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The automatic diagnosis of Alzheimer’s disease plays an important role in human health, especially in its early stage. Because it is a
neurodegenerative condition, Alzheimer’s disease seems to have a long incubation period. Therefore, it is essential to analyze
Alzheimer’s symptoms at different stages. In this paper, the classification is done with several methods of machine learning
consisting of K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), linear discrimination analysis
(LDA), and random forest (RF). Moreover, novel convolutional neural network (CNN) architecture is presented to diagnose
Alzheimer’s severity. The relationship between Alzheimer’s patients’ functional magnetic resonance imaging (fMRI) images and
their scores on the MMSE is investigated to achieve the aim. The feature extraction is performed based on the robust multitask
feature learning algorithm. The severity is also calculated based on the Mini-Mental State Examination score, including low,
mild, moderate, and severe categories. Results show that the accuracy of the KNN, SVM, DT, LDA, RF, and presented CNN
method is 77.5%, 85.8%, 91.7%, 79.5%, 85.1%, and 96.7%, respectively. Moreover, for the presented CNN architecture, the
sensitivity of low, mild, moderate, and severe status of Alzheimer patients is 98.1%, 95.2%,89.0%, and 87.5%, respectively. Based
on the findings, the presented CNN architecture classifier outperforms other methods and can diagnose the severity and stages
of Alzheimer’s disease with maximum accuracy.

1. Introduction

In fluorodeoxyglucose-positron emission tomography
research, cognitive impairment in AD has been correlated
with localized brain metabolic damage in systematic and
functional imaging experiments [1–3]. Blood-oxygen-level-
dependent imaging was seen to reflect healthy functional net-
works, including default mode (DMN), visual (VIS), and
executive networks (EN) [4], within a given resting state.
Unlike task-related functional MRI (fMRI), patients’ capabil-

ity to recognize and memorize the instructions for executing
a given task is not confounded by resting-state fMRI, which
makes it useful for the survey of individuals with cognitive
decline [5]. Besides, convincing literature-wide data confirms
the application of resting-state connectivity as an AD bio-
marker [6]. Machine learning (ML) is an artificial intelligence
field that typically utilizes factual methods to allow com-
puters to “learn” through data from stored datasets. A subset
of ML [7] is fundamental deep learning (DL). The DL is a
neural network that uses several variables and layers to
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define. There are a variety of simple network architectures
[8], including CNNs, mainly a standard spatial mutual
weight neural network [9].

The CNN is designed to identify images that see the edges
of a known target on the image by making convolutions
inside [10]. (ii) Recurrent neural networks are names of arti-
ficial neural networks where a graph is generated by specific
associations between nodes in the temporal chain. RNNs
can use their internal condition to handle the sequences of
inputs, unlike feedforward neural networks. RNN is meant
to identify sequences such as a voice signal or a text [9], for
example. (iii) In recursive neural networks, the input
sequence does not include a time dimension, and the input
must be hierarchically evaluated in a tree form [8, 10]. Vari-
ous external inputs usually contribute to distinct brain func-
tions, and various functional brain representations are
displayed by different brain activities [11]. For that function,
the classification of images plays an essential role in detecting
various brain functions. Several deep learning approaches
have recently been suggested to carry out image recognition
for various brain activities [12, 13]. A deep neural network
feedforward has been employed by Koyamada et al. [12] to
identify different brain functions, including preferences;
motor, social, emotional, and language activities; and work
memory, using functional magnetic resonance imaging
(fMRI) images. A SoftMax layer and various secret layers
were used in the feedforward deep neural network. Similarly,
to get high-level latent properties, these hidden layers were
used. In contrast, the SoftMax layer has been applied to cal-
culate a subject’s ability in a class. To boost the final classifi-
cation efficiency, dropout, minibatch stochastic decrease
[14], and main sensitivity analyses [15] were also integrated
into the deep feedforward neural network. Jang et al. newly
exploited deep neural networks and hidden layers completely
connected to feedforward to distinguish different sensor
roles, including visual attention and stimuli and right-hand
and left-hand clenching, are included. The DL classification
of MRI images included other classifications above and below
the classifications, such as diagnosis of stroke [16], age pre-
dictions [17], classification of attention-deficit hyperactivity
disorder (ADHD) [18], prejudice against cerebellar ataxia
[19], and predictive emotional response [20]. Due to science,
computer-aided diagnosis systems (CADs) were developed
to play an important role in enhancing the understanding
of medical imagery among researchers and physicians. The
application of the machine learning technique, in particular
DL strategies in CAD models to diagnose and classify stable
control patients with average (CN), AD, and mild cognitive
impairment (MCI), has exponentially grown [21, 22]. The
automatic diagnosis of AD performs an essential role in
human health, especially in the early stages. AD has a consid-
erable incubation period because it is a neurodegenerative
disorder.

