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Abstract

Introduction: Covid‐19 is linked with the development of cardio‐metabolic

disorders, including dyslipidemia, dysregulation of high‐density lipoprotein

(HDL), and low‐density lipoprotein (LDL). Furthermore, SARS‐Co‐2 infection

is associated with noteworthy changes in lipid profile, which is suggested as a

possible biomarker to support the diagnosis and management of Covid‐19.
Methods: This paper adopts the literature review method to obtain

information about how Covid‐19 affects high‐risk group patients and may

cause severe and critical effects due to the development of acute lung injury

and acute respiratory distress syndrome. A narrative and comprehensive

review is presented.

Results: Reducing HDL in Covid‐19 is connected to the disease severity and

poor clinical outcomes, suggesting that high HDL serum levels could benefit

Covid‐19. SARS‐CoV‐2 binds HDL, and this complex is attached to the

co‐localized receptors, facilitating viral entry. Therefore, SARS‐CoV‐2
infection may induce the development of dysfunctional HDL through different
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mechanisms, including induction of inflammatory and oxidative stress with

activation of inflammatory signaling pathways. In turn, the induction of

dysfunctional HDL induces the activation of inflammatory signaling pathways

and oxidative stress, increasing Covid‐19 severity.

Conclusions: Covid‐19 is linked with the development of cardio‐metabolic

disorders, including dyslipidemia in general and dysregulation of high‐density
lipoprotein and low‐density lipoprotein. Therefore, the present study aimed to

overview the causal relationship between dysfunctional high‐density lipo-

protein and Covid‐19.
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1 | INTRODUCTION

In the last of 2019, a new pandemic known as
coronavirus disease 2019 (Covid‐19) emerged, causing
catastrophic effects in the world.1 A novel virus causes
Covid‐19 called severe acute respiratory syndrome
coronavirus type 2 (SARS‐Co‐2), a positive sense‐single
strand RNA virus from the Betacoronaviridiae family.2

The clinical presentation of Covid‐19 is asymptomatic or
presented with mild flu‐like illness in 80% of cases.3

However, Covid‐19 in high‐risk group patients like
hypertension, diabetes mellitus, cardio‐metabolic disor-
ders, chronic kidney disease, and male sex may cause
severe and critical effects due to the development of
acute lung injury (ALI) and acute respiratory distress
syndrome (ARDS).3 Of note, Covid‐19 may lead to extra‐
pulmonary manifestations, including stroke, acute kid-
ney injury, acute hepatic injury, acute cardiac injury,
testicular failure, and various forms of endocrinopa-
thies.4 SARS‐Co‐2 exploits angiotensin‐converting en-
zyme 2 (ACE2) as a receptor for entry to the host cells.
ACE2 is highly expressed in immune cells, cardiomyo-
cytes, renal tubules, enterocytes, testicular cells, and lung
alveolar cells.5 ACE2 is responsible for the metabolism
and conversion of vasoconstrictor angiotensin II (AngII)
to the vasodilator Ang1‐7. Downregulation of ACE2 by
SARS‐Co‐2 augments the elevation of AngII, which has
pro‐inflammatory and proliferative effects (Figure 1).6

Covid‐19 is linked with the development of cardio‐
metabolic disorders, including dyslipidemia in general
and in a particular dysregulation of high‐density
lipoprotein (HDL) and low‐density lipoprotein (LDL).7

Different human studies illustrated that SARS‐Co‐2
infection is linked with significant changes in lipid
profile, which was suggested as a possible biomarker to

support the diagnosis and management of Covid‐19.7

Many studies highlighted that reduction of HDL in
Covid‐19 is connected to its severity and poor clinical
outcomes.8 Interestingly, Ding et al.9 revealed that low
HDL reduces SARS‐Co‐2 clearance. It has been shown
that low HDL serum level was meaningfully associated
with a longer clearance time of SARS‐Co‐2, nearly 35.5
days from onset of Covid‐19.9 The expected average time
from onset of Covid‐19 symptoms to the negative test for
SARS‐Co‐2 infection is 9–11 days.10 These findings
suggest that high HDL serum levels could benefit
symptomatic Covid‐19. Reduced HDL levels also trigger
the release of pro‐inflammatory cytokines and correlate
with inflammatory markers like C‐reactive protein
(CRP).11

In general, HDL has anti‐inflammatory improves
endothelial function; however, dysfunctional HDL loses
its anti‐inflammatory properties and becomes pro‐
inflammatory and proatherogenic, causing endothelial
dysfunction (ED) and increased risk of cardio‐metabolic
disorders.12,13 Therefore, the present study aimed to
overview the causal relationship between dysfunctional
HDL and Covid‐19.

2 | MAIN TEXT

2.1 | General characteristics of HDL

HDL is a small size particle (7–14 nm) in diameter with
high density (1.06–1.21 g/mL) and specific apo-
lipoprotein constituent.14 HDL is involved in multiple
functions; including immunity, inflammation, proteoly-
sis, homeostasis, and reverse cholesterol transport
(RCT).15 These diverse functions are closely related to
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the specific HDL‐subspecies, though the mechanisms
related to the subspecies are not elucidated.15 HDL is
composed of a hydrophobic lipid core surrounded by free
cholesterol monolayer and phospholipid studded by
proteins. Apolipoprotein A1 (ApoA1) forms 70% of its
protein contents (Figure 2).15

HDL is the smallest and densest lipoprotein that
contains distinct proteins, lipid species, and nonpolar
cargo molecules.16 HDL contains phospholipids, un‐
esterified cholesterol, sphingomyelin, and triglyceride.
HDL contains sphingosine‐1‐ phosphate, plasmalogens,
ceramide, free fatty acids, and bioactive steroids like
estrogen and oxysterols that give the functional diversity
of HDL.16

About 95 distinct proteins and many hundreds of
lipid subtypes in HDL mediate its pleiotropic effects.16

