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Abstract
Coronavirus disease 2019 (COVID19) has triggered a global pandemic affecting mil-
lions of people. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
causing the COVID-19 disease is hypothesized to gain entry into humans via the
airway epithelium, where it initiates a host response. The expression levels of genes
at the upper airway that interact with the SARS-CoV-2 could be a telltale sign of virus
infection. However, gene expression data have been flagged as suspicious of contain-
ing different contamination errors via techniques for extracting such information, and
clinical diagnosis may contain labelling errors due to the specificity and sensitivity
of diagnostic tests. We propose to fit the regularized logistic regression model as a
classifier for COVID-19 diagnosis, which simultaneously identifies genes related to
the disease and predicts the COVID-19 cases based on the expression values of the
selected genes. We apply a robust estimating methods based on the density power
divergence to obtain stable results ignoring the effects of contamination or labelling
errors in the data and compare its performance with respect to the classical maximum
likelihood estimator with different penalties, including the LASSO and the general
adaptive LASSO penalties.
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1 Introduction

Coronaviruses (CoVs) are a group of enveloped, single, positive-strandedRNAviruses
causing mild to severe respiratory illnesses in humans. Coronavirus disease 2019
(COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV2), has lead to a global pandemic affecting millions of people and causing high
mortality rates worldwide. Nonetheless, the actual knowledge about COVID19 is
limited, and numerous studies have been carried out to identify genes involved in
the host response to the SARS-CoV-2 infection, so as to determine mechanisms of
pathogenicity and potential therapeutic targets (see, e.g., [20, 22, 24, 29] among many
others). Viral infections of human cells lead to the production of interferons (IFNs) as
an antiviral mechanism. Inmajority of cases, patients are asymptomatic or exhibit mild
symptoms, whereas in more severe cases, patients may develop severe lung injury and
death from respiratory failure. Moreover, SARS-CoV-2 is able to achieve high viral
load even in the absence of symptoms, increasing its contagiousness.

Upper airway gene expression analysis can be performed for identification of
transcriptional regulatory mechanisms involved in the host response to infection by
SARS-CoV-2 and consequently help to distinguish between patients suffering from
COVID19 and other viral or non-viral acute respiratory illness (ARIs). Genetic vari-
ation may contribute to disease largely through misregulation of gene expression.
Metagenomic Next-Generation Sequencing (mNGS) is an useful tool providing clini-
cally actionable information for predicting causes of an infection, evaluating infectious
disease risk and successful diagnosing. Therefore, genetic information may be used
to build novel respiratory diagnostics that integrate host transcriptional signatures of
infection. Conversely, gene expression profiling involves a large number of features,
often much larger than the sample size. High feature dimensionality and paucity of
samples possess a challenge for predictive classification and marker identification
methodologies. Therefore, techniques for high dimensional data analysis need to be
applied.

Despite the potential of mNGS, it presents some crucial barriers, including data
cleanliness. Contamination of samples during specimen collection is a large concern
given the increased analytical sensitivity ofmNGS in comparisonwith standard culture
methods. Accordingly, robust statistical analysis appears appropriate for the classifi-
cation of COVID19 patients and identification of genes involved in patient’s response
to the infection using mNGS data.

Among the existing high dimensional statistical techniques, the regularized logistic
regression model provides simultaneous gene identification and patient classification
through a likelihood of suffering from the disease. The lowdimensional logistic regres-
sionmodel has beenwidely used as a powerful classifier, but classical estimationdesign
is ill-posed in the high dimensional set-up and regularized methods need to be applied.
Regularization techniques assume that only a few number of explanatory variables are
actually involved in the true model underlying the data, so they perform variable
selection and parameter estimation by combining a model-based loss function with a
penalization on the absolute value of themodel parameters. Several penalties have been
explored in the literature. The LASSO (Least Absolute Shrinkage and Selection Oper-
ator) procedure [27] stands within regularization methods, as it performs remarkably
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well as both a selector of important variables and as a prediction engine with computa-
tional feasibility. Later, Shevade and Keerthi [25] proposed sparse logistic regression
based on the LASSO penalty and Cawley and Talbot [9] investigated sparse logistic
regression with Bayesian penalty. However, it has been criticized for its biasedness,
as it tends to select many noisy features with high probability, and consequently Zou
[31] proposed the Adaptive-LASSO (referred as Ad-LASSO in the following) as an
alternative to overcome this weakness. Huang et al. [17] applied adaptive LASSO
to the logistic regression model and showed convenient asymptotic properties of the
resulting estimators. Wide literature applies the regularized logistic regression model
for gene identification and diagnosis of a disease though gene expression profiling.
Some examples are Wu et al. [28], Jacob et al. [18] and Ghosh and Chinnaiyan [12].
In contrast, both LASSO and Adaptive LASSO procedures are based on the logistic
likelihood function and hence, inherits severe lack of robustness; so both methods are
sensitive to contamination in the sample.

