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Abstract

The recent and exciting discovery of germline HOXB13 mutations in familial prostate cancer has 

brought HOX signaling to the forefront of prostate cancer research. An enhanced understanding of 

HOX signaling, and the co-factors regulating HOX protein specificity and transcriptional 

regulation, has the high potential to elucidate novel approaches to prevent, diagnose, stage, and 

treat prostate cancer. Toward our understanding of HOX biology in prostate development and 

prostate cancer, basic research in developmental model systems as well as other tumor sites 

provides a mechanistic framework to inform future studies in prostate biology. Here we describe 

our current understanding of HOX signaling in genitourinary development and cancer, current 

clinical data of HOXB13 mutations in multiple cancers including prostate cancer, and the role of 

HOX protein co-factors in development and cancer. These data highlight numerous gaps in our 

understanding of HOX function in the prostate, and present numerous potentially impactful 

mechanistic and clinical opportunities for future investigation.
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Introduction

Prostate cancer is the most common non-cutaneous cancer and the second leading cause of 

cancer related mortalities among American men.1 The recent and exciting identification of 

germline HOXB13 (G84E) mutations within a subset of familial prostate cancers by Isaacs 

and Cooney in 2012 highlights a novel set of genes and transcriptional signaling pathways to 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author. The University of Chicago Department of Surgery, The Section of Urology, 5841 S. Maryland Ave., MC6038, 
Chicago, IL 60637, USA. prostate@uchicago.edu (D.J. Vander Griend). 

Peer review under responsibility of Chongqing Medical University.

Conflicts of interest
None.

HHS Public Access
Author manuscript
Genes Dis. Author manuscript; available in PMC 2017 August 08.

Published in final edited form as:
Genes Dis. 2017 June ; 4(2): 75–87. doi:10.1016/j.gendis.2017.01.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


understand prostate tumor etiology and develop new treatment modalities to combat prostate 

tumor initiation and progression.2 Prior to this discovery, much was already known 

regarding the expression and function of HOX genes, and their co-factors, in development 

and cancer. However, there remain significant gaps in our current understanding of HOX 

biology in prostate development and disease.

The role of HOX genes in organismal development

HOX proteins are highly evolutionarily conserved, homeodomain-containing transcription 

factors best known for their roles in body axis patterning and tissue differentiation of 

developing embryos.3,4 Furthermore, recent studies have shown HOX proteins not only have 

a role development and organogenesis, but they also contribute to the control of several other 

processes into adulthood such as cell proliferation, cell cycle, apoptosis, cell differentiation, 

and cell migration.3,5,6 In humans, the 39 HOX proteins are divided into four HOX gene 

clusters: A, B, C, and D located on chromosomes 7p15, 17q21.2, 12q13, and 2q31 

respectively.7 Each cluster is comprised of paralogous genes 1–13 whose 3′ to 5′ 
organization and expression both follow a pattern of spatial and temporal co-linearity with 

development, although not every paralog is present in each cluster. The 3′ HOX genes are 

most highly expressed in the anterior body regions that arise early in development, while the 

5′ HOX genes encode more posterior regions that form later in development. The term, 

“HOX Code,” refers to the phenomenon where tissue specificity is determined by nested and 

partially overlapping expression of several HOX genes in a given region. The most 5′ HOX 
gene expressed in a given tissue, however, has dominance in determining a specific tissues’ 

identity compared to the more 3′ HOX gene that may be co-expressed.8 For example, while 

36 of the 39 HOX genes are expressed at a detectable level by qRT-PCR in a gross sample of 

human prostate tissue, it is the 5′ HOX genes like HOXA13 and HOXB13 that are most 

highly expressed and most significantly confer prostatic identity.9 Several excellent and in-

depth reviews have already been published on the general role of HOX genes in 

development and cancer.3,6,10–12

HOX expression in male reproductive system

The male reproductive tract is derived from two main developmental structures: the Wolffian 

(mesonephric) duct, which gives rise to the testis, epididymis, vas deferens, and seminal 

vesicle; and the urogenital sinus (UGS), which gives rise to the prostate, bulbourethral 

