD deficiency effectively reduces the

severity of DSS-induced colitis (95, 130). Paradoxically, Ma et al.

discovered an unexpected physiological role for GSDMD in

experimental colitis. GSDMD in macrophages but not epithelial

cells protects against DSS-induced colitis, and GSDMD deficiency

causes more severe DSS colitis (131). These seemingly controversial

findings suggest that GSDMD may have different functional

mechanisms in different cell types and under different

experimental conditions.

Familial Mediterranean fever (FMF), the most common

monogenic autoinflammatory disease worldwide, is caused by

mutations in the MEFV gene that encodes the pyrin protein.

MEFV mutations predispose the pyrin inflammasome to

activation, leading to uncontrolled pyroptosis, fever, and pain. In

a mouse model of FMF, GSDMD deficiency protects against

autoinflammatory diseases (21). Dimethyl fumarate (DMF)

inhibits pyroptosis by covalently modifying GSDMD and

effectively alleviates weight loss and splenomegaly symptoms in a

MEFV mutation-induced FMF mouse model (75).

Experimental autoimmune encephalitis (EAE), a type of

autoinflammatory disease in the central nervous system, is the

most commonly used animal model to study multiple sclerosis

(MS), with the main pathological features of MS such as axonal

demyelination and neuroinflammation. GSDMD is essential for

EAE induction, and its deficiency inhibits the infiltration of

immune cells into the CNS, improving neuroinflammation and

demyelination in a mouse model of EAE (23). VX-765, a caspase-1

inhibitor, reduces neuroinflammation and axonal damage in an

EAE model (132). Disulfiram and DMF, two GSDMD inhibitors,

have been shown to inhibit the onset of EAE and significantly

reduce neuropathology and clinical and histopathological scores

(23, 75).

Neonatal-onset multisystem inflammatory disease (NOMID) is

the most severe form of familial cold autoinflammatory syndrome

(FCAS), caused by mutations in the CIAS1 gene encoding NLRP3

protein (133). Studies have shown that GSDMD-driven pyroptosis

is required for NOMID pathogenesis in mice. In NOMID cells and

mice, deletion of GSDMD can effectively block NOMID-associated
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inflammatory symptoms, relieve symptoms such as systemic

inflammation and organ damage, and prolong survival (22).
5 GSDMD inhibitors

As mentioned above, inhibition or deletion of GSDMD has

been shown to have a protective effect on a variety of animal models

of inflammatory diseases, such as sepsis and viral infections.

Therefore, inhibition of the GSDMD-mediated pyroptosis

pathways is an effective strategy to alleviate and treat

inflammatory disease. Some GSDMD inhibitors have been

reported, and their chemical structures are shown in Figure 4.

These inhibitors were divided into indirect GSDMD inhibitors and

direct GSDMD inhibitors based on their molecular mechanisms.
5.1 Indirect GSDMD inhibitors

Given the structural characteristics of the GSDMD cleavage site

(peptide FLTD) and the caspase inhibitor containing a halomethyl

ketone group, N-acetyl-Phe-Leu-Thr-Asp-chloromethylketone

(Ac-FLTD-CMK) was developed to specifically inhibit

inflammatory caspases without affecting apoptotic caspase-3

(134). Ac-FLTD-CMK inhibited the in vitro activities of

inflammatory caspase-1, -4, and -5 with IC50 values of 46.7 nM,

1.49 mM, and 0.329 mM, respectively, thereby inhibiting the cleavage

of GSDMD, pyroptosis, and the release of cytokines (134). The

crystal structure of the Ac-FLTD-CMK and caspase-1 complex

(PDB ID: 6BZ9) showed that Ac-FLTD-CMK binds to the catalytic

groove of the caspase-1 p10/p20 heterodimer through hydrophobic

interactions and hydrogen bonding. In addition, the covalent bond

formed by the CMK fragment and Cys285 of caspase-1 enhanced the

docking of Ac-FLTD-CMK to caspase-1. The formation of the Ac-

FLTD-CMK and caspase-1 complex blocks the recognition of

GSDMD by caspase-1, thereby inhibiting GSDMD activation and

pyroptosis. Another study showed that Ac-FLTD-CMK reduced

GSDMD protein expression and production of cytokines in a

mu r i n e mode l o f l u pu s n eph r i t i s , t h u s r e du c i n g

glomerulosclerosis and immune cell infiltration and preventing

the development of lupus nephritis (135). Z-VAD-fmk, another

non-specific caspase inhibitor, blocks inflammatory caspases 1/4/5/
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thus inhibiting cell pyroptosis and apoptosis (134, 136, 137).

