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CRISPR-Cas- and Aptamer-based Systems 
for Diagnosing Pathogens: A Review
Helin Yu1,2, Wenwen Jing2 and Xunjia Cheng1,2,*

INTRODUCTION

Zoonoses (infectious diseases transmitted 
between animals and humans) are widely 
prevalent worldwide, and viral infections 
are the most urgent emerging zoonoses 
[1-3]. Greater 200 zoonoses that have 
been identified [4] include most of the 
emerging and re-emerging infectious dis-
eases [5]. Based on pathogenic character-
istics, zoonoses can be classified as bacte-
rial, viral, fungal, parasitic, rickettsial, and 

mycoplasma zoonoses [6]. For example, 
plague [7], colibacillosis, and brucellosis 
[8] are zoonoses caused by bacteria and 
coronavirus disease (COVID-19), which 
is caused by severe acute respiratory syn-
drome (SARS) coronavirus 2 (SARS-
CoV-2) [9], acquired immunodeficiency 
syndrome [10], Lassa fever [11], Ebola 
hemorrhagic fever [12], and Zika virus 
disease [13] are viral zoonoses, whereas 
cryptosporidiosis [14] and giardiasis [15] 
are zoonoses that arise from parasites. 
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Abstract

Pathogenic infections cause severe clinical illnesses in humans and 
animals. Increased encounters between humans and animals and constant 
environmental changes exacerbate the transmission of zoonotic infectious 
diseases. Recently, the World Health Organization has declared some zoonotic 
epidemics as public health emergencies of international concern. Hence, rapid 
and accurate detection of the causative pathogen is particularly essential in 
combating emerging and re-emerging infectious diseases. Traditional pathogen 
detection tools are time-consuming, costly, and require skilled personnel, 
which greatly hinder the development of rapid diagnostic tests, particularly in 
resource-constrained regions. Clustered regularly interspaced short palindromic 
repeats (CRISPR-)-Cas- and aptamer-based platforms have replaced traditional 
pathogen detection methods. Herein we review two novel next-generation 
core pathogen detection platforms that are utilized for clinical and foodborne 
pathogenic microorganisms: CRISPR-Cas-based systems, including dCas9, 
Cas12a/b, Cas13, and Cas14; and aptamer-based biosensor detection tools. 
We highlight CRISPR-Cas- and aptamer-based techniques and compare the 
strengths and weaknesses. CRISPR-Cas-based tools require cumbersome 
procedures, such as nucleic acid amplification and extraction, while aptamer-
based tools require improved sensitivity. We review the combination of CRISPR-
Cas- and aptamer-based techniques as a promising approach to overcome 
these deficiencies. Finally, we discuss Cas14-based tools as functionally 
stronger platforms for the detection of non-nucleic acid targets.

Key words: Clustered regularly interspaced short palindromic repeats-Cas, 
aptamer, pathogen detection, diagnostic tool
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These diseases severely threaten human and animal health 
and can cause devastating global economic damage. Under 
the dual pressures of emerging and re-emerging zoonoses, 
many uncertainties remain in the prevention and control 
of these infectious diseases. Furthermore, infections due 
to these pathogens do not respond well to treatment and 
are associated with low survival rates; thus, early disease 
diagnosis and pathogen identification are particularly 
important in controlling the spread of zoonoses [3,16,17], 
with the current global SARS-CoV-2 pandemic a strong 
case in point.

The last two decades have witnessed a fast expansion 
in the repertoire of tools developed for pathogen detec-
tion. The clinical diagnosis of pathogens is generally based 
on the detection of pathogen-specific genes and proteins 
using techniques, such as reverse transcription (RT-)- 
polymerase chain reaction (PCR), RT-quantitative PCR 
(qPCR), enzyme-linked immunosorbent assay (ELISA), 
next-generation sequencing (NGS), f luorescence in situ 
hybridization (FISH), and chemiluminescence. These 
tools are very effective and have facilitated the evolution 
of diagnostics; however, traditional platforms, including 
serologic methods, which are only workable after anti-
bodies have been produced [18,19], are time-consum-
ing and can identify non-contagious cases as contagious 
(false-positive results), thus limiting the application of 
these methods in point-of-care testing (POCT). Pathogen 
detection tools based on antigen-antibody binding include 
ELISA [20], which is high in cost due to the heavy use 
of antibodies. Nucleic acid-based diagnostic methods, 
such as RT-PCR and RT-qPCR [21], are not convenient 
and require specialized equipment and trained person-
nel, although RT-qPCR is the gold-standard detection 
method for some RNA viruses, such as SARS-CoV-2 
[21,22]. Nevertheless, nucleic acid-based tools have several 
advantages, including lower cost and higher sensitivity, 
over serologic methods [23,24]. Overall, these approaches 
are time-consuming, require strict operating procedures 
[25], are difficult in the rapid identification of pathogens, 

and cannot facilitate the interruption of pathogen trans-
mission in real time, which is a challenge for global public 
health. In the setting of an increasing number of emerging 
and re-emerging zoonotic pathogens circulating among 
human populations, such as SARS-CoV-2, which remains 
as a pandemic since its emergence in late 2019, there is 
an urgent need for the development of new diagnostic 
tools that fulfill the affordable, sensitive, specific, user-
friendly, rapid and robust, equipment-free, and deliverable 
to end-users needs [21].

Following the rapid evolution in our understanding 
of the clustered regularly interspaced short palindromic 
repeat (CRISPR-)-Cas systems, different Cas effector 
proteins have been used for the identification of zoonotic 
pathogens based on their unique characteristics. This 
novel platform is highly dependent on nucleic acids iso-
lated from pathogens and detection based on nucleic acid 
amplification. Isothermal amplification methods, such as 
recombinase polymerase amplification (RPA), loop-me-
diated isothermal amplification (LAMP), and RT-LAMP, 
are effective for pathogen detection in low-resource set-
tings [19,21,26-28]. The CRISPR-Cas-based diagnostic 
platforms utilize isothermal amplification techniques to 
detect pathogens for high-speed POCT with improved 
sensitivity.

Aptamers, which are short single-stranded artificial 
oligo (deoxy) nucleotides, have several advantages over 
antibodies, including smaller molecular weight and easier 
synthesis and screening [29]. Many aptamer-based bio-
sensor detection platforms that are combined with physi-
cal, chemical, and electrochemical approaches are widely 
used for POCT. These pathogen detection platforms often 
involve multiple disciplines. Although CRISPR-Cas- and 
aptamer-based detection methods provide several advan-
tages over conventional tools for pathogen detection, 
shortcomings remain. For example, CRISPR-Cas-based 
methods require nucleic acid extraction and amplifica-
tion, whereas aptamer-based detection methods require 
aptamer screening, which is time-consuming (Table  1). 