(Cowper’s) glad, bladder, and urethra.13 Given that the reproductive tract is one of the most 

posterior systems in the body, expression of primarily posterior HOX genes like those in 

paralog groups 9–13 is most commonly observed (Fig. 1A and B).4,8,14 However, several 3′ 
HOX genes are also expressed in the testis and are thought to have critical roles in 

spermatogenesis rather than in testis function (Fig. 1A).14

Many of the Hox paralogs have redundant and overlapping functions rendering the 

identification of specific roles for each gene complicated; however, some insight has been 

gained by observing phenotypes of various Hox gene knockout rodents. For example, while 

homozygous loss of Hoxa13 (Hoxa13−/−) is considered embryonic lethal due to the 

perceived role of Hoxa13 in umbilical artery maintenance, examination of Hoxa13−/− fetuses 
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shows severe hypoplasia of the urogenital sinus and arrested or delayed rostral-to-caudal 

progression of Müllerian ducts.15 Additionally, Hoxd13 deficient mice (Hoxd13−/−) reveal 

diminished folding in the seminal vesicle stromal sheath, reduced ductal branching and size 

of the dorsal and ventral prostate lobes, and agenesis of the bulbourethral gland.16 

Furthermore, compound homozygous mutants (double Hoxa13−/−and Hoxd13−/−) fetuses 

have undetectable development of the genital tubercle, nor any distinct hindgut and 

urogenital sinus, among other deformities.15 In contrast, mice expressing Hoxb13 with a 

loss-of-function mutation in the homeodomain show no gross morphological defects, but 

rather have prostate ventral lobe-specific defects in histology and secretory function.17 

Histologically, ventral lobe epithelium from Hoxb13 mutant mice are composed of simple 

cuboidal rather than the tall columnar luminal cells that make up healthy prostate 

epithelium, and are also devoid of the ventral-specific secretory proteins p12 and p25.17 For 

a thorough review of reproductive system phenotypes observed with various 5′ Hox gene 

knockouts, please refer to “Homeobox genes and the male reproductive system” by Rao and 

Wilkinson.18

In addition to the spatial and temporal patterns of Hox gene expression there is also clear 

species specificity to the pattern. This is especially well demonstrated when noting the Hox 
patterns of the prostate in developing mice, rats, and adult humans; however, it should be 

noted that there is very little data regarding HOX expression in the developing embryonic 

human prostate. While at a glance, many of the same HOX genes are expressed in all three 

of these species, the timing, location, and amount of expression can all vary. In murine 

prostates, Bushman et al found that Hoxa10 expression peaked at embryonic day 19 (E19) 

and decreased rapidly after birth to near undetectable levels by post-natal day 5 (P5).19 They 

also showed that Hoxa13 and Hoxd13 expression both peaked around E15 and steadily 

diminished from there into adulthood; spatially, both Hoxa13 and Hoxd13 had epididymal 

expression which peaked in the seminal vesicle.20 This observation of Hoxa13 and Hoxd13 
expression appears to contrast to the work of Prins et al within the rat prostate demonstrating 

a postnatal increase in expression that is maintained into adulthood for all three of the 

previously mentioned genes.4 They also demonstrated that Hoxa13 and Hoxd13 peaked in 

expression within the dorsal prostate rather than seminal vesicle, and also had a clear 

anterior boundary at the epididymis.4 Furthermore, in the rat prostate, Prins et al 

demonstrated Hoxd13 to be the highest expressing Hox gene in each lobe, followed closely 

by Hoxa13 and Hoxb13, and lastly Hoxa9, Hoxa10, and Hoxa11 each with approximately 

10-fold less RNA expression compared to the Hox13 levels.4 In a study evaluating HOX 
gene expression in a variety of normal adult human organs including prostate, HOXA9, 
HOXA11, HOXA13, HOXB13, and HOXD9 were all identified as the highest expressing 