While classical estimating methods are based on the maximum likelihood esti-
mator (MLE), recent literature has shown the advantage of using divergence-based
methods in terms of robustness, with an unavoidable (but often not quite signifi-
cant) loss of efficiency. Robust methods for logistic regression based on bounded
deviances have been introduced in Bianco and Yohai [4]. Cantoni and Ronchetti [8]
studied robust M-estimators for generalized linear models and later Avella-Medina
and Ronchetti [3] extended the theory for general penalizedM-estimators in shrinking
neighborhoods. Recently, Bianco et al. [5] studied penalized weighted M-estimators
for the logistic regression model with random penalties. Basu et al. [6] introduced the
minimum density power divergence (DPD) estimators for general statistical models,
which are indeed robust against outliers and leverage points, fisher-consistent and
enjoy asymptotic properties derived under much simpler conditions compared to the
generalM-estimators. TheDPD has the interpretation of being a natural generalization
of the likelihood-based loss function, so that the MLE is included as a particular case
of the DPD-based family. Ghosh and Basu [13] studied the minimum DPD estimator
(MDPDE) for generalized linear regression models, including the logistic regression,
in the low-dimensional set-up, and later Basu et al. [7] extended the methodology
for the high-dimensional logistic regression model, yielding the penalized MDPDE.
They considered several penalty functions, including the LASSO and the Ad-LASSO
penalties, as well as more general weighted adaptive LASSO (AW-LASSO) penalties.
This last work [7] is particularly motivated from the excellent performances, both in
terms of estimation accuracy and variable selection optimality, of the penalized DPD-
based procedures observed under the high-dimensional linear regression model [14,
15].

In this paper, we propose to develop a COVID19 patients classifier through their
upper airway gene expression using the penalized logistic regression model, which
simultaneously carries out important gene selection. We apply different estimation
methods, namely the classical MLE and the MDPDEs penalized with the LASSO,
Ad-LASSO and AW-LASSO penalties (specific to the SCAD penalty of Fan and Li
[10]) as developed in [7].While adaptive penalties enhance the variable selection prop-
erty, robust procedures based on the DPD have been shown to perform competitively
with non-robust ones in the absence of contamination, and to improve the estimation
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accuracy and robustness in a contaminated scenario. Further, AW-DPD-LASSO esti-
mator based on nonconcave penalties acquires many of its advantageous properties
with less computational burden.

The outline of the paper is as follows. Section 2 introduces the minimum DPD esti-
mator family and the corresponding penalized estimators. Section 3 describes the real
dataset containing the upper airway host transcriptional response of patients suspected
of suffering from COVID19 disease. Section 4 studies two classification problems,
diagnosis of COVID19 and differentiation between COVID19 and other viral ARIs
and discusses the performance of the logistic regression model fitted with different
robust and non-robust estimators in both situations. In Sect. 5, some final conclusions
are drawn.

2 Robust Regularized Logistic Regression

Let us consider dichotomous and independent response variables Y1, ..Yn , each inde-
pendently following a Bernoulli distribution, as

P(Yi = 1) = πi , i = 1, ..., n,

where πi ∈ [0, 1]. The logistic regression model assesses the Bernoulli probabilities,
πi , that are related to a fixed or random k-dimensional vector of explanatory variables,
xi , through a common regression parameter β ∈ R

k , for each i = 1, . . . , n, satisfying

logit(πi ) = xTi β

where the function logit(p) = log
(

p
1−p

)
. For simplicity, here, we have assumed that

the intercept term is included within the covariate vector x (in its first component).
Applying the inverse logit function, the logistic model gives the partnership class
probability. In the following, we denote πi = π

(
xTi β

)
, the probability of success of

the response Yi , emphasizing its dependence of the observation xi and the regression
parameter vectorβ. Therefore, to fit the logistic regressionmodel it suffices to estimate
the common parameter β from the observed data.

As discussed in Sect. 1, classical estimation methods based on the likelihood
function for the logistic regression model yield the MLE, known to be asymp-
totically efficient (is a BAN estimator) but not robust. Given the observed data
(y1, x1), .., (yn, xn), the MLE, β̂, is defined by

β̂ = argmaxβ∈Rk L(β), (1)

being

L(β) =
n∏

i=1

π
(
xTi β

)yi (
1 − π

(
xTi β

))1−yi
(2)
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the likelihood function. Equivalently, the MLE can be obtained by minimizing the
negative log-likelihood, − log (L(β)). We will adopt this last formulation, where the
estimator is computed as the minimum of a so-called loss function. Then, to achieve
robustness in the estimation, an alternative loss function must be used. In this line,
Ghosh and Basu [13] presented a robust family of estimators for the generalized linear
models based on the DPD approach and proved robustness its properties. In particular,
given the observed data (y1, x1), .., (yn, xn), theDPD for the logistic regressionmodel
yields

dα (β) = 1

n1+α

n∑
i=1

{(
π1+α(xTi β) +

(
1 − π(xTi β)

)1+α
)

−
(
1 + 1

α

) (
yiπ

α(xTi β) + (1 − yi )
(
1 − π(xTi β)

)α)

+ 1

α

(
yα+1
i + (1 − yi )

α+1
)}

. (3)

where the tuning parameter α ≥ 0 controls the trade-off between efficiency and
robustness. The minimum DPD estimator, β̂α, (MDPDE) is defined as the minimizer
of the loss function given in (3),

β̂α = argminβ∈Rk dα (β) . (4)

Furthermore, the DPD loss function can be defined at α = 0 taking continuous
limits, and the resultingMDPDE coincides with theMLE. That is, the proposed family
of MDPDPE can be considered as a generalization of the MLE. The MDPDEs, β̂α,

demonstrably enjoy great asymptotic properties although they entail an unavoidable
loss of efficiency. Conversely, the gain in robustness is in many cases cost-effective.

On the other hand, dealing with high dimensional data requires additional assump-
tions on the model parameters. In particular, we assume that the true regression vector
is assumed to be sparse, that is, having few non-null elements. Explanatory vari-
ables with zero regression coefficient are not significant for the model. Thus, variable
selection needs to be performed jointly with the parameter estimation. Regularization
methods are characterized by combining a loss function (from themodel) and a penalty
function that induces zero estimation of many coefficients.