Punicalagin, a polyphenolic compound extracted from

pomegranate, has been shown to block phosphatidylserine flip

and stabilize lipids, thereby inhibiting membrane permeability

and IL-1b release with IC50 values of 7.65 and 3.91 mM,

respectively. The interference of punicalagin on membrane

fluidity may prevent the insertion of GSDMD-NT into the plasma

membrane, and its pharmacological effect is similar to that of

GSDMD inhibitors, but the direct effect of punicalagin on

GSDMD still needs further studies to clarify (138).

Although extracellular addition of glycine has been shown to

inhibit gasdermin-mediated cell lysis by regulating osmotic

pressure, it does not prevent intracellular processes leading to cell

death or IL-1b release. Thus, glycine is not a specific inhibitor of

GSDMD-related pore formation and pyroptosis (139). In addition,

lanthanide ions, including La3+ and Gd3+, Mg2+ ion, and hypertonic

solutions can also inhibit membrane rupture through a non-specific

mechanism (140, 141).
5.2 Direct GSDMD inhibitors

Specific inhibition of the GSDMD protein is considered a more

precise and desirable therapeutic strategy. Mutation studies have

revealed several potential targets for GSDMD, of which Cys191

(mouse Cys192) has an important role in pore formation and is by

far the most studied active site. Mutations in Leu192 inhibit the

binding of GSDMD-NT to membrane lipids, and covalent

modification of the Cys191 site is likely to have a similar effect on

GSDMD (142). As listed in Supplementary Table 1, the

development of specific GSDMD inhibitors is still in its infancy,

and most inhibitors block pyroptosis by covalently modifying

cysteine Cys191 (mouse Cys192) of GSDMD.

NSA was initially discovered during screening for human mixed

lineage kinase domain-like pseudokinase (MLKL) inhibitors to

block MLKL-associated necroptosis by binding to Cys86 of MLKL

to disrupt disulfide bonds (143). In 2018, Abbott et al. identified

NSA as the first inhibitor to directly target GSDMD (108). NSA can

bind to GSDMD with a KD value of 32 mM and inhibit the

pyroptosis induced by the activation of inflammasomes such as

NLRP3, NLRC4, and pyrin (Supplementary Table 1). NSA does not
FIGURE 4

The structure of GSDMD inhibitors.
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affect the activation of GSDME, another member of the gasdermin

family. Treatment with NSA significantly reduces inflammatory

cytokine release and prolongs survival in mice with sepsis. However,

other studies have shown that NSA can also inhibit the upstream

pathways of GSDMD-mediated pyroptosis, such as LPS-induced

gene transcription and activation of caspase-1 (109, 144). Therefore,

NSA is a direct but nonspecific GSDMD inhibitor.

Disulfiram (DSF), also known as Antabuse, is an FDA-approved

drug used to treat alcohol addiction by inhibiting aldehyde

dehydrogenase (145). Recently, Wu’s group discovered the

efficacy of DSF in inhibiting pyroptosis by high-throughput

screening for GSDMD-related pyroptosis inhibitors using a

liposome leakage assay (109). DSF bound to GSDMD with a KD

of approximately 12.8 mM and blocked pyroptosis downstream of

canonical and non-canonical inflammasome activation, with no

effect on necroptosis. The addition of copper gluconate can

significantly increase the inhibitory activity of DSF and its

metabolite diethyldithiocarbomate (DTC) on pyroptosis.

Disulfiram chelating with Cu(II) is 24-fold more potent in

inhibiting NLRP3 inflammasome-mediated pyroptosis, with an

IC50 of 0.41 ± 0.02 mM. Mass spectrometry analysis and mutation

studies revealed that DSF covalently modified Cys191 (mouse

Cys192) of GSDMD to inhibit GSDMD pore formation. In

addition, DSF had an inhibitory effect on upstream NF-kB and

inflammatory caspases (146). The IC50 values of DSF for inhibiting

recombinant caspase-1 and caspase-11 in vitro were 0.15 ± 0.04 mM
and 0.73 ± 0.07 mM, respectively. There is some evidence to suggest

that disulfiram’s effect of inhibiting pyroptosis is mainly attributable

to its inhibition of GSDMD pore formation rather than suppressing

GSDMD cleavage or other upstream events (109). Similar to NSA,

DSF improved mortality in an LPS-induced sepsis model at lethal

doses. The therapeutic role of DSF in EAE has also been

demonstrated, and disulfiram treatment is effective in preventing

the development of EAE (23). Additionally, disulfiram has been

found to reduce the incidence and severity of COVID-19 and is

currently being evaluated in two phase II clinical trials

(NCT04485130 and NCT04594343) for the treatment of COVID-

19 (147).

DMF, an FDA-approved drug (Tecfidera) for the treatment of

multiple sclerosis, has been proven to inhibit GSDMD by Fitzgerald

et al. (75). DMF blocks pyroptosis induced by NLRP3, NLRC4, or

AIM2 inflammasome activation, and endogenous fumarate

accumulation also reduces GSDMD-NT formation and cell lysis.