HOX genes with HOXA10 and notably HOXD13 each at a 10-fold lower expression level in 

the prostate compared to HOXA13 and HOXB13.9 In summary, as expected the 5′ HOX 
genes (Hoxa-d13) clearly appear to be critical for prostate and GU development, but the 

timing and location across species is distinct and should be taken into consideration when 

using animal model systems for HOX biology.
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The germline HOXB13-G84E mutation and prostate cancer

The identification of the germline HOXB13(G84E) mutation by Ewing et al within a subset 

of familial prostate cancers in 2012 brought HOXB13, the genes regulated by HOXB13, and 

HOX-protein co-factors, into the spotlight of prostate cancer research.2 This discovery 

highlighted a novel transcriptional regulation pathway that has a key role in prostate 

development and tumor etiology.2 Patients with the mutation, which substitutes a glutamic 

acid for glycine at the second position of codon 84, have significantly higher odds for 

developing prostate cancer than men without the mutation.2 The G84E mutation occurs 

within the MEIS interaction domain of HOXB13, emphasizing the importance of MEIS-

HOX protein interactions in prostate cancer (Fig. 2). Since the initial study, several 

additional studies have validated the G84E mutation as associated with increased prostate 

cancer risk (Table 1). It is important to note that the majority of these studies were 

conducted on Caucasian men of European ancestry, with only 5 of these 22 studies included 

multiple ethnicities in the study group. In a study conducted by the International Consortium 

for Prostate Cancer Genetics (ICPCG), they observed a geographical frequency gradient of 

the G84E mutation across the European continent, with a higher mutation frequency in 

Nordic countries.21 While multiple studies have corroborated that the G84E mutation is 

associated with increased prostate cancer risk, the data on the association of G84E with 

other clinically relevant variables has been mixed. Regarding age of diagnosis, the G84E 

mutation has been shown to be significantly associated with younger age of diagnosis in the 

majority of studies,2,22–27 with other studies reporting no difference in age of diagnosis.28 A 

similar pattern has emerged regarding a positive family history of prostate cancer, with all 

studies reporting a significantly higher odds of the G84E mutation being present in patients 

with a positive family history or hereditary prostate cancer. In the context of G84E and a 

potential role in the initiation of more aggressive prostate tumors, Storjberg et al determined 

that patients carrying the G84E mutation had a significantly higher PSA at diagnosis, higher 

Gleason score, and a higher likelihood of positive surgical margins at time of radical 

prostatectomy than non-carriers, implying that the G84E mutation maybe associated with 

more aggressive prostate cancers.29 However, further analyses are necessary to determine 

whether mutation of HOXB13 is associated with poor-prognosis prostate tumors. Genetic 

studies of prostate tumors, however, have documented that in sporadic prostate cancer, 

HOXB13 is more likely to be amplified but not mutated.30–32 In summary, the presence of 

G84E mutation clearly impacts prostate cancer initiation, but data thus far has not strongly 

implicated the presence of the mutation in contributing to cancer progression and metastasis.

Other germline HOXB13 mutations associated with prostate cancer risk

Since the discovery of the G84E mutation, there has been greater focus on identifying other 

novel germline mutations of HOXB13 associated with increased prostate cancer risk. This is 

of particular importance for non-Caucasian populations, as the risk of prostate cancer 

associated with the G84E mutation has the highest frequency in European/Caucasian 

populations. Indeed, new mutations of HOXB13 conferring increased prostate cancer risk 

have begun to be identified in non-Northern European ancestry. Notably, Lin et al identified 

the novel G135E mutation to be associated with increased prostate cancer risk in a 

population of Chinese men, and did not identify the presence of the G84E mutation.33 
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Similarly, Maia et al identified the A128D and F240L mutations in a population of 

Portuguese men to associated with prostate cancer risk.34 Ewing et al reported the 

identification of several rare missense variants of HOXB13 (Y88D, L144P, G216C, R217C, 

and R229G, Fig. 2 and Table 2) during their initial study of G84E. Of these rare mutations, 

the R229G and G216C were identified in men with some African ancestry.2 Given the 

paucity of data, however, on non-G84E mutations of HOXB13, and the lack of study of 

prostate cancer risk mutations in non-Caucasian populations, continued efforts to identify 

novel risk mutations of HOXB13 are necessary.