Kluck et al.17 reported that HDL carries vitamin E and
other lipid‐soluble vitamins and macromolecules like
microRNA. The biosynthesis of HDL started as a lipid‐
free protein with ApoA1 that acquires cholesterol and
phospholipids in the circulation via ATP binding cassette
transporter to form premature HDL particles.18 Through
lecithin cholesterol acyltransferase (LCAT), these parti-
cles maintain the accumulation of cholesterol and form a

hydrophobic core with HDL particles.18,19 HDL injects
more cholesterol and exchanges lipids with lipoproteins
via cholesteryl ester transfer protein (CETP) and
phospholipids.20

The liver takes up HDL cholesterol (HDL‐c) through
selective lipid uptake without lipoprotein degradation. As
a result, the liver metabolizes the cholesterol, and free
HDLs are re‐circulates again (Figure 3). Similarly,
selective lipid uptake from HDL is also done by
steroidogenic cells in the testes, adrenal gland, and
ovary.21

2.2 | Pleiotropic effects of HDL

HDL subclasses and components vary between indivi-
duals and are altered by different diseases.22 It has been
shown that, unlike humans, where LDL is the primary
circulating lipoprotein, HDL's chief plasma protein in
mice renders them resistant to cardiovascular diseases
(CVD).23,24 HDL's cholesterol efflux capacity (CEC) is
affected by different diseases, including CVDs, inflam-
matory disorders, and metabolic syndrome, as CEC can
be reduced independent of HDL.25 Of note, small HDL

FIGURE 1 Angiotensin II (AngII) in Covid‐19: Angiotensin‐converting enzyme 2 (ACE2) as a receptor for entry for SARS‐Co‐2,
downregulation of ACE2 causes over‐activation of the renin‐angiotensin system. ACE converts AngI to AngII, ACE2 converts AngII to
Ang1‐7, which acts on the Mas receptor leading to protective effects. On the other hand, AngII through angiotensin type 1 receptor leads to
harmful effects.
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FIGURE 2 Structure of high‐density lipoprotein.

FIGURE 3 Metabolic pathway of high‐density lipoprotein (HDL): The biosynthesis of HDL started when ApoA1 acquired cholesterol
and phospholipids in the circulation via ATP binding cassette transporter to form premature HDL particles. Through lecithin cholesterol
acyltransferase, these particles maintain the accumulation of cholesterol and form a hydrophobic core with HDL particles. HDL takes more
cholesterol in circulation and exchanges lipids with lipoproteins via cholesteryl ester transfer protein and phospholipids.
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particles promote CEC through the ABCA1 transporter,25

suggesting that improving CEC reduces the risk of CVDs.
Reduced CEC of HDL in different inflammatory dis-
orders might be due to reduced HDL paraoxonase‐1
(PON‐1) activity or increased content of associated serum
amyloid A (SAA) in HDL.26 Interestingly, HDL and RCT
functions have many pleiotropic functions, including
antioxidant, anti‐inflammatory, antiapoptotic, anticyto-
toxic, and vasodilatory functions (Figure 4).27

The anti‐inflammatory effect of HDL is through
receptors‐dependent mechanisms. HDL activates scav-
enger receptor B1 (SR‐B1) and sphingosine‐phosphate
receptor (S1P), causing the release of endothelial nitric
oxide (NO).28 This change by HDL reduces endothelial
permeability, expression of adhesion molecules, and
inhibition of inflammatory signaling pathways, including
nuclear factor kappa B (NF‐κB).29 In addition, HDL
improves the expression of anti‐inflammatory annexin‐1,
reduces endothelial exocytosis, and maintains endothe-
lial nitric oxide synthase (eNOS).30 Furthermore, HDL
PONs attenuates oxidative stress induced‐apoptosis and
release pro‐inflammatory cytokines.31 PONs are synthe-
sized by hepatocytes and secreted into circulation, where
they assemble with HDL. PONs involves the metabolism
of different agents, including lactones, thiolactones,
glucuronide drugs, aryl esters, organophosphorus, nerve
gases, and cyclic carbonates.32 Furthermore, PON‐1 can
reduce myeloperoxidase activity and modulate the
antioxidant activity of LCAT.32 Besides, platelet‐
activating factor acetylhydrolase (PAF‐AH) which also

called called Lp‐PLA2, and LCAT also contribute to the
antioxidant effects of HDL.19,33,34

Furthermore, HDL attenuates LDL‐induced macro-
phages apoptosis and release of IL‐1β and tumor necrosis
factor‐alpha (TNF‐α), inhibiting the expression of
endothelial‐leukocyte adhesion molecules.35 Muid
et al.35 in vitro study demonstrated that HDL inhibits
most expression of adhesion molecules except vascular
cell adhesion molecule 1(VCAM‐1). S1P and ApoA1
mainly mediate this process as most of the circulating
S1P is carried by HDL.36

It has been shown that HDL via S1P receptor creates
potent anti‐inflammatory effects through induction of
macrophage polarization and chemotaxis and inhibition
of endothelial inflammation.36 Similarly, HDL through
ApoA1 induces anti‐inflammatory effects by reducing the
release of inflammatory cytokines.37 Furthermore, an
experimental study by Guo and colleagues found that
deficiency of ApoA1 in mice increases the release of pro‐
inflammatory cytokines. In contrast, overexpression of
ApoA1 or the use of mimetic peptides reduces the risk of
inflammation via neutralization of bacterial endotoxin in
septic mice.38 These observations suggest the protective
effects of HDL against inflammatory disorders through
PONs, S1P, and ApoA1‐dependent pathways.