The classical penalized (regularized) LASSO estimator of β couples the negative
loglikelihood loss function and the popular LASSO penalty,

β̂LASSO = argminβ∈Rk

⎡
⎣− logL(β) + λ

k∑
j=1

|β j |
⎤
⎦ (5)

where λ is a regularization parameter controlling the shrinkage of the regression vector
β. For more details, see Hastie et al. [16]. The choice of λ then determines the sparsity
of the model; the greater is λ, the greater the weight of the penalty in the objective
function is. Several criteria for the election of the regularization parameter have been
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proposed in the literature, including cross-validation or information criteria adapted to
the high dimensional set-up. Fokianos [11], Park and Hastie [21], Plan and Vershynin
[23], Zhu and Hastie [30] and Sun and Wang [26] are interesting papers based on the
LASSO estimator for the logistic regression model.

Basu et al. [7] extended the LASSOprocedurewithDPD-based loss function for the
logistic regression model, producing more robust estimators. The so-called LASSO
penalized MDPDE (DPD-LASSO) is then given by

β̂α,LASSO = argminβ∈Rk Qα (β) = argminβ∈Rk

⎡
⎣dα(β) + λ

k∑
j=1

|β j |
⎤
⎦ . (6)

One of the major drawbacks of the LASSO penalty is that the estimators obtained
with such penalty are not consistent, i.e., they lack the oracle property (Fan and Li
[10]). Since LASSO function equally penalizes all the coefficients, it over-penalizes
coefficients of irrelevant variables leading to a biased estimator. To overcome the
bias deficiency, Zou [31] proposed the adaptive LASSO procedure in which adaptive
weights are applied to different coefficients. Then, the adaptive LASSO objective
function is given by

Qα (β) = − logL(β) + λ

k∑
j=1

1

|β̃ j | |β j |

where β̃ = (
β̃1, ..., β̃k

)
is a consistent estimator of β. The initial estimator β̃ weights

the penalty to which each element of the estimated vector is subjected. For zero
initially estimated elements, we can simply define a sufficiently great penalty bound.
Therefore, lower elements in β̃ entail a greater penalty, inducing the sparsity in the
adaptive LASSO estimator and conversely lower weights are assigned to large initially
estimated coefficients. This adaptive penalty reduces the bias problem of the standard
LASSO. Some interesting results in relation to the adaptive LASSO estimator in
logistic regressionmodels can be seen in Algamal and Lee [1], Araveeporn [2], Bianco
et al. [5] and references therein.

The idea of weighting the LASSO penalization can be extended to a more general
framework, yielding the adaptive weighted LASSO estimator with objective function

Qα (β) = − logL(β) + λ

k∑
j=1

w(|β̃ j |)|β j |. (7)

An interesting proposal for the weighted function is the first derivative of the noncon-
cave SCAD penalty given by

w(s) = I(s ≤ λ) + (aλ − s)+
(a − 1)λ

I(s > λ). (8)
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with a > 2, where I and (·)+ denote the indicator and positive part functions, respec-
tively. The resulting weighted adaptive penalty is a linear approximation of the SCAD,
and hence, it is expected to work as a substitute for this nonconcave penalty, improv-
ing unbiasedness, continuity and sparsity properties of the LASSO estimator. The
weighted adaptive penalized estimator with this weight function will be referred to as
the AW-DPD-LASSO.

The adaptive and weighted adaptive LASSO procedure can be easily adapted to the
DPD-based loss function leading to an objective function of the form

Qα (β) = dα (β) + λ

k∑
j=1

w(|β̃ j |)|β j |. (9)

The minimization of the objective (9) produces robust adaptively weighted DPD-
LASSO estimators, which includes the DPD-LASSO estimator for w(·) = 1. The
resulting penalized MDPDEs are indeed robust for all positives values of α when
the initial estimator β̃ is also robust, as proved in Basu et al. [7], and non-robust at
α = 0 corresponding to the MLE. Moreover, they are consistent and asymptotically
normal in the high dimensional data set-up with non polynomial order, i.e., when
log(k) = O(ns) for some s ∈ (0, 1), under some regularity conditions. Conversely,
the gain in robustness entails an efficiency loss. Basu et al. [7] empirically compared
the performance of the MDPPE for different values of α with high ultra-dimensional
data, concluding that MDPDEs stand competitive in the absence of contamination and
improve the model selection and classification rate in a contaminated scenario. The
optimal value of the tuning parameter α directly depends on the data, as larger values
of α produce more robust estimators which are preferable for high data contamination
rate. Moderately large values of α, over 0.3 − 0.5, have been recommended in the
literature for worthwhile trade-off between robustness and efficiency.

3 Data Description and Pre-processing

We study the upper airway host transcriptional response in patients with COVID19
(n = 93), other viral (n = 41) and non-viral (n = 100) ARIs so as to identify
genes involved in the host response on host and build a classifiers capable of pairwise
differentiate between classes.

The data were first considered in Mick et al. [20] who conducted an observational
cohort study at theUniversity ofCalifornia, SanFrancisco (UCSF) andZuckerbergSan
FranciscoGeneral Hospital. They evaluated leftover RNAextracted from clinical swab
specimens processed at the UCSF Clinical Microbiology Laboratory and performed a
clinician-ordered test for SARS-CoV-2 using reverse transcription-polymerase chain
reaction (RT-PCR). For negative PCR patients, the presence of other pathogenic res-
piratory virus was detected by mNGS.

Mick et al. [20] performed pairwise differential expression (DE) analysis between
the three patient groups, gene set enrichment analyses (GSEA) on the genes differen-
tially expressed and constructed parsimonious classifiers by combining the LASSO
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procedure for variable selection and random forest algorithm. They concluded that
COVID19 is characterized by markedly attenuated activation of innate immune and
pro-inflammatory pathways early in the course of disease compared to other viral
ARIs. Human gene counts and metadata are publicity available at https://github.
com/czbiohub/covid19-transcriptomics-pathogenesis-diagnostics-results, and IDSeq
metagenomic analysis reports are available at https://idseq.net/ under project name
“covid19_transcriptomics_pathogenesis_diagnostics”.