Thus, the AD symptoms need to be analyzed at various
levels. Currently, several scholars have discussed using image
classification to carry out AD diagnosis. Several DL
approaches have been suggested to use MRI images to intro-
duce multiple AD patients’ severity [22, 23]. The higher the
image quality, the better the outcomes achieved, known in

image analysis. However, the quality of image relies on image
processing, and when the picture is acquired higher, the
image quality is higher. MRI retains noninvasive and good
contrasting properties of soft tissue but does not expose to
people ionizing with high radiation. As MRI can produce a
great deal of priceless knowledge of tissue frameworks such
as position, size, and type, more attention is paid to comput-
erized diagnostics and clinical routine [24, 25]. Functional
and structural imaging can be classified into MRI. T1-
weighted MRI (T1w), diffusion tensor imaging (DTI), and
T2-weighted MRI (T2w) [26] are used in structural imaging.
Functional imagery includes functional MRI task status (ts-
fMRI) and functional MRI resting state (rs-fMRI). Medical
diagnostic data systems are employed for medical centers
and doctors to treat diseases, and analytical tools to improve
management and diagnosis are critical. Given the crucial
function of medical data in humans’ lives, computer scien-
tists have been involved in this area. Healthcare professionals
may make their decisions, including medical diagnoses and
the effects of severe conditions, by contributing to the medi-
cal details’ classification. In addition to the number of these
conditions, a data collection of diseases comprises patient
symptoms as characteristics. The extensive patient evidence
available can be used for health treatment. Data mining
may be used in medical center studies to provide appropriate
origins of disease for prohibiting and prompt diagnosis and
avoiding the significant costs of diagnostic tests [27].

In this paper, machine learning methods are utilized for
Alzheimer’s disease classification. Moreover, robust multi-
task methods are utilized for feature extraction of fMRI
images from the ADNI dataset. In the output layer, the main
aim is to find the severity of Alzheimer’s diseases. Therefore,
the results of MMSE are used. For classification and diagnosis
of Alzheimer’s disease severity, the machine learning
methods are trained. Input and output features are applied
for six classifiers including, KNN, SVM, DT, LDA, RF, and
CNN. Finally, performance analysis consists of the confusion
matrix and the ROC curve illustrates the classification results.

2. Research Background

AD recognition has been extended to many different
methods focused on deep learning. Nevertheless, several con-
troversial findings encouraged us to participate in the litera-
ture review to determine the current operating condition
and what could be the potential innovations. In this section,
the primary study concern is if DL techniques have been able
to classify AD using neuroimaging data. The training dataset
scale is considered to significantly impact the classifier’s out-
put over an undefined test range [28]. In each dataset, the
amount of AD and MCI topics can be minimal, inadequate
for deep models to be evaluated. For multimodality experi-
ments, the condition is worse. Any experiments, however,
have mixed datasets. While it can result in more heterogene-
ity by integrating multiple datasets, this may advance a broad
and stable classification and prediction model. Using data
augmentation is another means of addressing the small num-
ber of topics in a dataset. Data increase is a technique that
increments the data range of training model applications
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without additional data being obtained. In approximately 20
percent of research aimed at enhancing classification perfor-
mance, data enhancement strategies like random translation,
rotation, reflection, adding noise, gamma filter, blurring, cut-
ting, and scaling were used where appropriate [29].