The function of HOXB13 in the developing and adult prostate

HOXB13 is unique in the prostate because it is highly expressed into adulthood in multiple 

species, and yet it is the most differentially-expressed HOX protein when comparing 

between lobes of the rodent prostate, suggesting that it may have more important functions 

in determining prostatic identity and maintaining organ homeostasis in an adult.4,35 Within 

the normal adult human prostate, HOXB13 is localized exclusively in prostate luminal 

epithelial cells.17,36 In rodent models, Hoxb13 is most highly expressed in the ventral 

prostate lobe, has been shown to drive differentiation of prostate luminal epithelial cells, and 

is also required for the normal secretory function of the ventral prostate.4,17,35

An important and somewhat controversial body of data pertains to the relationship between 

HOXB13 and the Androgen Receptor (AR). This pertains to both the regulation of HOXB13 
by AR and cooperation with AR signaling. HOXB13 expression in the prostate is thought to 

be androgen-independent, as demonstrated by Bieberich et al whereby the steady state 

mRNA level of HOXB13 in the murine prostate was undiminished 8 days after host 

castration.36 However, Prins et al observed increased Hoxb13 expression in the rat prostatic 

ventral lobe upon administration of testosterone, and expression was decreased in the dorsal 

and lateral lobes upon castration.4 This apparent discrepancy could be accounted for by 

changes in prostatic cellularity in the context of hormone administration or depletion, since 

castration results in a significant reduction of HOXB13-positive luminal epithelial cells. In 

addition to regulation of HOXB13 by androgen signaling, it has been shown that HOXB13 

can act as a bivalent regulator of AR chromatin binding and function as either a growth-

promoter or growth-suppressor in prostate cancer cells depending on the cellular context.37 

For example, in androgen-sensitive prostate cancer cell lines such as LNCaP, increased 

HOXB13 activity can decrease levels of Cyclin D1 and lead to growth inhibition through 

reduction of pRb phosphorylation and stabilization of the pRB-E2F complex.5,6 Conversely, 

in castration-resistant prostate tumors, HOXB13 overexpression can inhibit p21 and thus act 

as an oncogene through subsequently promoting E2F activation and cell cycle progression.6 

A final noteworthy observation of HOXB13 localization is that, in human radical 

prostatectomy samples, the nuclear/cytoplasmic ratios of HOXB13 are drastically reduced in 

prostatic intraepithelial neoplasia (PIN) and prostate cancer when compared to normal 

glands, indicating much higher cytoplasmic retention and thus lower amounts of functional 

HOXB13 in the nucleus of tumor cells.5 This suggests a potential mechanism of abrogating 

the growth-suppressive function of HOXB13 by cytosolic retention. Collectively, these 

observations highlight numerous important and interesting roles of HOXB13 in the prostate, 

but also underscore the need for additional mechanistic and functional studies to elucidate 
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the molecular function of HOXB13 within the normal prostate and during prostate tumor 

initiation.

Germline HOXB13(G84E) in non-prostate tumors

Given the strong relationship between the HOXB13(G84E) mutation and prostate cancer 

risk, as well as the importance of HOXB13 in development and cancer, several studies have 

examined the role of HOXB13 mutations in increasing the risk of other tumor types (Table 

2). Results between the association of G84E and non-prostate cancer risk have been mixed. 

Notably, Akbari et al and Beebe-Dimmer et al showed that the G84E mutation was 

associated with a significantly increased risk of colorectal carcinoma and leukemia, 

respectively.38,39 However, Latinen et al showed no significant association between the 

G84E mutation and colorectal cancer risk, although their results did approach significance.27 

The G84E mutation has also been investigated in breast, bladder, testis, and sarcoma, but 

results have not shown a significant association between the mutation and increased cancer 

risk among those cancers studied.38 However, it should be noted that a few of these studies 

approached near significance, and additional studies containing a larger sample size has the 

potential, in some instances, to establish a significant correlation between the G84E 

mutation and non-prostate cancer risk.