Before fitting the model, gene counts were variance-stabilizing transformed and
patients labels were marked using RT-PCR results for COVID19 patients and mNGS
results to distinguish between viral and non-viral ARIs. For more details about the pre-
processing step, see Mick et al. [20]. The original set of 15900 features was reduced to
the k = 2187most correlated geneswith the class distinction using Pearson correlation
coefficient.

As discussed in Sect. 1, mNGS data are very sensitive to contamination during
collection and may lead to contaminated observations of the explanatory variables.
Moreover, standard RT-PCR risk of false-positive or false-negative outcomes, and
therefore, some observations may be mislabelled. In order to evaluate the perfor-
mance of the logistic classifier under contamination both in gene expression profiling
(leverage points) and mislabelled observations, we introduce both types of data con-
tamination. For the first, weflag a subset of significant variables using standardLASSO
and we randomly select a 5% of the observations. For each selected COVID19 obser-
vation, we add twice the mean of the variable across all data to significant variables
with negative regression coefficient and subtract the same amount to variables with
positive regression coefficient. Then, we apply the inverse transformation to the rest
of outliers observations. Finally, to generate mislabelled observations, we randomly
select a 10% of the sample and switch its label.

4 Experiments and Results

We compare the performance of the DPD-based methods with the classical MLE
through different accuracy measures, namely sensitivity (true positive rate, TP), speci-
ficity (true negative rate, TN) and correct classification rate (CCR). The explicit
formulas are

TP = true positives

(true positives + true negatives)
,

TN = true negatives

(true negatives + false positives)
,

CCR = true negatives + true negatives

n
.

(10)

We also report the number of genes selected (model size (MS)) with each of the meth-
ods. We fit the preprocessed data to the logistic regression model and use the LASSO
and adaptive LASSO (Ad-LASSO) methods to estimate the regression parameters,
jointly with our proposed MDPDE for the values α = 0.1, 0.3, 0.5, 0.7 and 1, and

123

https://github.com/czbiohub/covid19-transcriptomics-pathogenesis-diagnostics-results
https://github.com/czbiohub/covid19-transcriptomics-pathogenesis-diagnostics-results
https://idseq.net/


Journal of Statistical Theory and Practice            (2022) 16:67 Page 9 of 23    67 

two different weights functions; w(s) = 1/s yielding to the adaptive DPD-based
(Ad-DPD-LASSO) estimator and

w(s) = I(s ≤ λ) + (aλ − s)+
(a − 1)λ

I(s > λ),

with a = 3.7, for the AW-DPD-LASSO estimator. Moreover, we apply the high-
dimensional adaptation of the Generalized Information Criterion (HGIC), introduced
in Konishi and Kitagawa [19], to select the optimal value of λ in (9), given by

λ∗ = min

[
−2 logL(β̂λ)

n
+ log log(n) log(p)

n
‖ β̂ ‖0

]
(11)

where L(β̂λ) is the logistic loglikelihood function. Since the loss function associated
with the logistic regression model is bounded, the penalized estimators are very sen-
sitive to the choice of the penalty parameter. Larger choices of λ induce very shrunk
estimators. Therefore, λ is chosen over a pre-defined bounded grid of values.

To compute the LASSO and Ad-LASSO methods, we use the R package glmnet,
AW-LASSO is fitted using ncvreg package and we fit the DPD-based estima-
tors with our own implemented code available at https://github.com/MariaJaenada/
awDPDlasso. Finally, to examine the robustness of the methods, the logistic regres-
sion model is fitted with original and contaminated data and then, evaluated with the
original data (without outliers) in both settings.

Further, to assess the dependence of the model on the data, we fit the logistic model
with the whole dataset and with 5 subsamples containing all observations except for
5 predefined folds, and we report the accuracy measures of the model fitted with the
whole data, and the mean of the measures produced by the 5 different models fitted
with each fold. The last one allows us to better assess the estimation dependency of
the data, since some subsamples would contain more outlier observations than others.

4.1 Diagnosis of COVID-19

We first examine the performance of the different methods when differentiating
COVID19 patients from patients suffering other viral and non-viral disease. Table 1
shows the results for the logistic model with two classes, COVID19 patients (Y = 1)
and the rest of the patients (Y = 0) without and with contaminated observations,
respectively, with a cut-off of 0.5. It is straightforward to see that adaptive methods
select more parsimonious models, but remain competitive to the LASSO and Ad-
LASSO in all accuracy measures. The proposed robust methods perform similarly to
the LASSO and adaptive LASSO in the absence of contamination, so the penalized
DPD-based estimators are competitive to penalized MLEs in a contamination-free
scenario. Conversely, DPD-based robust methods maintain high classification rates
when contamination is introduced into the data, unlike least squares-based methods,
whose sensitivity drops considerably. That is, likelihood methods encounter more dif-
ficulties in correctly diagnosing the disease. The effect of contamination is even more
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Table 1 Accuracy measures when training the logistic regression model with uncontaminated data