TABLE 1  |  Advantages and disadvantages of tools for pathogen detection.

Tools   Advantages   Disadvantages

Traditional   Accurate, sensitive, gold standard for particular pathogens   High cost, time-consuming, need for 
sophisticated equipment and skilled operators

CRISPR-Cas-based systems   Rapid, convenient, accurate, sensitive, robust, specific, 
time savings, reduce the false-positive rate, does not 
require sophisticated equipment, easy to operate, can be 
combined with other platforms, such as microfluidics and 
gene chip technologies

  Need for cumbersome procedures (nucleic acid 
extraction and amplification), need a target 
site near the PAM sequence (Cas12), only 
recognize the RNA target (Cas13)

Aptamer-based systems   Convenient read out, accurate, low cost, high-binding 
specificity, and affinity, stable, wide target range, 
multimode readout

  Screening process is difficult and requires 
significant time, not sensitive to clinical 
samples, leading to increased cost of screening

Combined CRISPR-Cas- and 
aptamer-based systems

  Merits of both systems, aptamer-mediated enhanced 
activation of the Cas protein

  Mainly focuses on the detection of pathogenic 
bacteria

PAM, protospacer adjacent motif.
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Recent studies have introduced the combination of 
CRISPR-Cas- and aptamer-based platforms as a means 
to overcome these shortcomings (Table 1). These novel 
platforms exhibit robust detection capabilities and advan-
tages over traditional methods and have potential utility 
for pathogen diagnosis and food health surveillance.

RAPID DETECTION PLATFORMS BASED ON 
CRISPR-Cas SYSTEMS

Discovery and evolution of the CRISPR-Cas 
systems
CRISPRs are short palindromic DNA sequences that 
were discovered in the Escherichia coli genome in 1987 
[30]; CRISPRs are absent in eukaryotes and viruses [31]. 
The two components of the CRISPR-Cas systems are 
as follows: Cas proteins, which are CRISPR-associated 
endonucleases that cleave specific sequences; and small 
guide RNAs (sgRNAs), which are composed of CRISPR 
RNA (crRNA) and trans-activating RNA, recognize sub-
strate DNA or RNA, and direct the Cas protein to the 
target site for editing. In nature, the CRISPR-Cas systems 
are part of the adaptive immune system of bacteria and 
archaea. Through the formation of RNA-guided endo-
nuclease, CRISPR-Cas cleaves nucleic acids (DNA or 
RNA) that have invaded the prokaryote, thereby acting as 
a defense against foreign pathogens and plasmids [32-35]. 
The CRISPR-Cas systems involve three main phases of 
immunity: adaptation; expression/maturation; and inter-
ference [36-39]. As a result, specific Cas proteins record 
nucleic acid information in the CRISPR array follow-
ing the invasion of foreign mobile genetic elements. The 
effector complex formed by the endonuclease recognizes 
the exogenous nucleic acid information previously stored 
in the CRISPR array and cleaves the invading extraneous 
elements of secondary infection.

The CRISPR-Cas systems can be categorized as class 1 
and 2 based on genetic loci and the conserved sequences 
of the Cas protein. Class 1 CRISPR-Cas systems include 
types I, III, and IV, whereas class 2 CRISPR-Cas systems 
include types II, V, and VI (Table 2) [40,41]. Additionally, 
in contrast to class 1 CRISPR-Cas systems, which are 
composed of multiple proteins, class 2 CRISPR-Cas 
systems, which are composed of a single protein, hold 
promise for utility in a wide range of applications in 
genome editing, gene regulation, molecular diagnostics, 

in vitro pathogen detection, and DNA imaging. Class 2 
CRISPR-Cas systems, especially those including Cas9 
and Cas12a (former known as Cpf1), have been more 
extensively studied than class 1 CRISPR-Cas systems. 
The first Cas protein utilized in genetic manipulation 
was Cas9, which was purified from Streptococcus pyogenes 
(spCas9) [42]; however, activated Cas9 proteins, even 
those Cas9 proteins isolated from other bacteria, cannot 
be used for in vitro pathogen detection due to the lack of 
ability to non-specifically cleave nucleic acids. The sub-
sequently identified Cas12a protein, however, has been 
recognized to perform this function. Interestingly, deacti-
vated Cas9 (dCas9) is primarily used for pathogen detec-
tion based on its sequence-specific binding feature in the 
absence of cleavage activity [43,44]. Cas9 and Cas12a are 
the most extensively studied Cas proteins for gene editing 
and show promise for clinical application [45]. With the 
advent of Cas12, Cas13, and Cas14, several rapid detec-
tion techniques based on CRISPR-Cas systems have been 
explored. Notably, both Cas12 and Cas14 belong to the 
type V CRISPR-Cas system; the latter occupies only one-
half of the amino acids of the former and does not require 
the identification of the protospacer adjacent motif (PAM) 
sequence, which is necessary for recognition by Cas9 and 
Cas12 [46]. Therefore, Cas14 may have more robust fea-
tures and applications than Cas12.

Gene editing and detection based on the type II 
CRISPR-Cas system
CRISPR-Cas9 can cleave double-stranded DNA (dsDNA) 
[32], which can be inserted into exogenous gene frag-
ments for homologous recombination or non-homologous 
end-joining repair for gene knock-in or -out purposes 
[37,44,47], and can be used to successfully edit diverse 
genes by changing the sequence of gRNA to arbitrarily 
switch genes of interest. In addition, silence mutations in 
Cas9 that lead to dCas9 can be applied to diagnostics.

CRISPR-dCas9
The primary function of CRISPR-Cas9 is to splice tar-
get genes. Additionally, CRISPR-Cas9 can be applied 
to pathogen detection by exploiting its sequence-spe-
cific binding property that does not depend on cleav-
age activity (Fig 1). This detection procedure requires 
the introduction of two mutations to Cas9 (D10A and 
H840A mutations in the RuvC-I and HNH nuclease 

TABLE 2  |  Characteristics of class 2 Cas proteins.

Cas protein Domain Protein length Target molecular PAM Type of RNA Trans-Cleavage

Cas9 RuvC HNH 1368aa dsDNA NGG gRNA (crRNA+tracrRNA) No

Cas12 RuvC 1300aa dsDNA ssDNA TTTV crRNA Yes (ssDNA)

Cas13 Two HEPN 1250aa ssRNA * crRNA Yes (ssRNA)

Cas14 RuvC 530aa ssDNA — gRNA (crRNA+tracrRNA) Yes (ssDNA)

*Non-G nucleotide at the 3’ protospacer flanking site (PFS).
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domains, respectively) [44,47]. The dCas9 harboring these 
silence mutations results in the removal of dsDNA cleav-
age activity but exhibits strong affinity for the substrate 
dsDNA [48] and can therefore regulate the expression 
of endogenous genes without gene editing. This feature 
of dCas9 has been used for labeling specific sequences. 
The CRISPR-dCas9 system can be developed for genetic 
screening, overexpression of genes of interest, regulation 
of target gene expression using transcriptional activators 
and repressors, and gene detection [49]. The majority of 
CRISPR-dCas9-based diagnostic tools can detect differ-
ent target pathogens by changing the sequence of sgRNA.