In addition, CETP improves the anti‐inflammatory
effects of HDL via activation of PONs, S1P, and ApoA1,
since activation of CETP reduces sepsis‐induced inflam-
mation, increases HDL, and improves survival in
experimental studies.39 A Cohort‐observational study

FIGURE 4 Pleiotropic effects of high‐density lipoprotein.
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involving 25 patients with heart failure showed that
CETP level was low in patients with severe heart
failure,40 suggesting CETP's protective effect against
aggravation and severity of heart failure. Blauw et al.41

illustrated that CETP expression reduces systemic
inflammation in mice. It has been reported that
deficiency of CETP may alter HDL's functional capacity
through modification of HDL's lipid composition, mainly
the antiatherogenic one.42 A study comprised eight
patients with CETP deficiency compared to eight healthy
controls illustrated that CETP deficiency increases HDL's
atherogenic lipid content and increases the risk of
atherogenicity.43 These findings proposed the protective
effects of CETP. However, expression of CETP in the
endothelial cells may cause ED through upregulation of
vascular cell adhesion molecule‐1 (VCAM‐1), intra-
cellular cell adhesion molecule‐1 (ICAM‐1), and mono-
cyte adhesion, which might contribute to the patho-
genesis of atherosclerosis.43

Furthermore, HDL inhibits LDL oxidation through
antioxidants ApoA1, ApoM, ApoE, and PON‐1.44 Cedo
et al.45 observed that HDL attenuates LDL oxidation in
patients with diabetes mellitus. Moreover, HDL
inhibits the expression of adhesion molecules
and monocyte chemoattractant protein 1 (MCP‐1),

reducing LDL oxidation and the formation of oxidized
LDL. HDL attenuates the stimulatory effects of oxLDL
on macrophages to release inflammatory cytokines45

(Figure 5).

2.3 | Dysfunctional HDL and
inflammations

It has been reported that many diseases can affect the
protective effects of HDL. For example, HDL isolated
from patients with CVDs showed reduced ability to
activate and phosphorylate eNOS with abnormal
immune reactivity.46 Similarly, chronic kidney diseases
reduce the protective effect of HDL through impairments
of anti‐inflammatory, antioxidant, and RCT functions of
HDL.47 Indeed, in an aortic aneurysm, circulating level of
small‐HDL is reduced due to sequestration of anti‐
inflammatory ApoA1 at the site of inflammation in the
thrombotic area of the aneurysm.48 These changes that
reduce HDL's anti‐inflammatory and antioxidant ability
predisposes to atherogenicity and pro‐inflammatory
status.48 Remarkably, HDL from patients with athero-
sclerosis exhibits dysfunctional properties even with
normal HDL levels.49 Restoration of HDL in this

FIGURE 5 Anti‐inflammatory effects of high‐density lipoprotein (HDL): HDL inhibits expression of adhesion molecules and monocyte
chemoattractant protein 1 (MCP‐1), reducing LDL oxidation and forming oxidized LDL. HDL attenuates the stimulatory effects of oxLDL on
macrophages to release inflammatory cytokines.
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condition may adversely impact CVDs and cause more
pro‐atherogenic effects.49

Under certain inflammatory circumstances, HDL
loses its athero‐protective function with subsequent
induction release of pro‐inflammatory cytokines and
reduced cholesterol efflux from macrophages.50 In
addition, myeloperoxidase‐induced oxidation of ApoA1
creates dysfunctional HDL with subsequent increased
risk of CVD events.51 There is a close link between
systemic inflammation and the development of dys-
functional HDL in various CVDs.52 High systemic
inflammation and HDL levels decrease flow‐mediated
dilation since a very high HDL level is regarded as an
independent risk factor for high mortality in a
population‐based study.53

Likewise, high serum amyloid ‐A (SAA) in patients
with type 1 diabetes mellitus (T1DM) impairs HDL
function by which increases atherosclerotic risk.54 High
pro‐inflammatory cytokine with high dysfunctional HDL
predisposes to the risk of infections, as it acts as a
mediator of inflammation during infections.55 In T1DM
patients, the CEC of HDL is highly impaired, leading to
dysfunctional HDL development and an increased risk of
CVD complications.55 These findings suggest that HDL
modification by inflammation augments the progression
of the atherogenic phenotype of HDL with future cardio‐
metabolic changes.

Accumulating evidence from a large body of pub-
lished literature showed that chronic inflammatory
disorders increase the risk of CVD events due to changes
in HDL function and structure rather than its level.56 The
exact mechanism related to HDL dysfunction is a
reduction of ApoM, ApoA1, and LCAT activity with
augmentation of SAA, endothelial secretory phospholi-
pase A2, and endothelial lipase.56 These structural
changes induce dysfunctional disorders of HDL to reduce
LDL oxidation and RCT.

de‐la Liera et al.57 in vitro study demonstrated that
endotoxemia and inflammation directly affect HDL
function due to impairment of RCT independent of
HDL plasma level and ApoA1 activity. Therefore, the
functional properties of HDL rather than its circulating
level predicts and provide more relevant information
regarding CVD complications with underlying chronic
inflammatory disorders.58 Of interest, HDL antioxidants
maintain the anti‐inflammatory effects of HDL. How-
ever, in the presence of inflammation, the HDL
accumulates oxidized proteins and lipids, making it
pro‐inflammatory and proatherogenic, causing harmful
rather than protective effects.59

It has been proposed that proatherogenic HDL is
more evident in patients with coronary heart diseases.
Proteomic analysis revealed that the severity of coronary

heart diseases is more related to the functional profile of
HDL than its steady‐state.60 Further, Schill et al.29

illustrated that reactive oxygen species (ROS) could
modify sterols and phospholipids of HDL, reducing its
antioxidant capacity with the progression of oxidative
stress. Animal models of vascular inflammation and
dyslipidemia observed that attenuating inflammatory
burden and oxidative stress may reverse dysfunctional
HDL. One way was that use of ApoA1 mimetic peptide,
which improves HDL's anti‐inflammatory and antiox-
idant properties with further attenuation of athero-
sclerosis progression.29 Therefore, chronic inflammatory
disorders and oxidative stress impair HDL's anti‐
inflammatory and antioxidant properties. Adipokines
from adipocytes and improved physical activity promote
normal HDL, while risk factors for CAD may induce
modification of composition and function of HDL,
causing dysfunctional HDL29,58 (Figure 6).