Training with all data Training with subsamples
MS Rate TP TN MS Rate TP TN

Fitted with uncontaminated data

LASSO 24 0.950 0.926 0.965 18.400 0.908 0.872 0.932

Ad LASSO 9 0.929 0.904 0.944 7.600 0.903 0.868 0.925

AW-LASSO 24 0.929 0.904 0.944 7.600 0.903 0.868 0.925

Ad DPD-LASSO α = 0.1 12 0.954 0.936 0.965 9.8 0.932 0.915 0.943

Ad DPD-LASSO α = 0.3 11 0.954 0.936 0.965 9.6 0.937 0.915 0.951

Ad DPD-LASSO α = 0.5 9 0.950 0.915 0.972 9.0 0.935 0.917 0.947

Ad DPD-LASSO α = 0.7 9 0.950 0.915 0.972 9.2 0.940 0.915 0.957

Ad DPD-LASSO α = 1 9 0.950 0.915 0.972 7.8 0.939 0.911 0.957

AW DPD-LASSO α = 0.1 18 0.958 0.947 0.965 11.8 0.930 0.909 0.944

AW DPD-LASSO α = 0.3 18 0.958 0.936 0.972 11.8 0.933 0.913 0.946

AW DPD-LASSO α = 0.5 19 0.958 0.936 0.972 11.6 0.933 0.911 0.947

AW DPD-LASSO α = 0.7 19 0.950 0.926 0.965 11.6 0.934 0.909 0.950

AW DPD-LASSO α = 1 19 0.950 0.926 0.965 11.8 0.935 0.913 0.950

Fitted with contaminated data

LASSO 12 0.761 0.468 0.951 12.800 0.759 0.457 0.956

Ad LASSO 7 0.777 0.553 0.924 6.600 0.781 0.568 0.919

AW-LASSO 7 0.777 0.553 0.924 6.600 0.781 0.568 0.919

Ad DPD-LASSO α = 0.1 6 0.845 0.766 0.896 8.0 0.820 0.679 0.912

Ad DPD-LASSO α = 0.3 6 0.845 0.766 0.896 7.8 0.785 0.545 0.942

Ad DPD-LASSO α = 0.5 6 0.840 0.755 0.896 7.0 0.816 0.662 0.917

Ad DPD-LASSO α = 0.7 6 0.840 0.755 0.896 7.0 0.787 0.549 0.942

Ad DPD-LASSO α = 1 6 0.845 0.766 0.896 6.6 0.813 0.660 0.914

AW DPD-LASSO α = 0.1 7 0.840 0.745 0.903 6.6 0.821 0.732 0.879

AW DPD-LASSO α = 0.3 7 0.840 0.755 0.896 6.8 0.829 0.747 0.882

AW DPD-LASSO α = 0.5 7 0.845 0.766 0.896 6.4 0.822 0.730 0.882

AW DPD-LASSO α = 0.7 7 0.845 0.766 0.896 6.4 0.817 0.717 0.882

AW DPD-LASSO α = 1 7 0.840 0.745 0.903 6.0 0.814 0.711 0.882

pronounced when the fivefold cross-validation dataset is used, as the percentage of
outlier observations is higher depending on the fold with lower sample size.

We also study the accuracy by fitting a Receiver Operating Characteristic (ROC)
curve of the model and reporting its area under the curve (AUC). The AUC is a robust
overall measure to evaluate the performance of score classifiers because its calculation
relies on the complete ROC curve and thus involves all possible classification thresh-
olds. Figure 1 shows the AUC for the different methods with uncontaminated (top)
and contaminated (bottom) datasets. All methods have a similar performance in the
absence of contamination, but when outliers are introduced the AUC of the classical
penalized MLEs decreases more than the robust method’s AUC.

Complementary to the accuracy study of the model, it is also interesting to exam-
ine common genes selected in each method, and the stability in the selection, in the
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AUC with uncontaminated data
and using all available observations.

AUC with uncontaminated data and
averaging by groups.

AUC with contaminated data and using
all available observations.

AUC with contaminated data and
averaging by groups.

(a) (b)

(c) (d)

Fig. 1 AUC for the different methods with uncontaminated (top) and contaminated (bottom) data

case of DPD loss-based methods by varying the parameter α. Figure 2 shows Venn
diagrams with the number of common genes selected by the DPD-based methods for
different values of α under pure (top) and contaminated (bottom) data and the two
proposed penalties, adaptive LASSO (right) and adaptive weighted LASSO (right)
based on the nonconcave SCAD penalty. As shown, the genes selected with each of
the penalties coincide for almost all values of the tuning parameter, showing stability
in the variable selection when the value of α is changed. On the other hand, adaptive
methods based on the MLE generally shrink the set of selected variables by the stan-
dard LASSO procedure. In this case, LASSO and AW-LASSO methods identified the
same set of genes under uncontaminated data, whereas Ad-LASSO selects a subset of
them, but under contaminated data both Ad-LASSO and AW-LASSO methods pick
the same subset of genes selected by the standard LASSO. In contrast, the sets of
selected genes vary slightly when fitting the model using different combinations of
loss and penalty functions. Figure 3 shows Venn diagrams of the gene sets selected
by different methods under pure and contaminated data. It is striking that all methods
select over 4–5 common genes, and almost all genes selected by Ad-DPD-LASSO are
also selected by the AW-DPD-LASSO method. Following Mick et al. [20], over 10
genesmay be enough to construct a competitive classifier for COVID19 diagnosis, and
RT-PCR assays usually employ some of the four gene targets, namely ORF1ab/RdRp,
E (envelope), N (nucleocapsid), and S (spike) genes for SARS-CoV-2 detection.

Conversely, selected genes changed when contaminating the data even when fitting
the model with the same estimating method, as our contamination scheme uses the set
of important variables to introduce leverage points. Nonetheless, both sets of genes
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(a) Ad-DPD-LASSO, uncontaminated
data.

(b) AW-DPD-LASSO, uncontaminated
data.

(c) Ad-DPD-LASSO, contaminated data. (d) AW-DPD-LASSO, contaminated data.