Assays based on CRISPR-dCas9 systems can poten-
tially complement and enrich existing platforms used 
for pathogen detection. For example, the CRISPR-Tag 
system can detect herpes simplex virus 1 DNA in host 
cells [50,51] and CRISPR-mediated DNA-FISH has been 

used as a convenient, high-speed detection approach for 
methicillin-resistant Staphylococcus aureus [52]; however, 
CRISPR-dCas9-based detection tools have not become 
mainstream diagnostic platforms.

Establishing rapid detection platforms based on 
CRISPR-Cas trans-cleavage activity
Phylogenetic tree analysis has revealed that Cas12 and 
Cas14 belong to class 2 (type V) [53]. Unlike Cas9, Cas12a 
and Cas14 contain only one nuclease domain (RuvC 
[RuvC-I, RuvC-II, and RuvC-III]), which cleaves 
DNA, whereas Cas13 contains two HNH domains, which 
only cleave RNA [53-55]. Additionally, multiple Cas12 
variants, such as Cas12b, Cas12e, Cas12f, and Cas12j, 
have been identified. Similar to Cas12a, Cas12b has been 
harnessed for the development of diagnostic tools [21]. 
Cas12e (formerly known as CasX) and Cas12j, have been 

A

B

FIGURE 1  |  Schematic illustration of the diagnostic platforms. (A) Tools based on the CRISPR-Cas system for pathogen detection using 
collateral cleavage activity and sequence-specific binding of Cas12, Cas13, Cas14 and dCas9. The procedure involves sample collection, 
nucleic acid extraction and amplification, Cas protein activation, fluorescence probe degradation, and readout of the results. (B) Aptamer-
based diagnostic tools for bacteria, viruses, and parasite-specific proteins. Aptamers capture the pathogen, causing a change in the current 
or resistance that indicates the presence or absence of the target pathogen. CRISPR, clustered regularly interspaced short palindromic repeat.
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reported to edit the human genome [56-59]. A recent 
study demonstrated a novel method using gene disruption 
and therapy using CRISPR-Cas12f, which was effectively 
packaged into an adeno-associated virus [45]. Given that 
dCas9, which has evolved from Cas9, can be used in diag-
nostics, whether these Cas12 variants can be applied to 
pathogen detection requires further investigation.

Notably, Cas12a, Cas12b, Cas13, and Cas14 possess col-
lateral cleavage activity. The CRISPR-Cas systems can 
be activated to non-sepcifically cleave surrounding sin-
gle-stranded DNA (ssDNA) or RNA following the rec-
ognition of predetermined specific sequences [53,55,60]. 
This collateral trans-cleavage activity is the basis for a 
highly sensitive and specific in vitro rapid detection plat-
form that utilizes a single-stranded f luorescent reporter 
probe. The CasN-sgRNA complex, wherein CasN rep-
resents Cas12, Cas13, or Cas14, is combined with a tar-
get sequence that can activate the trans-cleavage activity 
of the Cas protein and cut a f luorescent probe, causing 
positive signals. Efficient degradation of the f luorescent 
probe can be used to confirm the presence of pathogens 
(Fig 1). CRISPR-Cas-based diagnostic tools convert the 
detection of target microorganism from a molecular level 
to a f luorescent signal that can be directly assessed by the 
naked eye or quickly identified by equipment, which is 
a more convenient, intuitive, and time-saving approach 
than conventional platforms.

In summary, the CRISPR-Cas systems have already 
been employed for the detection of disease-causing viruses, 
such as SARS-CoV-2 (Table 3), human papillomavirus 
(HPV) types 16 and 18, human immunodeficiency virus 
(HIV), Zika virus (ZIKV), and Dengue virus (DENV), 
and for the testing of food for organisms, such as E. coli, 
S. aureus, and Salmonella enterica serotype Enteritidis (S. 

enteritidis). Furthermore, the CRISPR-Cas systems have 
been harnessed to detect single nucleotide polymorphisms 
(SNPs), genetic mutations, and cancer (Table 4).

Diagnostic tools based on the type V CRISPR-Cas 
system
CRISPR-Cas12
DNA endonuclease-targeted CRISPR trans reporter 
(DETECTR), which is based on Cas12a coupled with 
RPA, is a well-known diagnostic method that utilizes 
a f luorophore quencher (FQ)-labeled reporter gene to 
monitor the trans-cleavage activity of Cas12a [48,60]. In 
the presence of pathogens, the DNA substrate typically 
binds to the Cas12a-gRNA complex to change the protein 
conformation of Cas12a. The nearby FQ-labeled ssDNA 
reporter is non-specifically cleaved by Cas12a, resulting 
in the release of FQ and recovery of the reporter f luo-
rescence. Several Cas12-based diagnostic tools have been 
employed to detect various viruses, particularly SARS-
CoV-2, following the global COVID-19 pandemic that 
emerged in late 2019 (Table 3). Notably, this system can 
quickly respond to emerging infectious pathogens and 
has a critical role in controlling epidemics and disease 
spread. Here, we provide an overview of a highly repre-
sentative Cas12a-based tool developed for the detection of 
SARS-CoV-2.

SARS-CoV-2 can be detected using an in vitro specific 
CRISPR-based assay for nucleic acid detection (iSCAN) 
[21], which combines a CRISPR-Cas12a detection sys-
tem with the RT-LAMP technology. This novel detec-
tion platform, called two-pot iSCAN, has several benefits, 
including substantial time savings, high accuracy, enforce-
ability, and ease of operation [21,41]. Most CRISPR-
Cas12a-based detection tools, including iSCAN platform, 
typically involve two steps, which complicate the test-
ing process and increase the risk of contamination [84]. 
POCT may require minimal liquid handling and “one-
pot” reactions. Normally, this barrier can be overcome 
by mixing all reaction components into a single tube for 
a one-pot reaction [21,85]. The one-pot iSCAN system 
can be used for robust testing and identification of other 
pathogens and provides a new basis for the development 
of early pathogen detection platforms. The application of 
one-pot detection systems to the domain of self-inspec-
tion by non-technical personnel faces substantial hurdles 
due to difficulties in finding suitable materials and carri-
ers to control the incorporation of the Cas12a/b-sgRNA 
complex into the reaction system. A technique recently 
developed by Broughton et  al. [61] might be able to 
address this barrier.