Moreover, at various time points, longitudinal datasets
include multiple brain scans per subject; it may also be
employed for data increase in time, while their main objective
was to analyze disease development [30]. While implement-
ing a DNN from scratch is completed in some experiments,
it is always impossible to do so: the training phase can use
much time, or the sample may be tiny [31]. Even though
there are millions of images in datasets of object detection
and etiquette, neuroimaging datasets contain hundreds of
images that help overfit the planning. It is generally beneficial
to start tested, previously trained CNN with one dataset and
retrain them with just the fine-tuning of CNN on another
dataset (transfer learning). It is feasible since more general
characteristics in the lower CNN layers can profit certain

classification activities that can be moved from one program
domain to another. CNN classifier is one of the effective
methods for classification for all brain diseases. Besides, find-
ing the best way for classification impacts diagnosis accuracy
and process time. Therefore, our presented method is justi-
fied computationally.

Transfer learning is also more comfortable with small
projects and produces higher performance than planning
from the beginning [53]. Payan and Montana proposed clas-
sifying AD stages, namely, MCI, AD, and standard control
[54] (NC). The algorithms were designed to implement a
3D CNN to separate brain scans employing autoencoding
systems and 2D CNN. For 3D CNN and 2D CNN versions,
an accuracy of 89.47 percent and 85.53 percent was reached.
Liu et al. have also achieved a classification accuracy of about
85.53 percent with the identical network structure for 2D
CNNs [34]. A study for the classification of AD was done
by Sarraf and Tofighi [36]. The research was focused on clas-
sifying AD patients using MRI and fMRI scans from normal

Table 1: Summary research on Alzheimer’s disease diagnosis methods.

Author Year Database Modality Method Accuracy

Suk and Shen [32] 2013
Alzheimer’s Disease

Neuroimaging
Initiative (ADNI)

PET, MRI,
CSF

Stacked autoencoder, SVM 95.9

Suk al.[33] 2014 ADNI PET, MRI Deep Boltzmann machine 95.4

Liu et al. [34] 2016 ADNI MRI
Influence of subclass number,

multiview feature extraction, subclass
clustering-based feature selection, SVM

93.8

Zu et al. [35] 2016 ADNI PET, MRI
Label-aligned multi-task feature
selection, support vector machine

96.0

Sarraf and Tofighi [36] 2016 ADNI fMRI LeNet-5 96.85

Sarraf and Tofighi [37] 2016 ADNI MRI, fMRI LeNet, GoogleNet 98.84

Li et al. [38] 2017 ADNI MRI CNN 88.31

Amoroso et al. [39] 2018 ADNI MRI
Random Forest, deep neural network, fuzzy

logic
38.8

Liu et al. [40] 2018 ADNI MRI, PET 2D and 3D CNN, 93.26

Yang et al. [41] 2018 ADNI MRI
The convolutional neural network,

3DVGGNET, 3DRESNET
76.6

Wang et al. [42] 2018
Open Access Series of Imaging

Studies
MRI CNN 97.65

Khvostikov et al. [43] 2018 ADNI MRI, DTI CNN 96.7

Shi et al. [44] 2018 ADNI MRI, PET
Multimodal stacked deep polynomial

network, SVM
97.13

Ramzan et al. [45] 2019 ADNI fMRI Off-the-shelf and fine-tuned 97.88

Parmar et al. [46] 2020 ADNI fMRI 3D CNN 96.55

Duc et al. [47] 2020 ADNI fMRI 3D CNN and SVM-RFE 85.27

Li et al. [48] 2020 ADNI 4D fMRI 3D CNN and C3d-LSTM 89.47

Al-Khuzaie et al. [49] 2021 Alzheimer Network (AlzNet) 2D fMRI CNN 99.30

Bhaskaran and Anandan
[50]

2021

Research Anthology on
Diagnosing and

Treating Neurocognitive
Disorders

rsfMRI Graph metrics and lateralization 97.54

Luo et al. [51] 2021
Population-specific Chinese

brain atlas
rsfMRI

Graph metrics and false discovery
rate (FDR)

95.67

Ahmadi et al. [52] 2021 Harvard Medical School MRI Robust PCA and CNN method 96
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control subjects. For binary classification, two network archi-
tectures have been implemented. LeNet-5 and GoogleNet
were the foundations for these CNN-based architectures. It
obtained an approximate accuracy of 99 percent with LeNet
and 100 percent with GoogleNet utilizing fMRI data. An anal-
ysis of research that focuses on AD classification using deep
learning techniques is given in Table 1. Structural MRI or
PET scans have been used in many experiments that concen-
trate on characterizing a few stages of the disorder, i.e., AD,
MCI, and CN. In multiclass AD diagnosis and grouping, a
restricted number of researches have employed fMRI findings.