Deregulation of HOXB13 in non-prostate tumors

Despite its emerging role in prostate cancer, deregulation of HOXB13 expression has been 

implicated in a variety of human cancers, functioning either as a tumor-promoting factor in 

some tumor types, or a tumor-repressing factor in others (Table 2). Surprisingly, aberrant 

expression of HOXB13 has been documented in a variety of non-posterior axis cancers, 

including thyroid, breast, metastatic melanoma, and oral squamous cell (Table 2). In many 

instances, however, the functional significance of such expression has yet to be determined. 

In endometrial, ovarian, melanoma, and breast tumors, increased HOXB13 expression 

appears to promote tumor progression.40–42 In endometrial tumors, Yamashita et al 

demonstrated HOXB13 expression in tumor tissues and demonstrated that HOXB13 over-

expression led to increased cellular invasion in vitro.40 In ovarian cancer, Miao et al 

demonstrated that over-expression of HOXB13 in ovarian cancer cells resulted in increased 

cell proliferation and survival.41 In melanoma, Maeda et al showed that the expression levels 

of HOXB13 were significantly higher in patients with metastatic melanoma compared to 

patients with a non-metastatic primary melanoma.43 In breast cancer, HOXB13 expression is 

predictive of a poor clinical outcome in tamoxifen-treated breast cancers, indicating that 

increased HOXB13 could have a prognostic role in breast cancer.44 Furthermore, ectopic 

expression of HOXB13 in MCF10A breast epithelial cells enhances motility and invasion in 
vitro, and HOXB13 expression is increased in both pre-invasive and invasive primary breast 

cancer.44

While the majority of the current literature demonstrates that HOXB13 is generally over-

expressed and tumor-promoting in most cancers, several studies support a role for HOXB13 
as a tumor-suppressor within other cancer contexts. Jung et al and Kanai et al showed that 

HOXB13 expression is decreased in primary colorectal adenocarcinoma, and that 
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overexpression of HOXB13 inhibits cell proliferation in colorectal cancer cell lines.44,45 

Furthermore, Cantile et al showed a progressive decrease in HOXB13 nuclear expression in 

the transition from non-neoplastic thyroid to adenoma to different histologic types of thyroid 

cancer.46 In bladder cancer, Marra et al found that the loss of nuclear HOXB13 is implicated 

in shorter disease free survival in non-muscle invasive bladder cancer and decreased nuclear 

HOXB13 correlates with muscle invasion.47 Thus, it is clear that aberrant expression of 

HOXB13 plays a key role in the progression of many different cancer types, including both 

non-genitourinary and genitourinary cancers. Moreover, the context-dependent tumor 

promoting or repressing functions of HOXB13 further underscore key organ-specific roles of 

HOXB13 in cancer. Hence, it is the HOXB13-associated binding partners that provide 

specificity to DNA binding and subsequent gene targets who are the key mediators of HOX-

associated tumor initiation and progression. Additional investigation into the function of 

HOXB13 and its binding partners across various tumors types is thus warranted.

HOX protein binding partners

It has been a long-established paradox that HOX proteins achieve exquisite in vivo gene 

specificity to program development using simple “AT-rich” gene recognition motifs; such 

motifs are much too common across the genome to allow HOX proteins working alone to 

attain such gene specificity (expertly reviewed in Mann et al).48 To accomplish such 

specificity, HOX proteins rely on multiple co-factors to bind and specify transcriptional 

activity. The TALE (three amino acid loop extension) proteins are the predominant subtype 

of homeobox proteins that partner with HOX proteins and specify gene targeting and 

activity. This family of proteins includes the MEIS, PBX, PKNOX and TGIF homeobox 

proteins. While they contain the homologous DNA binding domain canonically found in 

homeobox genes, there are three unique characteristics of the TALE family. First, a three 

amino acid insertion in their homeodomains allows for cooperative binding to other 

transcription cofactors.49 It is this ability to create complexes that provide increased binding 

affinity of homeobox complexes to the DNA. Importantly, not every TALE protein group 

can bind to every other homeobox gene, increasing specificity of DNA binding depending 

on the combination of factors present in a complex.49 Second, the regions flanking the 

homeodomains of TALE proteins are highly conserved across species.50 Third and finally, 

unlike their spatiotemporally-restricted HOX relatives, TALE factors are more widely 

expressed across an organism.