2.4 | Dysfunctional HDL in infections
and immune disorders

It has been reported that alteration and modification of
HDL level and function can affect the immune response.
During sepsis, bacterial cell membrane components,
including lipopolysaccharide (LPS), may induce an
exaggerated immune response, cytokine production,
and reduction of HDL levels.61 Thus, high HDL levels
in transgenic mice improve sepsis survival.61 Interest-
ingly, HDL increases the clearance of LPS via SR‐B1,
which acts as an LPS‐binding protein.41 Therefore, low
HDL is negatively correlated with sepsis and augments
systemic inflammatory reactions as HDL‐SR‐B1 acts as
direct anti‐inflammatory agent‐driven cholesterol for
glucocorticoid synthesis.62,63 Van‐Leeuwen and col-
leagues observed that HDL serum levels rapidly declined
in patients with severe sepsis,64 suggesting a protective
role of HDL against bacterial sepsis.

Furthermore, it was observed that administration of
reconstituted HDL can attenuate LPS‐induced inflam-
mation64 proposed that HDL could be a valuable
therapeutic approach for sepsis. Besides, intracellular
bacteria and host oxidized phospholipids attenuate
HDL's immune response and protective immunomodu-
latory effect, causing dysfunctional HDL without scav-
enger effect against oxidized phospholipids as in
leprosy.65 Moreover, modifications of HDL‐specific pro-
teins like ApoL‐1, associated with a serum complex
known as trypanosome lytic factor‐1 (TLF‐1), may
increase parasitic infections.66 Thus, high oxidative
changes due to ROS and advanced glycation end product
(AGE) increase inflammation which decreases PON‐1
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and increases myeloperoxidase (MPO), causing dys-
functional HDL, which loses its CEC (Figure 7).

Of interest, reduction of HDL serum level is
associated with the development of auto‐immune dis-
orders. It has been shown that immune cells, including
lymphocytes and dendritic cells, showed auto‐immune
phenotypes in mice with deficiency of HDL.67 The
deficiency of SR‐B1in mice induces abnormal lympho-
cyte proliferation and uncontrolled release of pro‐
inflammatory cytokines from macrophages with subse-
quent deposition of immune complexes in the glomeruli
and high circulating autoantibodies.68 Likewise, SR‐B1
null mice have a large‐size HDL particle with high
cholesterol content resulting in minimal inhibitory
effects on lymphocyte proliferation.69 In this bargain,
injection of ApoA1 prevents lymphocyte activation and
can reduce cholesterol content in the HDL and lymph
nodes.69 These findings suggest that HDL plays a crucial
role in infections and auto‐immune response; since
abnormal immune responses may affect the functional
properties of HDL.

Of note, acute phase response and immune disorders
modify HDL constituents and size with noteworthy
reduction of circulating HDL level, causing the develop-
ment of dysfunctional HDL due to a reduction half‐life of

ApoA1.66 These changes increase the risk of poor clinical
outcomes with high mortality in cases of sepsis and
endotoxemia.70 Furthermore, in acute phase conditions,
ApoA1 of HDL is displaced by secretory phospholipase
A2 and SAA, prone HDL for hepatic metabolism with a
further reduction of its half‐life.71 Indeed, PON‐1 of HDL
is reduced while PAF‐AH is increased in acute infections
and inflammatory disorders that damp the antioxidant
capacity of HDL.72

Another essential key protein present in HDL linked
with acute phase response is ApoM, which binds S1P and
mediates the protective effect of HDL. However, ApoM is
reduced during acute inflammation and infections,
resulting in abnormal HDL distribution.73 Thus, altera-
tion of the ApoM/S1P axis results in the progression of
dysfunctional HDL during acute inflammatory disorders.

Furthermore, dysfunctional HDL is linked with
various auto‐immune disorders due to alteration in
HDL and its anti‐inflammatory constituents.68 Feng
et al.68 found that deficiency of SR‐B1 induces impair-
ment of lymphocyte homeostasis and the development of
auto‐immune disorders. SR‐B1 is a regulatory key of
adaptive immunity that controls lymphocyte prolifera-
tion and cytokine production. It has been shown that
lupus dyslipidemia, characterized by low and abnormal

FIGURE 6 Development of dysfunctional high‐density lipoprotein (HDL): Adipokines from adipocytes and physical activity
improvement promote normal HDL. At the same time, risk factors for CAD may induce modification of composition and function of HDL,
causing dysfunctional HDL due to modifications of ApoA1, paraoxonase‐1, and phospholipase.
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composition of HDL resulting in impairment of anti-
oxidant and anti‐inflammatory properties of HDL.74

Also, a premenopausal woman with systemic lupus
erythematosus (SLE) has a higher proportion of small
HDL with dysfunctional HDL,75 which may predispose
them to develop SLE's atherosclerosis.

Of note, type 2 diabetes mellitus (T2DM), which was
re‐classified as an auto‐immune disorder rather than an
only metabolic disease, displayed abnormal HDL func-
tion and metabolism.76,77 HDL protects pancreatic β‐cells
function from dyslipidemia‐induced inflammation and
oxidative stress. The protective effects of HDL are
reduced in T2DM due to prolonged hyperglycemia.77

Dysfunctional HDL in T2DM could be a consequence of
metabolic derangements, and this abnormal HDL may
adversely affect pancreatic β‐cells function.77 These
observations suggest a potential role of dysfunctional
HDL in the pathogenesis of T2DM.