Mechanistic studies have shown that DMF succinates Cys191 of

human GSDMD (mGSDMD Cys192) and other cysteines (Cys56,

Cys268, Cys309, and Cys467 in human; or Cys39, Cys57, Cys77, Cys122,

Cys265, Cys299, Cys434, Cys448, and Cys489 in mouse) and blocks the

caspase-1-GSDMD interaction, thereby inhibiting GSDMD

cleavage, GSDMD-NT oligomerization, pyroptotic pore

formation, and cell lysis. Another study, however, showed that

DMF had no effect on GSDMD-induced liposome leakage (109). In

addition to binding GSDMD, DMF covalently modified the key

amino acid Cys45 and other cysteines of GSDME, inhibiting

GSDME-dependent pyroptosis. The protective effects of DMF in

various disease models have also been validated. In septic shock

induced by lethal doses of LPS, DMF treatment significantly
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reduced the release of the inflammatory cytokine IL-1b and

improved survival in mice. GSDMD-NT and inflammatory

cytokines were elevated in the EAE model, and GSDMD

deficiency protected mice from EAE as previously described (23).

DMF can effectively reduce GSDMD-NT and IL-1b in central

nervous system tissues, immune cells infiltration, and hindered

the progression of EAE disease. Besides this, in the MefvV726/V726

mouse model, DMF alleviated symptoms of mice with FMF disease

such as IL-1b release, weight loss, and splenomegaly (75).

BAY 11-7082, described as an NF-kB inhibitor, was recently

discovered to inhibit both classical and non-classical

inflammasome-driven pyroptosis (146). Mass spectrometry

analysis showed that BAY 11-7082 covalently modified Cys191 of

GSDMD, effectively inhibiting GSDMD pore formation, IL-1b
secretion, and pyroptosis. BAY 11-7082 bound directly to

GSDMD with a KD of 35.6 mM and moderately inhibited caspase-

11-mediated liposome leakage with an IC50 of 6.81 mM
(Supplementary Table 1). In addition, BAY 11-7082 significantly

inhibited inflammatory caspase-1 and caspase-11 with IC50 values

of 0.15 mM and 1.96 mM, respectively. The inhibition of liposome

leakage by BAY 11-7082 is thought to be mainly due to the

inhibition of caspase-1/11. Overall, BAY 11-7082 is a non-specific

GSDMD inhibitor that inhibits multiple steps of the pyroptotic

pathway, including NF-kB activation and caspase-1 processing,

thereby inhibiting GSDMD cleavage, IL-1b release, and cellular

rupture (146).

LDC7559 with the pyrazolo-oxazepine scaffold was previously

reported to inhibit GSDMD-mediated pyroptosis by binding to

GSDMD, thereby inhibiting the formation of NETs, with IC50

values of ~5.6 mM in PMA-induced NETosis and ~300 nM in

cholesterol crystal-induced NETosis in murine neutrophils

(Supplementary Table 1) (26). However, a more recent report

indicated that LDC7559 indeed inhibited the formation of NETs

and NETosis as previously described, but that this inhibition was

independent of GSDMD. The exact molecular biology mechanism

of LDC7559 is unclear (109).

Itaconate, an intracellular metabolite with a Michael receptor

structure, has previously been shown to inhibit the activation phase

of NLRP3 inflammasome (148). Artyomov et al. revealed the direct

post-translational modification of GSDMD by endogenous

itaconate (149). After prolonged inflammatory stimulation,

aconitate decarboxylase 1 induces massive accumulation of

endogenous itaconate, which prevents full activation of caspase-1

and cleavage of GSDMD, thereby enhancing cellular tolerance to

prolonged LPS exposure. Mass spectrometry analysis has revealed

that endogenous itaconate directly bound to GSDMD through

covalent modification of a, b-unsaturated double bonds with

sulfhydryl groups of GSDMD Cys77 and potentially interfered

with the caspases-GSDMD interaction, thereby inhibiting

pyroptosis (149).

Phenethyl isothiocyanate (PEITC), a secondary metabolite of

cruciferous vegetables, was identified as a covalent inhibitor of

GSDMD by Xu et al. (150). PEITC reduces NLRP3 production and

cleavage of caspase-1 and GSDMD in a mouse model of acute liver

injury and in AML12 cells in vitro. Mechanistic studies have shown

that PEITC binds to human WT-GSDMD but not to the C191A-
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GSDMD mutant with a Kd of 230 nM. Due to the high reactive

affinity of the –N=C=S group for cysteine, PEITC inhibits

pyroptosis by covalently modifying Cys191 of GSDMD. In

addition, PEITC can substantially attenuate concanavalin A

(ConA)-induced inflammatory liver injury and carbon

tetrachloride (CCl4)-induced chemical liver injury in a dose-

dependent manner by inhibiting hepatocyte pyroptosis (150).