While many TALE factors have been implicated in cancers, the recent discovery of the 

HOXB13 mutations in hereditary prostate cancer to confer a risk for prostate cancer 

discussed above has sparked an interest in the MEIS proteins in particular.2 Many of the 

mutations within the HOXB13 gene fall within the MEIS binding domain (Fig. 2). While it 

is clear, as discussed above, that HOXB13 mutations are strongly associated with increased 

prostate cancer risk, there are significant gaps of knowledge regarding the mechanism of 

action of HOXB13 mutations, and how co-factor modulations impact prostate cancer 

initiation.

The MEIS (murine ecotropic integration site) gene was implicated in cancer based upon the 

discovery that the MEIS1 gene was the most common location for an ecotropic murine 
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leukemia virus to integrate.51 When the virus integrated, higher expression was noted as the 

mice developed leukemia, and this was the first indication of MEIS as oncogenes in liquid 

tumors.51 MEIS proteins function as DNA-binding cofactors with the HOX and PBX 

families such that the cooperative binding increases DNA binding specificity.48,52–54 Our 

current understanding of MEIS-HOX interactions is that, upon DNA binding of the two, 

DNA-bound MEIS/HOX complexes recruit collaborator proteins to compile a multimeric 

protein complex at specific gene promoters.48 It should be noted, however, that TALE 

proteins have both HOX-dependent and HOX-independent functions and their role in 

development and disease likely extends beyond regulation of HOX protein DNA 

specificity.48,54

Deregulation of MEIS proteins in cancer

While little is known about the MEIS and PBX proteins in the context of prostate cancer, 

current understanding of functions in other cancer types may provide directions for future 

work. MEIS proteins have complicated and context-dependent roles in cancer initiation and 

progression. They are down-regulated in some cancer types, but overexpressed in others, 

making it unclear if MEIS genes are bona fide oncogenes or tumor suppressors genes. This 

phenomenon of fluidity between tumor suppression and oncogenesis is not unheard of; in 

fact, HOX genes display a very similar pattern, as discussed above.12

The most well studied context for the role of MEIS, PBX and HOX proteins in cancer is 

leukemia, and specifically AML (Acute Myeloid Leukemia) and MLL (Mixed Lineage 

Leukemia). MEIS1 is required for normal adult bone marrow hematopoiesis, with deletion 

of MEIS1 leading to stem cell exhaustion and an inability to self-renew.55 MEIS1 alone is 

not sufficient to transform hematopoietic cells however, as MEIS1 requires the cooperation 

of HOXA9 to accelerate HOX-induced leukemia.56 There is a common theme across many 

publications investigating MEIS in leukemia; MEIS proteins can mitigate differentiation 

while also increasing proliferation, a deadly and oncogenic combination. MEIS1 and 

HOXA9 are direct targets of the MLL fusion gene57 and MEIS1, in addition to the 

redundant contributions of PBX2 and 3, appears to be the rate-limiting step in the cell cycle 

progression of MLL leukemia stem cells.58 In fact, it was shown recently that PBX3 is 

crucial to help stabilize MEIS1 proteins, and that the dimerization of PBX3 and MEIS1 is 

required for HOX-induced leukemia.59 In myeloid leukemias, the full length MEIS1-A is 

able to stop differentiation through G-SCF and promotes proliferation.60

The connection between MEIS1 and the cell cycle, as well as maintenance of a more 

primitive stem cell state across multiple cell types are likely mechanisms of action that lead 

to its deregulation in a range of pathological contexts. For example, MEIS1 slows adult and 

neonatal proliferation in cardiomyocytes by modulating the progression of the cell cycle.61 

There are also multiple papers indicating a role for MEIS in Restless Leg Syndrome, and 

more information on MEIS′ role in this disease can be found in a 2014 review by Garcia-