3. Methods and Materials

3.1. Quantum Matched-Filter Technique (QMFT). Initially, a
preprocessing step with a noise reduction would take place. In
conjunction with the local threshold and the active contour,
each image is displayed employing a two-dimensional pixel
array, the value of which is an integer in the [0, 255] scale. In
two stages, local thresholds initialize images. Then, the input
noise picture is named the main image to which image noise
reduction is implemented. This procedure is used explicitly by
the quantummatched-filter technique (QMFT) as a local search
operator to improve the initial images. In this article, the utiliza-
tion of local thresholds and active contours was considered
since it is faster computationally than other approaches in the
literature. Thus, there will be a decomposed picture at the end
of the first stage. Thresholding is performed on the thorough
coefficients in the second step, and each of the decomposed
pieces is randomly picked and submitted to a reconstruction
process. It is possible to describe the restoration portion [55]:

(i) Gaussian Blur: a Gaussian filter is used to filter an
image. The filter size is chosen unintentionally,
between 3 × 3 pixels and 5 × 5 pixels

(ii) Mean filter (averaging filter): the picture is filtered
utilizing an average filter

(iii) Intensity change: a randomly selected associated cri-
terion in [0.7, 1.3] range is used to multiply all the
image pixels

(iv) Integrate light-intensive parts that conduct the
QMFT in quantum and reverse processing

Then, it executes the following procedures:

(i) One-point row: random selection of a pixel row

(ii) One-point column: it is similar to the preceding
method, except that it is regarded instead of a row

(iii) Point-to-point random: every pixel is incorrectly
chosen until a new image is produced from
decomposition

(iv) Mark points in rows and columns of the picture as
QMFT to diminish the bulk of the noise

If the range value [0.1] chosen in the QMFT is lower than
the rate of local search, the current image will be passed to the

local search operator after a review. Its pixel value sorts the
entire picture until the decomposition is complete. The best
aspect ratio of the picture is then known in the sequel as a
quantum value. The signal can be split into multiple dis-
placed or revamped characteristic displays located at the fea-
ture’s extraction point in fMRI photos. For the study of an
image in its elements, local thresholds and active contours
may be used. After implementing QMFT alongside local
and active contouring thresholds, it is feasible to execute
image classification operations. In this case, it is possible to
destroy the local threshold coefficients and the QMFT-
based active contour to delete certain information. Local
thresholds and active contours based on QMFT have a signif-
icant advantage when details are separated into an image. It is
possible to employ active contour to isolate excellent image
information. Simultaneously, extensive details can be identi-
fied by local thresholds, integrating fine and extensive details
and linearly and diagonally reading all rows and columns.
Quantum reaches QMFT, so noise in the fMRI image can
be minimized. A light display can be used to create a QMFT
display with local thresholds and active contours. The local
and active QMFT contouring mechanism has two key fea-
tures: the oscillation or wave presence function, as in the fol-
lowing equation [55]:

ð0
−∞

Ψ tð Þ
����
2
dt <∞: ð1Þ

The energy in ΨðtÞ is confined to a short period as

ð0
−∞

Ψ tð Þdt = 0: ð2Þ

Generally, the suggested approach is estimated to
decrease the noise in

Ω Ið Þ = 〠
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + β2 ∇Ij j2

q !
+ λ

2 I − I0ð Þ2: ð3Þ

Within Equation (3), the term ðI − I0Þ2 guarantees the
rated image and a certain degree of authenticity and consis-
tency in the original image, where I denotes the rated picture
and I0 corresponds to the noisy picture. The parameter ∇I is
described as the number of times of variable change, β and λ
are balancing variables, and Ω is the sum of the image’s
pixels. The purpose of reducing Equation (3) is to diminish
the broad variety of images while retaining accuracy and val-
idation. For both β and λ, balancing values are modified from
1 to the image size to decrease Equation (3) [55].