Despite broad observations and findings of altered
HDL composition in various immune disorders,
whether HDL represents and symbolizes a bystander
effect of immuno‐inflammatory disorders or a potential
key player was unidentified.78 Different experimental
studies revealed that HDL acts as a reservoir and pool
for a series of lipids and proteins with immunomodu-
latory effects.79

HDL has a binding immunological effect, and it
influences the activation of immune cells through
modulation of cholesterol content in lipid rafts and
expression of immune receptors.80 HDL and ApoA1
attenuate monocytes/neutrophils recruitment and acti-
vation by reducing monocyte adhesion to endothelial
cells.81 Moreover, HDL triggers the polarization of
macrophages from classical pro‐inflammatory M1 to
the alternative anti‐inflammatory M2 macrophage,
which improves the release of anti‐inflammatory cyto-
kines in animals.82 These findings have not been proven
in human studies since HDL did not affect M2
differentiation, and monocytes are differentiated simi-
larly in subjects with normal and low HDL levels.83 Lee
et al.84 illustrated that HDL inhibits M1 macrophages
polarization through redistribution of caveolin‐1. These
findings could be related to some markers of M2 not
found in humans.

ApoA1 is the main functional and structural protein
of HDL and plays a critical role in cholesterol efflux and,
together with sphingolipids, form lipid rafts.85 Lipid
composition of lipid rafts may alter immune response
due to B cell and T cell receptors and toll‐like receptors
(TLRs).86 In addition, ApoA1 reduces the abundance of
lipid rafts in the plasma membrane of monocytes by
cholesterol efflux, so it attenuates pro‐inflammatory

FIGURE 7 Inflammation, oxidative stress, and development of dysfunctional high‐density lipoprotein (HDL): High oxidative due to
reactive oxygen species and advanced glycation end product increase inflammation, which decrease paraoxonase‐1 and increase
myeloperoxidase, causing dysfunctional HDL, which lost its cholesterol efflux capacity.
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signaling by altering the cholesterol contents of mono-
cytes and lymphocytes.86

Furthermore, ApoA1‐mimetic 4F improves M2 polar-
ization and inhibits the function of human macrophages
with upregulation of anti‐inflammatory cytokines.87

Lappalainen et al.88 revealed that the addition of ApoA1
to the macrophage foam cell cultures induces cholesterol
efflux and macrophage polarizations. Likewise, HDL
prevents TLR4 activation and expression of pro‐
inflammatory cytokines with subsequent inhibition of
inflammatory signaling pathways, including nuclear
factor kappa B (NF‐κB).89 TLR4 is mainly associated
with cholesterol in lipid rafts and increases macro-
phages' response to LPS stimulation.89 Both native HDL
and ApoA1 inhibit the migration of TLR4 to the lipid
rafts by depleting cholesterol content.89 Similarly, ApoA1
mimetic peptide attenuates the expression of TLR4.90

These observations pointed to the protective roles of HDL
and ApoA1 against developing inflammatory disorders
and abnormal immune responses. However, dys-
functional HDL triggers the development of ED via
activation of TLR4/NF‐κB.91

Moreover, SR‐B1 inhibits oxidative stress and the
release of pro‐inflammatory cytokines from macrophages
and contributes to the immunomodulatory effects of
HDL.92 The macrophages express S1P1 and S1P2
receptors; S1P via S1P1 inhibits the release of pro‐
inflammatory cytokines from macrophages and induces
macrophage polarization, while S1P2 inhibits macro-
phage recruitment and migration to the site of
inflammation.93

Similarly, native HDL and its components, mainly
ApoA1, inhibit the maturation and differentiation of
dendritic cells DCs) through induction release of IL‐10
and prostaglandin E2, known inhibitors of DCs function
and differentiation.94 HDL attenuates DCs‐induced T cell
activation by inhibiting the release of IL‐12 and TLR4
activation.94 It has been shown that the phospholipids
fraction of HDL inhibits DCs function and differentiation
through modulation of lipid rafts.94

In addition, S1P inhibits maturation and differentia-
tion of DCs by increasing IL‐10 with subsequent
suppression of Th1 immune response and prompting
Th2.95 These changes lead to inhibition release of pro‐
inflammatory cytokines from DCs with activation release
of anti‐inflammatory cytokines. HDL is also regarded as a
treatment of chronic inflammatory diseases by suppress-
ing T cells function and proliferation with modulation
expression of Th1/Th17. In addition, HDL improves the
differentiation of anti‐inflammatory regulatory T cells
(Treg) through the polarization of T cells.66

These observations suggest the immunological role of
HDL and its components, as well as alteration of HDL,

may develop during infections and immunological
disorders to abnormal HDL with pro‐inflammatory and
pro‐atherogenic properties.

Therefore, HDL has acute immunological effects on
the immune cells, including macrophages, monocytes,
DCs, and lymphocytes (Figure 8). Functional HDL
inhibits the expression of adhesion molecules, monocyte
infiltration, oxidase enzyme and activates eNOS, though
dysfunctional HDL acts reversely.

3 | DYSFUNCTIONAL HDL AND
COVID ‐19

3.1 | Native HDL and SARS‐CoV‐2
infection

Recent findings illustrated that cholesterol plays a
critical role in viral replication and internalization
of SARS‐CoV‐2 with immune activation in Covid‐19
patients.96 In particular, lipids are fundamental compo-
nents of SARS‐CoV‐2 engaged with a viral membrane
fusion with the host cells, endocytosis, viral replication,
and exocytosis.96 In addition, SARS‐CoV‐2 binds
HDL and complex attached co‐localized receptors
(ACE2/SR‐B1), which facilitate viral entry (Figure 9).
S1 subunit of SARS‐2‐S binds to cholesterol and possibly
to HDL components to enhance viral uptake in vitro.97

SR‐B1 expression facilitates SARS‐CoV‐2 entry into
ACE2‐expressing cells by augmenting virus attachment.
Blockade of the cholesterol‐binding site on SARS‐2‐S1
with a monoclonal antibody, or treatment of cultured
cells with pharmacological SR‐B1 antagonists, inhibits
HDL‐enhanced SARS‐CoV‐2 infection. As well, SR‐B1 is
co‐expressed with ACE2 in human pulmonary tissue and
in several extra‐pulmonary tissues. Therefore, SR‐B1 acts
as a host factor that promotes SARS‐CoV‐2 entry and
may help explain viral tropism, identify a possible
molecular connection between COVID‐19 and lipo-
protein metabolism, and highlight SR‐B1 as a potential
therapeutic target to interfere with SARS‐CoV‐2 infec-
tion.97 In addition, SARS‐CoV‐2 spike protein interferes
with the function of lipoproteins, and that this is
dependent on cholesterol. In particular, the ability of
HDL to exchange lipids from model cellular membranes
is altered when co‐incubated with the spike protein.98