Fig. 2 Venn diagrams of gene sets selected by penalized DPD-basedmethods for different values of α under
uncontaminated and contaminated data

(a) Uncontaminated data. (b) Contaminated data.

Fig. 3 Venn diagrams of gene sets selected by different methods under uncontaminated and contaminated
data
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Correlation plot between the genes identified with Ad-DPD-LASSO
method under contaminated (y-axis) and uncontaminted (x-axis) data.

Correlation plot between the genes identified with AW-DPD-LASSO
method under contaminated (y-axis) and uncontaminted (x-axis) data.

(a)

(b)

Fig. 4 Correlation between the genes identified with DPD-based methods

are highly correlated, as shown in Fig. 4. In particular, almost all genes selected under
contaminated data are highly correlated with (at least) one gene selected in the absence
of contamination.

One may be also interested in determining the constant effect of a gene on the
likelihood that one outcome will occur. Odds ratios (OR) may be used to compare
the relative odds of the occurrence of the disease given the expression level of a
certain gene. The Odds can be interpreted as the risk or importance of a gene in
the diagnostic, so they allow comparison of the magnitude of the risk entailed by
different genes for the COVID19 disease. Accordingly, each regression coefficient
associated with a gene can be interpreted as the estimated relative increase in the log
odds of the outcome per unit increase in the level of that gene. Then, the exponential
function of the regression coefficient is the odds ratio associated with a one-unit
increase in the expression level. Of course, zero-estimated coefficients, resulting in
unit OR, imply that these genes do not affect to the diagnose. Table 2 reports the
estimated coefficients and associated OR of the selected genes with the different DPD-
based methods. Estimated coefficient and associated OR for the penalized MLE are
presented in the Appendix for the seek of briefly. When the model is fitted using
penalizedMLEs, theOR associatedwith the selected variables are generally very close
to the unit, implying a low importance in the diagnosis. Genes IFI6 and IF44L have
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the greatest OR value in adaptive methods and standard LASSO, respectively. Those
genes are two of the most statistically significant genes upregulated by SARS-CoV-2,
according to Mick et al. [20]. In contrast, ORs associated with coefficients obtained
using DPD-based methods are generally more distant from the unit, suggesting genes
with greater relevance in the diagnosis, including IFI6 and IF44L. In addition, DPD-
based methods find some other important genes in the classification. Besides IFI6 and
IF44L genes, TIMP1, FAM83A TRO andWDR74 have been flagged to be specifically
upregulated in COVID-19 patients compared to both other viral and non-viral ARIs
according to [20, 29]. In turn, TIMP1 has been shown to be related to SARS-CoV-2
infection with lower expression level during pathogenesis ([24]), which is translated
in a low OR of the associated coefficient.

The identified genes in our analysis mostly coincide with some biomarkers dis-
cussed in the literature. In particular, 20 of the 23 genes identified using LASSO
penalized MLE were also selected in Mick et al. [20] classifier, which uses a total of
27 genes. However, we have further explored the importance given by the classifier to
each gene, studied the stability of the model when varying the penalty and, in the case
of DPD-based estimators, the tuning parameter α.Adaptivemethods fit more parsimo-
nious models, while DPD-based method gives more importance of the selected genes.
These two properties can be of great use when diagnosis new patients. Conversely, the
results should be understood with caution, as the sample size of the data is not large
enough and the conclusions may not be generalizable. Nonetheless, we can draw from
the study the usefulness of penalized DPD-based methods, which perform well in the
absence of contamination and increase the accuracy of the model when the data are
contaminated, which is quite common when dealing with mNGS data.

4.2 Differentiating BetweenViral ARIs

The previous results were calculated with the aggregated data, where the class NO-
COVID19 included viral and non-viral ARIs. We now study the performance of the
logistic model in differentiating COVID19 from other viral diseases. In this case, only
n = 135 observations are available. We contaminate the data using the same method-
ology as described in Sect. 4, and we fit the model using all available observations
and a fivefolds separately. Table 3 shows the accuracy measures produced by different
methods under uncontaminated and contaminated scenario, respectively. Again, the
proposed DPD-based estimators perform competitively in the absence of contami-
nation and clearly improves the stability of the estimators when using the weighted
adaptive LASSO. The decrease in specificity in the contaminated scenario stands out
whendividing the sample infivefolds. In this case, the sample size decreases ton = 108
observations, which increases sensitivity to outliers. Classical likelihood-based meth-
ods diagnosemostly all patients having COVID19 and is unable to differentiate it from
other ARIs. On the contrary, our DPD-based robust adaptive weighted methods main-
tain a sufficiently high specificity and sensitivity when training with the whole dataset,
proving their ability to differentiate between different viruses. However, when a too
reduced training set is used, the adaptive DPD-LASSO method is highly dependent
on the initial value and performs worse than the adaptively weighted method, which in
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Table 3 Accuracy measures when training the logistic regression model with uncontaminated data for the
problem of differentiating between covid19 and other virus