The CRISPR-Cas12a diagnostic system relies on the 
indiscriminate cleavage of ssDNA by Cas12a activation; 
however, there are only two activation modes based on 
single- or double-stranded activators, which hinder spec-
ificity and universality [78]. Further, the Cas12a acti-
vation velocity affects the performance of the detection 
system. Therefore, new activation patterns have been 
developed to address these issues. A novel approach to 

TABLE 3  |  CRISPR-based diagnostic tools for rapid and 
accurate detection of SARS-CoV-2.

Nuclease   Platform   Amplification 
method

  Year   Refs.

Cas12a   DETECTR   RT-LAMP   2020   [28,61]

  CRISPR-Cas12a-NER   RT-RAA   2020   [62]

  AIOD-CRISPR   RPA   2020   [63]

  iSCAN   RT-LAMP   2020   [21]

  STOP   RT-LAMP   2020   [64]

  OR-DETECRT   RT-RPA   2021   [65]

  M-CDC   RT-RPA   2021   [66]

  sPAMC   RPA   2022   [67]

Cas12b   CASdetec   RT-RAA   2020   [68]

  iSCAN (one-pot)   RT-LAMP   2020   [21]

Cas13a   SHERLOCK   RPA/RT-RPA   2020   [69]

  CREST   Amplification-free  2021   [70]

Cas13b   SHERLOCKv2   RPA   2020   [64]
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detect Pseudomonas aeruginosa, developed by Sheng et  al. 
[77], activates the CRISPR-Cas12a system by harnessing 
hydrazone chemistry, which has superior reactivity and 
selectivity [86,87], and improves the specificity and f lex-
ibility of the method.

To break through the technical bottleneck created by 
the presence of only two activation methods, Khodakov 
et al. [88] developed an unprecedented approach to Cas12 
activation by using a toehold-mediated strand displace-
ment reaction that strictly follows base-pairing rules. The 
toehold-mediated strand displacement reaction can also be 
applied for the detection of DNA point mutations such as 
that used in cancer diagnosis where DNA point mutations 
are a major cause of carcinogenesis and important mark-
ers of prognosis and diagnosis [89-91]. A combination of 
specific techniques, such as RPA, LAMP, rolling circle 
amplification [92], and primer exchange reaction (PER) 
[93] with the CRISPR-Cas technology, can promote the 
development of diagnostic platforms that use a one-step 
reaction as promising POCT tools [78,94].

CRISPR-Cas14
Cas14, which was first reported in 2018 by the Doudna 
group [53], has several unique traits compared to Cas12 
[46]. Cas14a has 530 amino acids, and is the smallest RNA-
guided nuclease identified to date. Cas14 binds and cleaves 
ssDNA, and RNA is a central component of the Cas14a-
sgRNA complex [37,46]. Cas14 does not require a target 
sequence, such as protospacer adjacent motif (PAM), for 
cleavage activity [95,96]. DETECTR-Cas14 is a recently 
developed diagnostic tool that combines an RPA tool 

with Cas14 and is based on the ability of Cas14 to cleave 
ssDNA through non-specific trans-cleavage activity [53]. 
This molecular scissors-based platform harnesses the abil-
ity of Cas14 to detect DNA with high fidelity to elicit the 
appearance of a f luorescent signal following the collateral 
cleavage of ssDNA [53]. This approach provides new pos-
sibilities for the detection of viruses [46,97]; however, the 
limited number of studies that have reported CRISPR-
Cas14-based diagnostic platforms only elucidate the pros-
pects of the application. The DETECTR-Cas14 platform 
makes it possible to study the effects of ssDNA on the 
human virome, which is an important component in 
understanding virus-disease associations [46,98]. The 
CRISPR-Cas14-based platform still requires nucleic acid 
extraction and amplification, a procedure that is undoubt-
edly cumbersome. A new approach that involves heating 
unextracted diagnostic samples to obliterate nucleases 
(HUDSON) in combination with CRISPR-Cas14 with-
out nucleic acids extraction process and shipping of the 
samples simplifies the workf low [46,80].

Furthermore, this new molecular scissors-based diag-
nostic tool exhibits great potential in SNP identification 
[53]. The CRISPR-Cas14 system has been applied to 
molecular diagnostics and SNP genotyping. In addition, 
CRISPR-Cas14 coupled with metal elements has also been 
harnessed for the sensitive detection of non-nucleic acid 
targets [99,100]. There is no doubt that CRISPR-Cas14 
detects ssDNA viruses and foodborne bacteria in clinical 
settings; however, the CRISPR-Cas14-based diagnostic 
platforms have been explored to a more limited extent 
than the CRISPR-Cas12-based platforms. Therefore, the 

TABLE 4  |  Reported CRISPR-Cas-based diagnostic tools.

Nuclease   Platform   Model   Assessment   Testing time   Refs.

Cas12   DETECTR   HPV16/18   Fluorescence   Within 1 hour   [60]

  Electrochemical DNA biosensor    Change of current (ΔI)   ∼1 hour   [71]

  —   ASFV   Fluorescence   Within 2 hours   [72]

  Cas-gold     Gold nanoparticle-
antibody strips

  1- or 2- minutes   [73]

  HOLMES   JEV   Fluorescence   ∼1 hour   [74]

  HOLMESv2   JEV, SNP   Fluorescence   ∼1 hour   [75]

  CRISPR-actuate hydrogels   Ebola   μPAD   ∼1 hour   [76]

  Hydrazone chemistry-mediated  P. aeruginosa   Fluorescence   —   [77]

  BM-TOA   EGFR mutations   Fluorescence   —   [78]

Cas13   SHERLOCK   E. coli, KPC, P. aeruginosa, ZIKV, DENV   Fluorescence   Within 2 hours   [79,80]

  CRMEN   MERS, SARS, HIV, ZIKV, DENV, HCV, 
HPV4, influenza

  Fluorescence   —   [81]

  SHERLOCK+HUDSON   ZIKV, DENV, YFV, WNV   Fluorescence   Within 2 hours   [82]

  —   Treponema pallidum   Fluorescence   1-4 hours   [83]

Cas14   DETECTR-Cas14   HBoV1   —   —   [46]

  HUDSON+Cas14   SNP (iris color variability)   —   —   [46]
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applicability for non-diagnostic purposes remains to be 
investigated.