Also, SARS‐CoV‐2 spike protein removes lipids and
cholesterol from model membranes. Thus, spike protein
affects HDL function by removing lipids from it and
remodeling its composition/structure.98 Moreover, HDL
is a key component of circulating blood and mainly
contains phospholipids, free cholesterol, cholesteryl
ester, triglycerides, apolipoproteins, and other proteins.
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Besides its role in reverse cholesterol transport, HDL
displays pleiotropic functions during inflammation and
endothelial dysfunction, decreasing inflammatory signal-
ing in immune effector cells and inhibiting endothelial

response.99 HDL can bind and neutralize viruses and
toxic bacterial substances such as lipopolysaccharide
(LPS).100 Moreover, HDL could block certain viruses to
penetrate cells, reducing tissue invasion.100 Among HDL

FIGURE 8 Immunological effects of high‐density lipoprotein.

FIGURE 9 The potential role of high‐density lipoprotein in SARS‐CoV‐2 infection.
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mimetic peptides, L‐4F has been more widely employed
in several preclinical model of sepsis and has been shown
to block production of cytokines, reverse sepsis‐induced
hypotension, prevent organ damage, and restore renal,
hepatic, and cardiac function, and increase survival
rate.101 Therefore, HDL seems to plays a double‐sword
effect, as native HDL prevents SARS‐CoV‐2 infection and
related complications, and in the same time facilitates
SARS‐CoV‐2 entry.

Thus, dyslipidemia during SARS‐CoV‐2 infection
could be diagnostic and prognostic tools for evaluating
response to the clinical therapy. A retrospective study
involving 55 hospitalized Covid‐19 patients compared to
matched healthy controls showed that HDL and choles-
terol levels were reduced in Covid‐19 patients compared
to the controls (p< .0001).96 These findings pointed out
that reduction of HDL might due to SARS‐CoV‐2
infection as an epiphenomenon.

In vitro study revealed that SARS‐CoV‐2 via spike
protein can bind HDL and facilitate its binding to the
ACE2.102 Similarly, cell line study by Hernrich et al.103

demonstrated that low HDL concentration promotes
SARS‐CoV‐2 entry, while high HDL concentration impedes
this process. Also, targeting of SR‐B1 and cholesterol
suppress entry of SARS‐CoV‐2 in cell culture.103 These
observations indicated that HDL and its receptors have a
potential role in SARS‐CoV‐2 infection.

HDL has potent anti‐inflammatory effects, reducing
the release of pro‐inflammatory cytokines and activation
of immune cells, including macrophages, DCs, and T
cells.94 Therefore, HDL may reduce inflammatory and
exaggerated immune response as well as progression of
cytokine storm in Covid‐19.104 In addition, HDL reduces
activation of adhesion molecules and neutrophil diape-
desis,105 which attenuates neutrophil hyper‐activation
and development of neutrophil extracellular traps and
immunothrombosis in Covid‐19.105 Likewise, HDL has
anti‐SARS‐CoV‐2 antioxidant effects by its component
PON‐1 and SR‐B1,59,74 thereby attenuating oxidative
stress injury in Covid‐19.106

3.2 | Dysfunctional HDL and
SARS‐CoV‐2 infection

In SARS‐CoV‐2 infection, high pro‐inflammatory cyto-
kines and oxidative stress may induce oxidation of HDL,
causing elevation of oxidized HDL (oxHDL) serum level,
structural and functional instability of HDL with
development of dysfunctional HDL.102 Furthermore, it
has been demonstrated that oxHDL induces cytotoxicity,
oxidative stress and inflammation by activating the
release of matrix metalloproteinase 9(MMP‐9) and

TNF‐α from macrophages through NADPH oxidase‐
dependent mechanism.107

Begue et al.108 revealed that HDL is highly altered in
patients with Covid‐19, characterized by reduced ApoA1
and PON‐1 activity. Besides, S1P and ApoM‐HDL are
significantly reduced in patients with severe Covid‐19
compared to the controls.109 S1P is inversely correlated
with Covid‐19 severity, and significantly correlated with
CRP, D‐dimer and ferritin, biomarkers of Covid‐19
severity.109 The reduction of S1P in Covid‐19 could be
due to a reduction in the biosynthesis of ApoM and
albumin by the liver that are transporters of S1P or a
reduced number of erythrocytes which are the main
source of circulating S1P.109 It has been reported that
60% of circulating S1P is bound to ApoM of HDL.110 The
reduction of S1P increases the risk of lymphopenia, a
hallmark of Covid‐19 since SIP improves the egress and
delivery of lymphocytes from lymphoid organs.111

Plasma SIP has anti‐inflammatory and can prevent ED.
However, interstitial S1P increases local inflammation
and antagonizes the effects of circulating anti‐
inflammatory one.112 Fingolimod, an antagonist of S1P
had been proposed to effective therapy in Covid‐19 by
reducing interstitial S1P, but was stopped because of
severe lymphopenia.113 Besides, glucocorticoids which
are widely used in Covid‐19 inhibit the development of
interstitial S1P‐induced cytokine storm.114 Taken
together, reduction of S1P may reduce the functional
activity of native HDL with the development of
dysfunctional HDL. S1P through S1PR1 induce trans-
membrane protein serine 2 (TMPRR2), which activates
the expression of ACE2. In turn, ACE2 activates the
synthesis of S1P by activating sphingosine kinase1/
2(Sphk1/2).