3.2. Robust Multitask Feature. This paper is aimed at simulta-
neously catching common characteristics among several sim-
ilar tasks and detecting outer work using the robust multitask
learning function algorithm (rMTFL). The rMTFL will esti-
mate the correct assessment and the true underlying weights.
Also, if the true underlying weights are over noise thresholds,
rMTFL will achieve exact sparsity patterns. Also, rMTFL
optimization can be easily solved, and rMTFL scales can be
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used to solve significant problems [56]. Presume that there
are m learning tasks relevant to the fðX1, y1Þ,⋯,ðXm, ymÞg,
training results, where Xi ∈ Rd×ni is the ith task data matrix
with column as a sample; yi ∈ R

ni is the ith task response (yi
has continuous regression values and discrete classification
values); d is the dimensionality of the data; and ni is the num-
ber of ith task samples. The data were normalized to

satisfyXi’s ðj, kÞth input, which is referred to as xðiÞjk [56]:

〠
ni

k=1
x ið Þ
jk

� �2
= 1, j ∈ℕd: ð4Þ

The linear function of learning is

yii ≈ f i x ið Þ
j

� �
= x ið Þ

j

� �T
wi, i ∈ℕm, j ∈ℕni

: ð5Þ

The sum of two elements, P and Q, for each task and for
decomposing of the weight matrixW = ½w1,⋯,wm � ∈ Rd×m.
To manipulate relationships between tasks, various regulari-
zation conditions on P and Q are used. The rMTFL model,
theoretically, is developed as

min
W,P,Q

 〠
m

i=1

1
mni

XT
i wi − yi

�� ���� ��2 + λ1 pj jj j1,2 + λ2 QT�� ���� ��
1,2

s:t: W = P +Q:

ð6Þ

When P reports the mutual functions between tasks and
Q learns the second term’s outer tasks, λ1 and λ2 are nonneg-
ative parameters to handle these two terms [56].

3.3. Convolutional Neural Network. CNNs have been widely
employed for DL and the most prominent classes of neural
networks, mostly in extensive data such as images and videos.
It is a multilayer neural network architecture caused by cor-
tex neurobiology. It consists of convolutional layers and fully
connected layers. Between these two layers, subsampling
layers can exist. The best of DNNs is achieved, which are
challenging to scale along with multidimensional input data
associated locally well. Therefore, CNN can be automatically
applied in databases where comparatively large numbers of
nodes and parameters are trained (e.g., image processing) [57].

3.3.1. Convolutional Layer. This is the essential building
block of a CNN that determines the output of associated
inputs in the field of reception. These kernels’ findings trans-
late into data height and width, calculate the point product
between inputs and filter values, and then create a 2D filter
map enabled. It helps the CNN quickly find the filters that
enable when an input temporarily detects a specific type of
function [57].

3.3.2. Nonlinearity Layer. Nonlinear characteristics have a
high degree of importance and curvature. This layer’s pri-
mary purpose is to convert the input signal into the output
signal, which is used as an input in the next layer. Sigmoid

or logistical forms, Tanh, ReLU, PReLU, ELU, and more,
are not linear.

3.3.3. Pooling Layer. The CNN may be locally or globally
sampled to link the neuron outputs to an established neuron
on a single layer in the following layer. The critical task is to
limit the number of parameters and equations within the
model to reduce spatial depiction volume [57]. It not only
speeds up calculations but also takes the issue of overfitting
into account. The most popular method of pooling is max
pooling.

3.3.4. Fully Connected Layer. FC layers are deep NNs typical
for the regression or classification of the activation to con-
struct the predictions. A description of the multilayer percep-
tron (MLP) neural system is equivalent to the typical neural
system. The entire relationship with each activation is
formed in the antecedent layer. Activation can be determined
by the matrix multiplication and a bias offset [57].

3.3.5. Loss/Classification Layer. The loss layer defines how the
training eliminates the disparity between the actual and pro-
jected marks, ensuring that the training phase of NN is
directly guided by it. Various loss functions for different
commands such as SoftMax and crossentropy may be used
in DCNN. SoftMax losses are used to measure a solo class
of K mutually exclusive classes. The SoftMax layer is used
to calculate the likelihood, i.e., the total output values for 1.