Training with all data Training with subsamples
MS Rate TP TN MS Rate TP TN

Fitted with uncontaminated data

LASSO 17 0.919 0.989 0.756 12.600 0.902 0.977 0.732

Ad LASSO 6 0.904 0.968 0.756 6.800 0.911 0.957 0.805

AW-LASSO 23 0.956 0.989 0.878 6.800 0.911 0.957 0.805

Ad DPD-LASSO α = 0.1 8 0.963 0.968 0.951 8.600 0.932 0.957 0.873

Ad DPD-LASSO α = 0.3 10 0.970 0.989 0.927 7.800 0.930 0.968 0.844

Ad DPD-LASSO α = 0.5 10 0.970 0.989 0.927 7.600 0.935 0.974 0.844

Ad DPD-LASSO α = 0.7 10 0.970 0.989 0.927 7.400 0.933 0.972 0.844

Ad DPD-LASSO α = 1 8 0.956 0.979 0.902 6.800 0.939 0.968 0.873

AW DPD-LASSO α = 0.1 9 0.963 0.979 0.927 9.600 0.947 0.972 0.888

AW DPD-LASSO α = 0.3 10 0.963 0.979 0.927 9.800 0.945 0.968 0.893

AW DPD-LASSO α = 0.5 10 0.963 0.979 0.927 9.000 0.942 0.970 0.878

AW DPD-LASSO α = 0.7 10 0.963 0.979 0.927 8.800 0.942 0.970 0.878

AW DPD-LASSO α = 1 10 0.963 0.979 0.927 9.200 0.932 0.964 0.859

Fitted with contaminated data

LASSO 5 0.807 0.989 0.390 3.2 0.750 0.991 0.195

Ad LASSO 4 0.844 0.957 0.585 2.2 0.753 0.989 0.210

AW-LASSO 4 0.844 0.957 0.585 2.2 0.753 0.989 0.210

Ad DPD-LASSO α = 0.1 5 0.881 0.926 0.780 3.4 0.760 0.974 0.268

Ad DPD-LASSO α = 0.3 5 0.881 0.926 0.780 3.0 0.759 0.974 0.263

Ad DPD-LASSO α = 0.5 5 0.807 0.989 0.390 3.0 0.759 0.974 0.263

Ad DPD-LASSO α = 0.7 5 0.807 0.989 0.390 3.0 0.759 0.974 0.263

Ad DPD-LASSO α = 1 5 0.807 0.989 0.390 3.0 0.759 0.974 0.263

AW DPD-LASSO α = 0.1 5 0.904 0.947 0.805 9.2 0.855 0.879 0.800

AW DPD-LASSO α = 0.3 5 0.904 0.947 0.805 7.6 0.855 0.883 0.790

AW DPD-LASSO α = 0.5 5 0.904 0.947 0.805 6.4 0.870 0.906 0.785

AW DPD-LASSO α = 0.7 5 0.904 0.947 0.805 4.8 0.862 0.923 0.722

AW DPD-LASSO α = 1 5 0.904 0.947 0.805 4.4 0.865 0.930 0.717

turn maintain competitive classification rates. This classification problem illustrates
the advantage of the robust procedure for high dimensional classification.

Table 4 presents the estimated coefficients and associated OR of the selected
genes with DPD-based methods. The results for penalized MLEs are reported in the
Appendix. Again, robust methods give more importance to the selected genes, which
is shown by their associated OR, and most of the selected genes with the adaptive
and weighted adaptive penalties match. Genes selected by DPD-based methods for
differentiating between ARIs were mostly identified when distinguishing COVID 19
from other diseases. In particular, TIMP1, TRO, WDR74, AL928654.3, ICAM4, and

123



   67 Page 18 of 23 Journal of Statistical Theory and Practice            (2022) 16:67 

Table 4 Estimated coefficients and OR associated with the selected genes with adaptive penalized DPD-
based methods for differentiating between viral ARIs

Gene name Coef. OR Coef. OR Coef. OR Coef. OR Coef. OR
α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 1

Ad-DPD-LASSO

LGR6 1.17 3.23 0.74 2.10 0.76 2.15 0.88 2.41 0.89 2.43

TIMP1 −1.26 0.28 −0.85 0.43 −0.87 0.42 −1.01 0.36 −0.93 0.40

TRO 2.17 8.75 1.61 4.98 1.58 4.85 1.60 4.95 1.74 5.69

SMARCA1 1.13 3.10 1.13 3.09 1.09 2.98 1.04 2.83 1.21 3.35

WDR74 0.79 2.20 0.90 2.45 1.04 2.82 0.91 2.48 1.10 2.99

AL928654.3 −0.42 0.66 −0.49 0.61 −0.27 0.76 −0.47 0.62

ICAM4 −0.72 0.49 −0.74 0.48 −0.87 0.42 −0.88 0.41 −0.96 0.38

IGLL5 0.03 1.03 0.11 1.12 0.05 1.06 – – 0.06 1.06

GSTA2 0.34 1.40 0.34 1.40 – – 0.30 1.35

AW-DPD-LASSO

LGR6 1.26 3.52 0.44 1.55 0.48 1.61 0.53 1.70 0.67 1.96

GSTA2 0.35 1.42 0.54 1.71 0.59 1.80 0.63 1.88 0.77 2.17

TRO 1.90 6.68 0.82 2.28 0.92 2.51 1.03 2.81 1.44 4.23

SMARCA1 1.36 3.90 1.23 3.41 1.34 3.82 1.46 4.31 1.85 6.37

WDR74 0.99 2.69 0.62 1.86 0.67 1.95 0.72 2.05 0.85 2.33

IGLL5 0.38 1.47 0.40 1.48 0.43 1.54 0.47 1.59 0.56 1.76

TIMP1 −1.26 0.28 – – – – – – – –

ICAM4 −0.90 0.41 – – – – – – – –

PLEK – – −0.16 0.85 −0.18 0.84 −0.20 0.82 −0.23 0.79

PDGFRB – – −0.27 0.77 −0.28 0.76 −0.28 0.75 −0.29 0.75

PCSK5 – – 0.03 1.03 0.03 1.03 0.04 1.04 0.04 1.04

IGLL5 were also identified by at least one of the DPD-based methods, and LGR6,
SMARCA1 and PCSK5 were identified by the classical LASSO estimator.