The discovery and pharmacological studies of the above

inhibitors show that the GSDMD-related pyroptosis pathway can

be effectively inhibited, confirming that the GSDMD protein is a

potential drug target. Only a few direct GSDMD inhibitors,

including NSA, DSF, and DMF, etc., have been currently

discovered. These inhibitors inhibit pyroptosis and downstream

inflammation mainly by covalently modifying the residue Cys191.

However, many proteins in vivo have reactive sulfhydryl groups. In

addition to upstream caspases and GSDMD, the covalent

modification of sulfhydryl groups in multiple targets in vivo may

lead to toxic side effects. Peptide inhibitors are another class of

inhibitors, but their poor druggability due to poor membrane

permeability and easy degradation in vivo presents a challenge.

Despite these limitations, the development of effective and specific

GSDMD inhibitors is still worth pursuing, given the important role

of GSDMD-mediated pyroptosis in various inflammatory diseases.
6 Perspective conclusions

An increasing number of pyroptosis-related studies have

advanced our understanding of the structure, function, and

activation mechanisms of GSDMD. The activation process of

GSDMD is tightly regulated by multiple pathways. PAMPs and

DAMPs induce activation of canonical or noncanonical

inflammasomes, thereby triggering GSDMD activation and

pyroptosis. In addition to inflammatory caspases, apoptotic

caspase-8, cathepsin G, and ELANE are also involved in GSDMD

cleavage and pore formation. The negative regulatory mechanisms of

GSDMD that ensure its correct and beneficial activation have also

been reported in recent years. Both apoptotic caspase-3 and caspase-7

cleave GSDMD at Asp87, independent of active sites, resulting in the

formation of an inactive N-terminal fragment (p45) that specifically

blocks GSDMD activation. This crosstalk between apoptosis and

pyroptosis suggests a complex interplay between cell death pathways

in the innate immune system. In addition, the formation of GSDMD

pores does not always lead to necrosis or cell lysis. Negative

regulatory mechanisms have also been found in the downstream

events of GSDMD-dependent pyroptosis. GSDMD plasma

membrane pores can be dynamically repaired by ESCRT-III to

delay or block the process of pyroptosis. The degree of

inflammation in the cells and the size and number of pores may

determine whether GSDMD pores are repaired or lysed. Collectively,

numerous studies have reported mechanisms of inflammatory

activation and inflammatory diseases, but little is known about

negative regulatory mechanisms such as inflammation inactivation.

In addition to its protective roles in innate immune defense and septic

shock, the physiological function of GSDMD in epithelial cells to

maintain intestinal mucosal homeostasis has recently been
Frontiers in Immunology 12
discovered. This suggests that the fate of GSDMD varies in

different cell types and in different physiological or pathological

environments. And whether GSDMD has any other physiological

functions remains to be explored.

GSDMD has been shown to play an important role in various

inflammatory diseases. Inhibition of GSDMD activation, membrane

pore formation, and downstream inflammatory responses can

precisely control the degree of inflammation without disrupting

upstream inflammasome activation. Induction of apoptosis rather

than pyroptosis can suppress pathogenic microbial infection and

trigger a modest inflammatory response, thereby avoiding extensive

tissue inflammation. Therefore, the development of highly specific

GSDMD inhibitors is conducive to maintaining a moderate

inflammatory response and provides a promising therapeutic

strategy for nonresolving inflammatory diseases. A few inhibitors

that target GSDMD mainly inhibit pyroptosis by covalently

modifying the cysteine Cys191 (murine Cys192) of the GSDMD

protein. However, these covalent inhibitors lack specificity, and

unknown risks of toxicity limit their further clinical application.

Therefore, the discovery of GSDMD inhibitors and their application

in the treatment of related inflammatory diseases remains a challenge.

The crystal structures of caspase-1-GSDMD and caspase-GSDMD-

CT complexes reveal the structural basis for the highly specific

recognition of the substrate GSDMD by caspases, guiding the

design and development of GSDMD inhibitors that target the

critical binding site. Furthermore, molecular mechanism studies of

pore formation and cell lysis downstream of pyroptosis may provide

additional therapeutic strategies for pharmacological inhibition of

pyroptosis-related diseases, such as targeting NINJ1.

Overall, many questions related to GSDMD-dependent

pyroptosis remain unanswered. For example, do cleaved

GSDMD-CT fragments have physiological or pathological

activity? How do other proteases such as apoptotic caspases,

ELANE, and cathepsin G recognize and cleave GSDMD

substrates? Besides, the role and mechanism of GSDMD in

disease models need to be further explored and validated. The

development of non-covalent inhibitors targeting GSDMD is of

great significance for regulating inflammatory responses. Therefore,

more efficient GSDMD inhibitors are urgently needed to be

discovered and developed.
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