Indeed, the concentration of SAA in HDL is increased
in patients with severe Covid‐19 that blunt HDL's anti‐
inflammatory and antiapoptotic effects.108 Therefore,
SAA‐bound HDL might be useful as a possible biomarker
of Covid‐19 severity.108 It has been reported that the
composition and function of HDL are highly modified in
sepsis and endotoxemia, causing the development of
dysfunctional HDL.57 Sharma et al.115 found that
pneumonia is linked with reduction of ApoA1, PON‐1,
and HDL with an elevation of acute‐phase proteins
including CRP and SAA.

ApoA1 of HDL is declined in Covid‐19 patients due to
reduction of hepatic synthesis of ApoA1 through inhibi-
tion of ApoA1 gene or replacement of ApoA1 by SAA in
HDL.116 Synthesis of SAA is augmented during acute
inflammatory conditions that replace ApoA1 in
HDL.116 These changes favor the development of
dysfunctional HDL since HDL isolated from Covid‐19
demonstrated a blunted afforded and protective effect
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against TNF‐α‐induced apoptosis in cell cultures.108 A
previous study revealed that hepatitis B virus infection
(HBV) inhibits the secretion of ApoA1 from the liver
causing abnormal HDL.117 Recently, Coelho et al.118

ApoA1 depletes lipid raft and can neutralize viral
nonstructural protein in dengue virus infection. There-
fore, ApoA1 mimetic peptide 4F could effectively treat
dengue virus infection. Kelesidis et al.'s119 in vitro study
showed that ApoA1 mimetic peptide 4F could inhibit
SARS‐CoV‐2 replication and associated inflammation,
apoptosis, and oxidative stress. These observations
indicated that dysfunctional or depleted ApoA1 in
Covid‐19 may increase SARS‐CoV‐2 replication and high
inflammatory complications.

Moreover, LCAT is reduced in Covid‐19 due to SARS‐
CoV‐2 infection‐induced hyperinflammation that alters
HDL's anti‐inflammatory function.120 Ex‐vivo adminis-
tration of LCAT increases HDL‐bound ApoA1 and
reduces HDL‐bound SAA.120 These findings proposed
that LCAT treatment could benefit Covid‐19 by improv-
ing HDL function and preventing the development of
dysfunctional HDL induced by SARS‐CoV‐2 and linked
associated disorders.

In addition, lipoprotein lipase (LPL) or its regulatory
proteins like ApoCII are inhibited during SARS‐CoV‐2 by
high pro‐inflammatory cytokines.121 Low LPL inhibits
triglyceride metabolism, causing high triglyceride and low
HDL. Therefore, high triglyceride and low HDL predict the
severity of Covid‐19.121 Besides, CETP is also attenuated in
SARS‐CoV‐2 infection leading to a reduction in bio-
synthesis and function of HDL.121 Inhibition of CETP was
observed in patients with hemorrhagic fever and renal
syndrome leading to a significant reduction of HDL.122

Of note, native HDL has an antiviral effect against
SARS‐CoV‐2, while glycated HDL loses its antiviral
effects.cLarger HDL with high PON‐1 activity has potent
antiviral effects compared to the glycated HDL.123 Thus,
patients with co‐morbidities like hypertension and
diabetes mellitus had low PON‐1 activity increasing their
vulnerability for severe Covid‐19.124 ApoAII inhibits the
interaction between HDL and SR‐B1, displaces ApoA1
and impairs HDL function; it is regarded as an
atherogenic factor and promotes pro‐inflammatory cyto-
kines.62 Therefore, ApoAII is increased in Covid‐19
patients, causing dysfunctional HDL development with
immunoinflammatory complications.125

3.3 | Dysfunctional HDL and risk
of thrombosis in Covid‐19

In Covid‐19, PON‐1 is reduced due to oxidative stress and
reduction of body antioxidant capacity. As well, high

plasmin and elastase from activated neutrophils in
Covid‐19 may induce degradation of HDL PON‐1 as well
as thrombus formation.126 Interestingly, native HDL has
antithrombotic action and prevents ED by upregulating
endothelial eNOS and prostacyclin by SR‐B1.127 In
addition, native HDL also reduces platelet aggregations
and promotes fibrinolytic pathway.127 However, dys-
functional HDL loses these properties and becomes more
atherogenic for induction of thrombosis.128 Moreover,
oxHDL activates SR‐B1 on platelets leading to platelet
hyperreactivity and thrombosis.107,129 These findings
suggest that dysfunctional HDL in Covid‐19 due to pro‐
inflammatory cytokines may cause pulmonary thrombo-
sis, a hallmark of Covid‐19 severity.130

3.4 | HDL and inflammatory signaling
pathway in Covid‐19

Noteworthy, exaggerated inflammatory signaling pathways
in Covid‐19 may interact with HDL bidirectionally. In
patients with unstable angina oxHDL and oxLDL trigger
the release of NF‐κB with subsequent release of pro‐
inflammatory cytokines.131 Activated NF‐κB is exaggerated
in Covid‐19 and linked with the development of ALI/
ARDS.132 In turn, NF‐κB‐induced pro‐inflammatory pro-
motes the development of oxHDL. These findings suggest
that dysfunctional HDL may trigger an abnormal immune
response in Covid‐19 patients.

As well, oxHDL triggers activation of nuclear receptor
pyrin 3 (NRP3) inflammasome, which induces the
release of IL‐1β, IL‐18, and caspase‐1.133 However, native
HDL inhibits the expression of NRP3 inflammasome in a
dose‐dependent manner.133 Besides, NRP3 inflamma-
some is activated in Covid‐19, causing exaggerated
immunoinflammatory response with development of
complications.134 These findings indicated that dys-
functional HDL could increase Covid‐19 severity by
inducing NRP3 inflammasome. As well, exaggerated
NRP3 inflammasome induces the development of dys-
functional HDL135 in a vicious cycle. Therefore, targeting
of NRP3 inflammasome or using antioxidants to prevent
the development of oxHDL could effective strategy
against Covid‐19.