5 Conclusions

Robust penalized logistic regression is specially convenient when dealing with
gene-based classification problems. From our results, DPD-based robust methods out-
perform classical ones when training data are contaminated with leverage points or
mislabelled observations, which is quite common in genetic datasets. In particular,
when the MLE is used, correct diagnosis of the COVID19 is highly affected by this
data contamination and only a 50% of sensitivity is achieved. Thus, the model is use-
less for the diagnosis of new patients. Conversely, the robust DPD-based methods
achieve highest sensitivity rates in contaminated scenarios and are competitive in the
absence of contamination, presenting a compelling proposal. Besides, gene selection
stability is shown within the same DPD-based penalized estimators family, and identi-
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fied genes with robust methods play a more important role in the diagnosis than genes
selected by non-robust estimators.

The accuracy loss of the non-robust methods under data contamination is empha-
sized when differentiating between viral ARIs. In this scenario, penalized MLEs lose
their ability to detect viral diseases other than COVID, whereas robust estimators
manage to maintain sufficiently high specificity. Weighted adaptive DPD-based esti-
mators show the best performance in this case. All these results presented in this
paper illustrate the benefit of using the robust DPD-based procedures which can be
used routinely in any future real-life analysis of high-dimensional gene expression
data and associated classification problems.
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A Additional Results

Tables 5 and 6 present the estimated coefficients and associated OR of the penal-
ized MLEs with LASSO, Ad-LASSO and AW-LASSO penalties, for the diagnosis of
COVID19 patients and differentiating between ARIs classification problems, respec-
tively.
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Table 5 Estimated coefficients and OR associated with the selected genes with penalized MLE methods

Gene name LASSO Ad-LASSO AW-LASSO
Coef. OR Coef. OR Coef. OR

IFI6 −0.02 0.98 1.02 2.78 0.71 2.03

LGR6 0.28 1.33 0.04 1.04 0.00 1.00

RGPD2 −0.27 0.76 −0.01 0.99 −0.18 0.83

PPEF2 0.04 1.04 0.08 1.09 0.07 1.07

PLK4 −0.01 0.99 0.02 1.02 0.08 1.08

TIMP1 −0.03 0.97 −0.49 0.62 −0.36 0.70

TRO 0.02 1.02 0.65 1.92 0.22 1.24

SMARCA1 0.00 1.00 0.23 1.26 0.04 1.04

FAM83A −0.00 1.00 0.08 1.08 0.09 1.10

DCUN1D3 −0.12 0.88 −0.09 0.92 −0.17 0.85

ICAM4 0.02 1.02 −0.03 0.97 −0.16 0.85

GPR153 – – −0.02 0.98 – –

H2AC20 – – 0.28 1.33 – –

GLUL – – −0.27 0.76 – –

AFF1 – – −0.03 0.97 – –

CASP3 – – 0.00 1.00 – –

RNF39 - – −0.00 1.00 – –

CDKN1A – – −0.23 0.80 – –

FBXW2 – – −0.12 0.88 – –

RALGDS – – −0.01 0.99 – –

TOLLIP – – −0.08 0.92 – –

BORCS7 – – 0.06 1.06 – –

CKAP2 – – 0.02 1.02 – –

IFI44L 1.02 2.78 – – 0.09 1.09

DGKI 0.08 1.09 – – 0.07 1.07

PCSK5 −0.23 0.80 – – 0.01 1.01

ADM −0.49 0.62 – – −0.08 0.92

WDR74 0.65 1.92 – – 0.22 1.24

AL928654.3 0.23 1.26 – – −0.09 0.92

HBA1 0.08 1.08 – – −0.05 0.95

EIF3CL −0.01 0.99 – – −0.02 0.98

KRT13 −0.08 0.92 – – −0.11 0.90

TGM3 0.06 1.06 – – −0.00 1.00

IGLL5 −0.09 0.92 – – 0.11 1.11

SPECC1L-ADORA2A −0.03 0.97 – - −0.07 0.93
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Table 6 Estimated coefficients and OR associated with the selected genes with penalized MLE methods
for differentiating between ARIs

Gene name LASSO Ad-LASSO AW-LASSO
Coef. OR Coef. OR Coef. OR

LGR6 0.20 1.22 0.42 1.52 0.59 1.81

TIMP1 −0.03 0.98 −0.28 0.76

TRO 0.20 1.22 0.25 1.29 0.38 1.47

SMARCA1 0.09 1.10 0.14 1.15

WDR74 0.20 1.22 0.26 1.29 0.17 1.19

GPR153 – – – – −0.08 0.92

GIPC2 – – – – 0.02 1.02

GLUL – – – – −0.33 0.72

ORC4 – – – – 0.38 1.46

ZSCAN23 – – – – 0.07 1.07

LYRM2 – – – – 0.12 1.13

PMPCB – – – – 0.09 1.09

CPNE3 – – – – 0.04 1.04

RALGDS – – – – −0.14 0.87

BORCS7 – – – – 0.14 1.15

KIAA0586 – – – – 0.04 1.04

SNRPN – – – – 0.07 1.08

NUP88 – – – – 0.07 1.07

HS3ST3B1 – – – – −0.09 0.92

R3HDM4 – – – – −0.06 0.94

TRIP10 – – – – −0.03 0.97

TPM4 – – – – −0.03 0.97

PLEK −0.20 0.82 −0.24 0.79 – –

GSTA2 0.27 1.31 0.36 1.43 – –

PDGFRB −0.07 0.93 – – – -

NRSN1 0.11 1.11 – – –

PCSK5 0.06 1.06 – – – –

HCAR2 −0.03 0.97 – – – –

AL928654.3 −0.02 0.98 – – – –

DCUN1D3 −0.04 0.96 – – –

KRT13 −0.01 0.99 – – – –

ICAM4 −0.03 0.97 – – – –

IGLL5 0.08 1.08 – – – –
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