Borreguero et al62 Neuroblastoma displays MEIS1 up-regulation in many cell lines and 

tumors.63 Neuroblastoma is also the context where many novel, and potentially functionally 

distinct, MEIS isoforms have been investigated.64 In neuroblastoma SJNB-8 cells, the 

exogenous expression of MEIS1-E, an isoform lacking a DNA binding domain, induces 
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changes in cell growth proliferation apoptosis, cytoskeleton, long-distance gene regulation, 

morphogenesis, protein transport, and differentiation markers.64,65 This analysis, however, 

did not indicate the direction of change for many of these processes.65 MEIS2 is critical for 

neuroblastoma cell survival and proliferation by asserting control over M-phase of the cell 

cycle, again illustrating a cell cycle control function for MEIS in cancer cells.66 Lung 

adenocarcinomas, in particular those with LKB1 mutations, also show up-regulation of 

MEIS2, though investigation of the mechanism of action has not been elucidated.67 Thus, in 

numerous tumor sites, MEIS1 and MEIS2, and potential splice-variants of each, appear to 

function as promoters of cell cycle progression, and in some instances to maintain cancer 

cells in a less-differentiated state.

While the majority of cancer-related research into the MEIS and PBX transcription factors 

has been focused on their overexpression in leukemia, there are many pathological contexts 

where MEIS proteins appear to function as tumor suppressors. In fact, MEIS proteins can 

act as a tumor suppressor or oncogene even within a specific organ site of carcinogenesis; 

however, their roles are restricted to specific molecular subtypes. For example, in the 

majority of AML cases MEIS1 and HOXA9 act as oncogenes, while within a particular 

subtype of patients MEIS1 and HOXA9 expression are significantly decreased compared to 

other AML subtypes where such transcripts are over-represented.68 Patients with the AML-

ETO fusion protein show low MEIS1 and HOXA9 mRNA as compared to other AML 

patients where high MEIS1 expression are typical. MEIS1 down regulation in the AML-

ETO patient population is due to methylation at its promoter.68 Additionally, as described 

above, lung adenocarcinomas with LKB1 mutations display over-expression of MEIS 

whereas in NSCLC (non-small cell lung cancer) patients, MEIS1 over-expression inhibits 

cell growth and MEIS1 knock down using siRNA-targeting increases proliferation.69 In this 

NSCLC context, DNA synthesis is increased when MEIS1 decreased.69 Colorectal 

adenomas displayed a seven-fold decrease in MEIS transcripts, in particular a 

homeodomain-truncated splice-variant MEIS1-D.70,71 Thus, in numerous tumor types, 

MEIS expression appears to be actively inhibited, either via down-regulation or expression 

of dominant-negative splice variants.

MEIS and PBX proteins in prostate cancer

MEIS and PBX proteins have been vastly understudied in the context of prostate cancer, and 

there are numerous avenues of future investigation with clear clinical impact. MEIS1 has 

been shown to act as an androgen receptor suppressor, where ectopic expression slows 

LNCaP prostate cancer cell growth.72 MEIS1 can physically interact with the androgen 

receptor, the most critical driver of prostate cancer and the main target of clinical 

intervention.72–74 Moreover, work published by our group demonstrates that higher 

expression of MEIS1 and MEIS2 provide a survival benefit to men with intermediate and 

low-grade prostate cancer.73 In the normal prostate, MEIS expression is highest in basal 

epithelial cells and stromal cells, with a detectable but significantly lower expression in 

luminal epithelial cells. Tumors with below average MEIS1 and MEIS2 expression convey a 

significant decrease in patient survival, suggesting a functional role for decreased MEIS 

expression and the initiation and progression of poor-prognosis prostate tumors.73 Similarly, 

tumor expression of PBX3 was associated with improved prostate cancer specific survival 
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compared to patients expressing low levels; this study statistically demonstrated that PBX3 

expression could be used to potentially predict outcome and enhance tumor staging.75 

However, significant additional work is required to more comprehensively understand the 

function of MEIS and other TALE proteins in prostate cancer.