Of interest, HDL from healthy subjects restores the
function of oxLDL by inhibiting mitogen‐activated
protein kinase (MAPK).136 Though, dysfunctional HDL
cannot restore the function of oxLDL but also induce
activation of MAPK, causing the release of pro‐
inflammatory cytokines.136 These observations pointed
out that dysfunctional HDL may aggravate Covid‐19
severity by inducing MAPK signaling pathway, which is
highly activated during SARS‐CoV‐2 infection.137
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Amusingly, CD147 is regarded as one of the most
important receptors for entry of SARS‐CoV‐2.138 Yang
et al.139 found that oxHDL and oxHDL increase the
expression of CD147. These reports and studies proposed
that dysfunctional HDL may increase risk of SARS‐CoV‐
2 infection and its severity. Moreover, AGE is augmented
in SARS‐CoV‐2 infection due to the glycation of lipids
and proteins. As well, receptors for AGE (RAGEs) which
are highly expressed in pulmonary alveolar cells, are
linked with SARS‐CoV‐2‐induced ALI and hyper inflam-
mation.140 Thus, AGE/RAGEs are involved in the
pathogenesis of Covid‐19. Zhou and colleagues revealed
that high AGE/RAGEs are associated with reducing HDL
antioxidant potential141 and promoting the progression
of dysfunctional HDL. These findings highlighted that
exaggerated AGE/RAGEs in Covid‐19 could be a possible
cause for the development of dysfunctional HDL.

3.5 | Dysfunction HDL and AngII
in Covid‐19

Interestingly, there is close interaction between HDL and
AngII as HDL inhibits vascular inflammation by reduc-
ing the expression of AT1R,142 indicating a protective
role of HDL against AngII‐induced inflammation. Wolf
and colleagues illustrated that high circulating AngII

down‐regulate SR‐B1 in proximal renal tubular cells.143

In Covid‐19, SARS‐CoV‐2‐induced dow‐regulation of
ACE2 may augment AngII circulation and associated
inflammatory disorders.144 Therefore, high AngII in
Covid‐19 could be a potential reason for the development
of dysfunction HDL by inhibiting the protective role of
HDL through hnteraction with SR‐B1.

Remarkably, SR‐B1 facilitates entry of SARS‐CoV‐2
into permissive cells, mainly in pulmonary alveolar cells,
since SR‐B1is co‐localized with ACE2.145 Herein, SARS‐
CoV‐2 and high AngII in Covid‐19 may induce dys-
functional HDL by attenuating HDL‐SR‐B1 interaction.
As a result, induction expression of SR‐B1 by statins may
improve functional HDL146 and lead to beneficial effects
against Covid‐19 through this pathway.147

3.6 | Dysfunction HDL and vitamin E
in Covid‐19

Moreover, HDL is the major source of Vitamin E for
pulmonary alveolar type II due to the higher expression of
SR‐B1. The deficiency of Vitamin E may deregulate the
expression of SR‐B1.148 Supplementation of Vitamin E
improves HDL's antioxidant and anti‐inflammatory
effects.149 Of note, Vitamin E is mainly transported by
HDL and increases the resistance of HDL against oxidative

FIGURE 10 Development of dysfunctional high‐density lipoprotein in SARS‐CoV‐2 infection.
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stress.150 Therefore, dysfunctional HDL may reduce
Vitamin E's transport and biological function with subse-
quent development of oxidative stress.150 In Covid‐19,
serum Vitamin E levels are reduced due to SARS‐CoV‐2‐
induced oxidative.151 Reduction of Vitamin E in Covid‐19
could be a possible cause for the development of
dysfunctional HDL, which in turn aggravates this condi-
tion. Therefore, Vitamin E supplementation may improve
HDL function by inhibiting oxidative stress.152

3.7 | Dysfunction HDL and
hyperferritinemia in Covid‐19

Furthermore, hyperferritinemia, the cardinal biomarker
of immune deregulation in Covid‐19, may associate with
dysfunctional HDL development.153 Hyperferritinemia is
adversely affecting HDL function in Covid‐19.153 HDL
via SR‐B1 increases iron retention in macrophages with
subsequent biosynthesis of ferritin.154 Besides, high IL‐6
in SARS‐CoV‐2 infection induces hepcidin expression,
which also reduces HDL function by reducing ApoA1.155

Therefore, the ferritin/hepcidin axis should be concerned
with developing dysfunctional HDL.

Taken together, it would be important to decide
whether dysfunctional HDL seen in Covid‐19 patients
may alter SARS‐CoV‐2 infection by promoting viral
entry. Further experiments are required to determine
the mechanism of SARS‐CoV‐2 infection‐induced dys-
functional HDL, and how dysfunctional HDL affects
Covid‐19 severity. Therefore, SARS‐CoV‐2 infection may
induce the development of dysfunctional HDL through
different mechanisms, including induction of inflamma-
tory and oxidative stress and activation of inflammatory
signaling pathways. In turn, dysfunctional HDL through
induction expression of inflammatory signaling pathways
and oxidative stress may increase Covid‐19 severity
(Figure 10).

4 | CONCLUSIONS

Native HDL has anti‐inflammatory and antioxidant
effects. In SARS‐CoV‐2 infection, high oxidative stress
and pro‐inflammatory cytokines may induce development
of dysfunctional HDL, which in turn triggers oxidative
stress and more pro‐inflammatory cytokines. Therefore,
dysfunctional HDL is implicated in the pathogenesis of
SARS‐CoV‐2 infection and may increase Covid‐19 severity.
Thus, inhibiting inflammatory and oxidative stress dis-
orders in Covid‐19 may attenuate the development of
harmful dysfunctional HDL. Experimental, preclinical,
and clinical studies are recommended to elucidate the

potential role of HDL in SARS‐CoV‐2 infection, and how
dysfunctional HDL is developed.
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