Diagnostic tools built on type VI CRISPR-Cas 
systems
CRISPR-Cas13
CRISPR-Cas13-based platforms are promising diagnos-
tic tools and potential next-generation diagnostic strat-
egies for virus detection. Specific high-sensitivity enzy-
matic reporter unlocking (SHERLOCK) based on Cas13 
was reported prior to the introduction of DETECTR. 
Nonetheless, both approaches are based on similar detec-
tion principles and require combination with isothermal 
amplification technologies [80]. The CRISPR-Cas13-
based diagnostic platforms directly detect RNA viruses, 
such as ZIKV, DENV, HIV, SARS, and SARS-CoV-2, 
because Cas13 identifies RNA substrates rather than 
DNA substrates. Isothermal DNA amplification using 
RT-RPA also detects DNA viruses [80]. Furthermore, 
SHERLOCK has been shown to detect pathogenic bac-
teria, such as KPC and NDM-1. The next version of 
SHERLOCK (SHERLOCKv2) has been reported to 
provide a robust, 3.5-fold increase in sensitivity by cou-
pling Cas13b to Csm6 [79].

Although SHERLOCK can specifically and precisely 
detect ZIKV and DENV at the level of 1 copy/μL [82], 
complicated operating procedures, especially nucleic acid 
extraction, have hindered widespread utility. HUDSON 
was developed to compensate for this deficiency and to 
simplify SHERLOCK by reducing lysed viral parti-
cles and deactivating RNases in body f luids [80,82]. 
HUDSON permits the use of RPA after HUDSON to 
directly detect virus from body f luids without the need for 
nucleic acid extraction, dilution, and purification [101]. 
A viral diagnostic platform that pairs SHERLOCK and 
HUDSON has been constructed to effectively and rap-
idly detect ZIKV and DENV [82]. This new platform 
is highly sensitive and specific and can be used without 
instruments. More importantly, it is a potential platform 
for multiplexing detection of viruses [79].

In 2020, Ackerman et al. [81] introduced combinato-
rial arrayed reactions for multiplexed evaluation of nucleic 
acids (CARMEN) as a f lexible platform that enables 
highly multiplexed detection of pathogens. The combina-
tion of CARMEN with Cas13 (CARMEN-Cas13) stably 
detects >4500 crRNAs-substrate complexes in a single 
array. The CARMEN-Cas13 platform detects Middle 
East respiratory syndrome virus, SARS, SARS-CoV-2, 
HIV, ZIKV, DENV, hepatitis C virus, and HPV4, but not 
γHPV or Aroa virus. The f lexibility and high through-
put of CARMEN allow the introduction of crRNAs or 
amplification primers to detect emerging and re-emerg-
ing pathogens. Additionally, CARMEN complements 
the shortcomings of next-generation sequencing. In sum-
mary, the CARMEN-Cas13 platform expands the appli-
cation of CRISPR-based platforms for pathogen detection 
by providing f lexible testing.

RAPID DETECTION PLATFORMS BASED ON 
APTAMERS

CRISPR-Cas-based diagnostic platforms are cumber-
some due to complex manipulations that are needed, 
such as extraction and amplification of nucleic acids. 
These tools have shown robust functionality in pathogen 
detection. Simple, convenient, and highly effective tools 
are urgently needed. Aptamer-based biosensor detection 
methods have subsequently attracted attention to address 
this issue.

Aptamers are 20–80-base ssDNA or RNA sequences 
identified by screening of nucleic acid libraries with the 
systematic evolution of ligands using an exponential 
enrichment (SELEX) strategy [102,103]. Aptamers are 
excellent alternatives to antibodies for antigen-specific 
identification [104]. Furthermore, aptamers permit stable 
immobilization of target molecules, such as viruses, bac-
teria, amino acids, proteins, and cells [105]. Typically, the 
screened aptamer binds specifically to the targeted sub-
strate and indirectly detects pathogens based on physical, 
chemical, or electrochemical properties, such as changes 
in current or electrical resistance or the naked-eye rec-
ognition of f luorescence. Therefore, platforms based on 
aptamer-based biosensors (aptasensors) have been broadly 
used to detect pathogenic viruses and foodborne bacteria 
in clinical settings or diagnosis of human diseases (Fig 1). 
Aptasensors are divided into optical and electronic biosen-
sors depending on the type of transducer.

Detection of bacteria via aptamer-based tools
Bacteria colonize a wide range of nature environments, 
and infection with pathogenic bacteria can cause severe 
clinical illness. Therefore, the early and rapid detection of 
bacteria in food or water samples is essential. Currently, 
most of the described aptamer-based detection tools are 
used for the detection of E. coli and S. aureus.

E. coli is a pathogenic microorganism widely found 
in nature and the human gut. E. coli serotypes can cause 
various clinical symptoms, such as diarrhea, abdomi-
nal pain, ulcers, and hemolysis [106,107]. S. aureus is a 
common pathogen that causes infectious diseases, such as 
pneumonia, arthritis, and sepsis [108]. In addition, fol-
lowing the abuse of antibiotics in clinical settings and the 
addition to poultry feed, S. aureus has gradually become 
insensitive to clinical treatment, a considerable challenge 
for human health [109]. Early and rapid diagnosis is very 
important in efforts to curb the spread of E. coli and S. 
aureus, guide medical treatment, and detect bacteria in 
food and water sources. Development of methods for the 
quantitative and rapid detection of E. coli and S. aureus 
has attracted the attention of food safety, medicine, and 
other f ields, and fast and precise detection techniques 
based on aptamers have been exploited. The combina-
tion of optical or electrochemical sensors with aptamers 
has been widely used to test E. coli and S. aureus proteins, 
and even whole cells.
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Aptamers assembled with optical sensors for 
the detection of E. coli and S. aureus
Visible light, ultraviolet light, and f luorescent sensors can 
be used to detect E. coli using aptamers; these approaches 
provide several advantages, including ease of operation 
and low cost compared to ELISA, which is a conventional 
technique that requires an abundant amount of antibodies 
and is expensive [110]. Several optical-sensors-based tools 
for detecting E. coli have already been developed. In 2016, 
Fu et al. [111] developed a method based on sandwich-like 
assay to detect E. coli K88. The authors introduced bio-
tin-labeled and Au nanoparticle (NP)-labeled aptamers to 
create a sandwich-type complex (biotin-labeled aptamer 
I/E. coli K88/NP-labeled aptamer II). The presence of E. 
coli K88 was visualized based on a color reaction, and the 
assay had a linear range of 10–105 colony-forming units 
(CFU)/mL. A colorimetric method based on an aptam-
er-polydiacetylene optical sensor was reported to detect 
E. coli O157:H7 at ranges between 104 and 108 CFU/
mL [112]. Pandit et  al. [113] developed a new method 
to detect E. coli in water samples. Specifically, two E. 
coli-specific aptamers, which were identified by screening, 
were separately conjugated with superparamagnetic iron 
oxide NPs and CdTe-MPA quantum dots, respectively. 
The use of CdTe-MPA quantum dots allows the qualita-
tive and quantitative estimation of E. coli by f luorescence 
spectrophotometry. The limit of detection (LOD) of this 
biosensor is as high as 102 CFU. Yuan et al. [114] devel-
oped a gold NP-based colorimetric aptasensor to detect S. 
aureus based on tyramine signal amplification technology. 
In this method, the biotinylated anti-S. aureus aptamer is 
immobilized on the surface of a microtiter plate before the 
addition of other necessary ingredients (biotin-tyramine, 
streptavidin-horseradish peroxidase, avidin-catalase, and 
S. aureus). The catalase added during the assay depletes 
endogenous hydrogen peroxide. Finally, gold (III) chlo-
ride trihydrate is used to change the color of the reaction 
product and the presence of S. aureus is determined by 
measuring absorbance at 550 nm. The assay could detect 
S. aureus ranging from 10-106 CFU/mL under ideal con-
ditions, and the LOD was 9 CFU/mL. Aptamer-based 
techniques using f luorescence for the detection of E. coli 
and S. aureus exhibit higher sensitivity than techniques 
based on visual and colorimetric assessment. Fluorescence 
aptamer-based techniques often require sophisticated 
instruments, such as epif luorescence, confocal f luores-
cence, and confocal laser scanning microscopy.