Conclusions and future directions

Genetic and informatics studies in prostate cancer have clearly implicated a key role for 

MEIS/HOX signaling in prostate cancer initiation, and have created multiple avenues of 

potentially fruitful and impactful investigation. Based upon our understanding of 

MEIS/HOX function in other tumor types and our limited understanding in prostate cancer, 

several future research questions can be postulated. First, how does the HOXB13(G84E) 
mutation functionally lead to increased cancer initiation? It is important to elucidate when, 

during the development and maintenance of the prostate, the G84E mutation manifests itself; 

that is, to determine whether the prostate of a G84E carrier develops differently or does the 

G84E mutation impact prostate homeostasis and turnover after puberty and sexual maturity. 

Second, do other HOXB13 mutations beyond G84E impact prostate function similarly or do 

they have unique etiologies and function? Third, how does the G84E mutation, and other 

HOXB13 mutations, functionally modulate MEIS function and MEIS/HOX interactions? 

Mechanistic studies investigating whether the G84E mutation abrogates or modulates MEIS 

interaction, and the transcriptional impact of HOXB13 mutations on HOXB13 target genes, 

will illuminate how the G84E mutation leads to prostate tumor initiation. Fourth and finally, 

how can MEIS/HOX expression, and their gene targets, be exploited for patient benefit? 

Efforts to screen and genetically counsel individuals with HOXB13 mutations are clearly 

warranted; however, mechanistic studies of MEIS/HOX transcriptional function has the high 

potential to identify targetable pathways for tumor prevention and staging.
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Fig. 1. Expression patterns of HOX genes in the rodent male reproductive system
A) Depiction of the spatially-restricted pattern of HOX expression in rodent reproductive 

structures throughout development. Data is compiled from references #4, 8, 16, 18–20, and 73–

76. B) Representation of lobe specific, posterior HOX gene expression in the adult rat 

prostate and seminal vesicle, determined by real time RT-PCR in Huang et al 2007 

(reference #4). The seminal vesicle (SV), coagulating gland (CG), ventral prostate (VP), 

lateral prostate (LP), and dorsal prostate (DP) each have a unique signature of posterior 

HOX gene expression levels that likely aids in conferring identity. Notably, HOXB13 shows 
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the largest variation in expression between lobes of the prostate and is restricted to 

urogenital sinus (UGS) derived structures; thus it is absent in the SV. It should also be noted 

that for studies done in mice, Podlasek et al. demonstrated a different relative expression 

pattern of HOXA10, HOXA13, and HOXD13 between lobes of the prostate compared to the 

rat. In their studies, they found that the lowest prostatic expression of HOXA10 was in the 

CG, rather than VP (reference #19). Additionally, highest expression of HOXD13 was in the 

SV rather than DP, and followed in order of decreasing expression by the VP, CG, and DP 

(reference #16). HOXA13 followed a similar pattern as HOXD13, although the CG does not 

seem to have been analyzed for HOXA13 expression (reference #20). The drawing of the 

rodent prostate is adapted from reference #77.
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Fig. 2. Genomic location, domains, and known mutations of human HOXB13
Since the original report of somatic HOXB13(G84E) mutations in a subset of familial 

cancer, more hereditary mutations conferring increased risk of prostate cancer have been 

identified (reference #2). The HOXB13 gene is located on human Chromosome 17q21.32 at 

the 5′ end of the 17q21-22 HOXB cluster, and consists of two exons and three known 

functional domains (accession number NC_000017/11 and ProtID Q92826). The HOXB13 

transcript is 3987 base-pairs (b.p.) long, and Exons 1 and 2 are positioned at 157–757b.p. 

and 1707–1960b.p, respectively. The regions in beige indicates the untranslated regions 

(UTR), while the regions in brown indicate coding regions (CDR). The HOXB13 protein is 

284 amino acids in length and contains two MEIS-interacting domains (amino acids 80–91 

and 136–146) and a single DNA-binding homeobox domain (amino acids 217–275). The 

two Meis-interaction domains were functionally defined by Williams et al (reference #78 

and 79), and the homeodomain was functionally defined in Zeltzer et al (reference #80). 

Clusters of mutations can be seen within or nearby the two MEIS-interacting domains and 

the homeodomain.
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