Aptamers assembled with electrochemical 
sensors for the detection of E. coli and S. aureus
Electrochemical signals can be displayed by current, 
resistance, or potential, offering several possibilities for 
constructing electrochemical biosensors for E. coli and S. 
aureus testing [110]. Notably, aptamers coupled to elec-
trochemical sensor detection platforms have the potential 
to achieve tractability and miniaturization and have been 
reported to directly detect pathogens in turbid media. 

A study recently described a method to detect the outer 
membrane proteins (OMPs) of E. coli through a change 
in resistance [115]. In that assay, potassium ferricyanide 
was used as a redox probe for electron exchange between 
the gold electrodes. E. coli OMPs combined with aptamers 
could hinder this process, leading to an electrochemical 
reaction. The relationship between the concentration of 
E. coli OMPs (1 × 10−7 – 2 × 10−6 mol/L) and electron 
transfer resistance was excellent. In addition to OMPs, E. 
coli lipopolysaccharide can be used as a detection site [116]. 
Furthermore, aptamer-based electrochemical sensors can 
be used to detect E. coli genes. For example, E. coli riboso-
mal RNA was detected by monitoring the oxidation state 
of guanine nucleotides [117], and E. coli genomic DNA 
was directly recognized by utilizing methylene blue as a 
DNA hybridization probe molecule [118]. Several tools 
have emerged for detecting whole cells of E. coli [119-121].

Nguyen et  al. [122] reported a new method for the 
detection of S. aureus. Nguyen et al. [122] utilized a cog-
nate pair of aptamers for S. aureus to fabricate a sand-
wich-type aptasensor (aptamer I/S. aureus/horseradish 
peroxidase-conjugated aptamer II) on a screen-printed 
gold electrode. S. aureus can be detected based on a sig-
nificant decrease in faradaic peak current and peak-to-
peak potential separation. The predicted LOD of this 
sandwich-type signal-on electrochemical biosensor was 
39 CFU in buffer and 414 CFU in commercially available 
bottled water samples. Further, the new biosensor could 
easily detect S. aureus in a sample volume as low as 5 μL. 
As rapid, sample, sensitive, and specific approaches, sand-
wich-type electrochemical aptasensors have promising 
applicability in food safety management.

Detecting viruses via aptamer-based tools
Aptamer-based biosensors have been developed for bacte-
rial and viral detection. Table 5 summarizes the aptasen-
sor-based techniques for the detection of viruses. Optical 
aptasensors for virus detection can be categorized into 
six groups. Surface plasmon resonance (SPR) aptasensors 
are based on the detection of resonance of free electrons 
based on the change in refractive index. Aptamers are pre-
fixed to the surface of a gold plate, and the thickness of 
the gold surface is altered after the capture of the virus; 
the presence of the virus is determined by measuring 
changes in the angle or the intensity of polarized light. 
Colorimetric aptasensors determine the presence of virus 
based on an apparent shift in color, which can be directly 
observed with the naked eye or using a spectrophotome-
ter. Fluorescence aptasensors are based on the transition 
of f luorescence signals or the production of f luorescence 
polarization. Chemiluminescence (CL) aptasensors are 
commonly and extensively used to detect viruses, such as 
hepatitis B virus, HIV, SARS-CoV-2, and other emerg-
ing and re-emerging infectious viruses in clinical prac-
tice. These assays are based on colorimetric detection. The 
aptamer is co-incubated with virus particles, followed by 
the addition of catalytically-active complexes that bind to 
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the virus, and the addition of a chromogenic or CL rea-
gent for the quantitative detection of the virus. Surface-
enhanced Raman scattering aptasensors utilize Raman 
scattering spectroscopy, which ref lects the characteristics 
of the medium by the change in the energy of photons after 
passing a laser light through the medium. Interferometric 
aptasensors are the sixth category developed on the basis 

of interferometry. It is a label-free technique for measur-
ing light intensity, which includes a refractive index or 
physical property.

Furthermore, viruses can be detected with electronic 
biosensors, which are a type of electrochemical aptasen-
sor, or piezoelectric transducers based on different mech-
anisms. Electrochemical aptasensors follow the principle 

TABLE 5  |  Aptasensors applied in virus detection.

Detection Technique Virus Limit of Detection Refs.

Optical aptasensors SPR (AIV) H5N1 0.128 HAU [123]

200 EID50/mL [124]

HIV-1 0.12 ppm [125]

Colorimetric MNV 200 MNV/mL [126]

H3N2 11.16 μg/mL [127]

H5N1 0.1 μg/well [128]

H5N2 1.27 × 105 EID50/mL [129]

HCV 11 nM [130]

3.91 × 102 FFU/mL [131]

HuNoV 10 RNA copies [132]

ZIKA virus 0.1 ng/mL [133]

Multiplex strain-specific influenza virus 2 × 106 virus particles [134]

SFTS virus 9 pg/mL [135]

SARS-CoV-2 10 ng/mL [136]

1 ng/mL [137]

Fluorescence HBV 1.25 mIU/mL [138]

SARS-CoV-2 130 fg/mL [139]

RSV 80 nm [140]

H1N1 3.45 nM [141]

CL SARS-CoV 2 pg/mL [142]

HBV 0.1 ng/mL [143]

SERS H1N1 97 PFU/mL [144]

Interferometry HCV 700 pg/mL [145]

Electronic aptasensors Electrochemical aptasensors H1N1 10 pM [146]

HCV 0.16 fg/mL [147]

3.3 pg/mL [148]

H5N1 8 × 10−4 HAU/200 μL [149]

(AIV) H5N1 2−9 HAU [150]

HIV-1 1 nM [151]

SARS-CoV-2 1.6 × 10 PFU/mL [152]

Noro viruses 180 virus particles [153]

Piezoelectric transducers HIV-1 0.25 mg/L [154]

(AIV) H5N1 0.0128 HAU [155]

HCV 0.1 pM [156]
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of a change in electrical signal caused by the binding of 
the aptamer to the target virus. Aptamers used to capture 
viral molecules are prefixed on electrode plates. Detection 
tools based on electrochemical aptasensors can be further 
categorized into three subclasses: enzymatically-labeled 
aptasensors, in which enzyme catalysis triggers a change 
in the electrical signals; enzyme-free aptasensors, in which 
the binding of viral particles to the aptasensors directly 
causes a change in the electrical signal; and field-ef-
fect transistor (FET)-based aptasensors. The aptamer is 
immobilized on the FET surface to capture target viral 
molecules and the change in the charge distribution on 
the FET surface is detected and translated into an easy-
to-read signal in FET-based aptasensor detection tools. 
Several viral assays based on these technologies have been 
developed (Table 5). Piezoelectric transducers are based 
on the piezoelectric effect principle, in which an electrical 
charge is generated when certain materials are subjected 
to mechanical stress.

Detecting parasites via aptamer-based tools
Parasites are a large family of pathogens that cause zoon-
oses. Seven of the top 10 global tropical diseases are 
caused by parasites. As such, parasites are a serious threat 
to human health and a significant burden to the economy, 
both of which can be mitigated by the rapid detection of 
parasites. Recently developed aptamer-based tools for par-
asite detection provide rapid and accurate approaches with 
a low LOD and have been widely implemented to identify 
and monitor various parasites.

Roca et al. [157] selected a DNA aptamer (D10) against 
Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate 
reductoisomerase (DXR) using the SELEX strategy, a 
vital enzyme in the methyl erythritol phosphate (MEP) 
pathway of isoprenoid biosynthesis. The D10 aptamer 
binds to recombinant DXR in vitro and explicitly targets 
the apicoplast, in which the MEP pathway is localized, 
an essential organelle in P. falciparum. Therefore, D10 is 
a highly specific marker for naive erythrocytes and red 
blood cells parasitized by P. falciparum and for the apico-
plast. Therefore, the D10 aptamer is a promising lead for 
future diagnostic strategies for Plasmodium and a potential 
tool for other studies of apicomplexan parasites, such as 
Toxoplasma gondii. In addition, the D10 aptamer detects 
bacteria harboring the MEP pathway, such as E. coli and 
P. aeruginosa. To address the lack of aptamer-based meth-
ods for the detection of SAG-1, the major T. gondii surface 
protein, Cui et al. [158] developed a direct enzyme-linked 
aptamer assay to target native SAG-1 (nSAG-1) for the 
detection of T. gondii. This novel technique is a potential 
tool for the rapid and precise diagnosis of toxoplasmosis. 
Homann and Goringer [159] was the first to employ the 
SELEX strategy to screen aptamers for the detection of 
African trypanosomes. The authors identified an RNA 
aptamer that crosslinked to a 42-kDa protein in the f lagel-
lar capsule of trypanosomes through 13 rounds of SELEX 
selection. Interestingly, although aptamer-based assays 

have been proposed for the detection of parasites, with 
many tools developed over the years, only a handful of 
reports use whole cells as detection targets. Commonly, 
the screening substrates of aptamers for parasites are 
enzymes, proteins, and infected cells [160-162] and these 
aptamers detect the secretions and excretions of the target 
parasite or specific virulence-related molecules.

RAPID DETECTION PLATFORMS COUPLING 
CRISPR-Cas- AND APTAMER-BASED SYSTEMS

CRISPR-Cas- and aptamer-based techniques utilize 
many tools for pathogen detection and exhibit robust effi-
cacy, sensitivity, specificity, and convenience compared 
to conventional detection approaches; however, cumber-
some procedures and the detection of the LOD are issues 
that remain to be resolved. For example, CRISPR-Cas-
based tools require nucleic acid extraction and amplifica-
tion. Conversely, multiple rounds of aptamer screening are 
essential for aptamer-based platforms and detection with 
aptamers only does not achieve good sensitivity and the 
LOD is usually in the picomolar and micromolar ranges 
[3,163]. A study recently reported that these two comple-
mentary techniques can be combined to develop effective 
detection tools for pathogen detection to address these 
obstacles (Fig 2). Notably, this cross-cutting approach 
has been used to detect pathogenic bacteria in samples, 
and should be studied more for the diagnosis of viruses or 
parasites, and therefore has promising applications in the 
POCT of foodborne bacteria. This CRISPR-Cas- and 
aptamer-based detection platform plays an essential role 
in preventing the spread of pathogens in resource-poor 
countries and regions. Some of the complementary tools 
can distinguish between dead and living bacteria, provid-
ing a feasible method for further control of pathogenic 
bacteria at the source.

Diagnostic tools built on the CRISPR-Cas12 
system coupled with aptamers
Bu et al. [164] constructed an electrochemical aptasensor to 
detect pathogenic bacteria without nucleic acid extraction 
by combining the CRISPR-Cas12a system with PER. In 
this approach, the DNA aptamer binds to the hairpin loop 
of the primer, which remains inactive in the absence of 
pathogens, thereby hindering primer amplification. In the 
presence of target bacteria, the DNA aptamer disentangles 
the hairpin loop structure and the primer is extended to 
form ssDNA, which activates the trans-cleavage activity of 
CRISPR-Cas12a to crush the MB probe pre-immobilized 
on the Au surface, resulting in a decrease in the monitored 
peak current. This novel technique has been utilized to 
detect bacteria in milk samples, such as the detection of 
E. coli O157:H7 with an LOD of 19 CFU/mL. To expand 
the repertoire of diagnostic methods for various disease 
biomarkers, Yuan et al. [165] recently developed a “signal 
on-off-super on” sandwich-type aptasensor of CRISPR-
Cas12a coupled voltage enrichment for the detection 
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of vascular endothelial growth factor with an LOD of 
0.33 pM. Using this technique, AuNPs@Ti3C2Tx-Mxene 
was synthesized by immobilizing AuNPs on the surface of 
Ti3C2Tx-Mxene, which stabilized the trapped aptamer 
and therefore altered the electrochemical signal more 
effectively. This approach enriched ssDNA using an elec-
trochemical signal via CRISPR-Cas12a-coupled voltage 
enrichment instead of amplification.

Diagnostic tools built on the CRISPR-Cas13 
system coupled with aptamers
Many platforms combining CRISPR-Cas13 with aptam-
ers have been developed for pathogen detection. The 
difference between these platforms and the CRISPR-
Cas12a-based platforms lies in the Cas enzyme. Shen 

et al. [55] presented the new APC-Cas platform for the 
detection of S. enteritidis. The allosteric probe used in 
this platform contains three sections: the T7 promoter; 
an aptamer; and a primer-binding site. The probe is in a 
quiescent state due to the integration of the primer-bind-
ing site into the aptamer. In the presence of the target 
pathogen, the allosteric probe undergoes conformational 
changes and ssRNA is generated using the T7 RNA poly-
merase. The platform exhibits strong sensitivity and func-
tionality for the quantitative detection of S. enteritidis and 
is a promising approach for pathogen detection. Zhang 
et al. [25] reported a system to distinguish between via-
ble and dead pathogenic bacteria using a light-up RNA 
aptamer combined with CRISPR-Cas13; the LOD of this 
system was 10 CFU for the detection of Bacillus cereus.

FIGURE 2  |  Schematic illustration of CRISPR-Cas systems coupled with aptamers for pathogen detection. Aptamers are usually prestabilized 
in various ways. In the presence of the target pathogen, the aptamer dissociates from the system and the remaining components synthe-
size a short-chain nucleic acid to activate the Cas protein which then cleavages the indicated probe, leading to a change in fluorescence or 
current.
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Diagnostic tools built on the CRISPR-Cas14 
system coupled with aptamers
Cas14 is the smallest identified Cas enzyme and does 
not require PAM sequence identification; therefore, 
CRISPR-Cas14-based aptasensors exhibit enhanced sen-
sitivity and versatility compared to the biosensors based 
on Cas12 or Cas13. Although reports of Cas14-based 
aptasensors are rare, Cas14-based aptasensors may be more 
potent. AcasB, a novel platform developed for on-site 
detection of live S. aureus, contains an aptamer biosen-
sor combined with Cas14a1 [3]. This platform includes 3 
probes, a 45-nucleotide aptamer to target live S. aureus, 
a 21-nucleotide blocker for activation of Cas14a1, and an 
sgRNA to bind the blocker. Importantly, this platform 
does not require nucleic acid extraction and amplification. 
The blocker bound to the aptamer forms a stable hybrid, 
which dissociates to release the blocker in the presence 
of live S. aureus and specifically targets the aptamer. The 
subsequently released blocker activates Cas14a1 by bind-
ing to sgRNA, which then cleaves the surrounding f lu-
orescence probe, resulting in f luorescence. This platform 
directly distinguishes whether the bacteria are alive or 
dead and has an LOD of 400 CFU/mL for live S. aureus in 
the tested samples.

Cas14 combined with aptamers can also be used to detect 
non-nucleic-acids targets. Zhou et  al. [166] developed a 
biosensor platform designated as a highly-sensitive aptam-
er-regulated Cas14 Rloop for bioanalysis (HARRY). A 
diblock ssDNA was designed to accommodate the aptamer 
and Cas14 activation sequences in this platform. The 
ssDNA activates Cas14a, then the Cas14a trans-cleavages 
the f luorescent reporter, causing f luorescence enhance-
ment in the absence of the target. Non-nucleic acids sub-
strates, such as ATP, Cd2+, histamine, af latoxin B1, and 
thrombin, have been detected by the HARRY platform, 
which possesses LOD at the nanomolar level.

CONCLUSIONS AND FUTURE PERSPECTIVES

Pathogens pose a severe threat to the survival of humans 
and animals, and are a public health issue of concern. 
CRISPR-Cas- and aptamer-based systems have been 
harnessed for POCT research primarily based on the 
application of CRISPR-Cas systems for pathogen detec-
tion. Conventional diagnostic methods are complicated 
and cumbersome. Therefore, diagnostic platforms based 
on the CRISPR-Cas system and aptamers have been 
exploited to improve detection efficiency and simplify 
the procedures, while reducing cost and improving appli-
cability. Nevertheless, most of these tools are theoretical 
and few have been introduced for commercial use. The 
reasons that prevent the marketization of these tools, i.e., 
nucleic acid extraction and amplification, are a necessary 
component of CRISPR-Cas-based approaches, which are 
cumbersome processes that require skill. Notably, techno-
logical advances, such as isothermal amplification, micro-
f luidics, and gene chips, should overcome these barriers 

[78]. SELEX is a time-consuming, not-yet-mature, costly, 
and unstable strategy, and sensitive simultaneous detection 
of multiple pathogens in a mixed medium is challenging. 
For clinical samples, the selected aptamers cannot be com-
pletely and accurately matched, and the affinity and spec-
ificity change [29]. Recent studies achieved the detection 
of pathogens in turbid media and the optimization of the 
SELEX screening process. Consequently, combination of 
the complementary CRISPR-Cas- and aptamer-based 
systems is an effective optimization approach to fill the 
gaps in pathogen detection. Indeed, the combination of 
these two systems has gradually replaced the traditional 
detection methods over the past decade. However, com-
binations of various Cas proteins with different aptamer 
techniques, such as allosteric probe-initiated catalysis and 
PER, are typically limited to bacterial detection, there-
fore, future studies should be conducted to advance viruses 
and parasite detection in clinical settings.

The recently described CRISPR FISHer [167] can 
potentially track particular cell-intrinsic or exogenous 
DNA sequences, broadening the application range of live 
cell imaging and laying the foundation for biomedical 
diagnostics. Several recent studies have identified new 
Cas proteins in nature. For instance, Cas12a2 [168,169] is 
activated upon binding to RNA targets and can efficiently 
degrade ssRNA, ssDNA, and dsDNA. In contrast to the 
previously described Cas proteins, Cas12a2 is programa-
ble and capable of pathogen detection. Cas14 is a newly 
discovered and promising protein for the development of 
more efficient and convenient detection tools, while its 
use in conjunction with aptamer-based systems for the 
detection of non-nucleic acids offers a new idea for broad-
ening diagnostic targets and establishing detection meth-
ods. Many aspects of the mechanism underlying the Cas 
protein effect, both newly and previously discovered, are 
still not fully understood. In addition, combining several 
Cas proteins with different functions to enable simulta-
neous pathogen detection and treatment is an intriguing 
potential approach.

In conclusion, pathogen detection tools should be 
practical and generalizable, ideally with test results linked 
to a smartphone or smart bracelet, enabling citizens to 
self-test for pathogens in food or water and alleviating 
stress. With the constant expansion of technology, there 
is great promise for improvement in diagnostics, and 
there is an urgent need to establish novel detection tools 
to respond rapidly to emerging zoonotic pathogens in the 
near future.
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