•fMRI
dataset (ADNI)

•
•

•
•
•
•
•

Output
feature
extracton 

•
•
•
•
•
•

•
•

Performance
analysis

Quantum matched-filter technique
(QMFT)

Robust mult-task feature
Principal component analysis

Mini-Mental State Exam (MMSE)
Low
Mild
Moderate
Severe

KNN
SVM
DT
LDA
RF
CNN

Input feature
extraction

Classification

Confusion matrix
ROC curve

Figure 1: The conceptual flowchart of the presented process.
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Furthermore, this layer is a responsive max-output layer
type, such that irregularities are distinguishable and often
scalable. Sigmoid crossentropy loss is used to foresee K-free
probability values [58]. The sigmoid capability yields negligi-
ble probabilities, and lines can be used for grouping various
groups alongside these probabilities. A problem with sigmoid
is that the gradient disappeared after the saturation had been
achieved. Euclidean failure is used to regress to fully appreciated
names. The following is an overview of the neural network
model’s programs, database, results, and implementations.

4. Results and Discussion

In this paper, machine learning methods are utilized for Alz-
heimer’s disease classification. First of all, the input image is

filtered with the QMFT method to reduced input fMRI
images. To imply the classifier in fMRI images, feature
extraction should be done for both the input and output
layers. Therefore, robust multitask methods are used for fea-
ture extraction of input layers. Then, for reducing the num-
ber of features, the PCA method is chosen. In the output
layer, the main aim is to find the severity of Alzheimer’s dis-
ease. Therefore, the results of MMSE are the best choice. It
consists of four categories: the low, mild, moderate, and
severe patients’ severity. The next step is to train the machine
learning methods. Input and output features are applied for
six classifiers including, KNN, SVM, DT, LDA, RF, and
CNN. Finally, performance analysis consists of the confusion
matrix and the ROC curve illustrates the classification results.
The conceptual diagram of the method is presented in Figure 1.

(a) (b)

(c) (d)

Figure 2: Results of noise reduction using QMFT: (a) input image; (b) input image contour form; (c) noise-reduced image; (d) contour form
of noise-reduced image.
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4.1. Preprocessing of Dataset. Data used in this paper’s prep-
aration was obtained from the ADNI database. Each subject’s
standard format was a series of 140 64 × 64 × 48 3D NIFTI
files and a single T1-weighted structural MRI file. Each 3D
NIFTI file represented the patient’s brain’s rs-fMRI data
from a 3-Tesla MRI scanner. Multiple subjects had nonstan-
dard fMRI size (e.g., 96 × 96 × 48, 80 × 80 × 48) and were fil-
tered out as well.

First, subjects were arbitrarily categorized into groups for
training and testing. Around 80 percent of the details were
required for training, and the remaining 20 percent was used
for testing. For the training and testing datasets, similar pre-
processing was implemented. First, the skull and neck voxels,
which are the MRI scans’ nonbrain regions, were removed
from the T1-weighted image that corresponded to each sub-
ject. The resting-state fMRI contained 140 time steps per sub-
ject and was corrected for motion artifacts. Then, regular
slice timing correction was applied to each time series
because later steps assume all slices were acquired halfway
through the relevant acquisition time. Slice timing correction
shifts each time series by the appropriate fraction. Spatial
smoothing was carried out next using a Gaussian kernel
(5mm full width at half maximum). Then, low-level noise

was removed from the data using quantum matched-filter
technique (QMFT). The noise reduction results can be
shown by the 2D section of images in Figure 2.

Based on the results of QMFT in Figure 2, the prominent
image noise was removed from 3D fMRI images. For better
illustration of noised and reduced images, the contour form
of image matrixes is shown in Figures 2(b) and 2(d). The
peak signal-to-noise ratio (PSNR) is shown in Figure 3.
Results of reduction for 140 images are depicted in
Figure 3. The average value of PSNR for the tested images
is 83.9731. The reduction of noise gives an exciting outcome
that enables a proper extraction of features.

4.2. Feature Extraction and Input Features. The ADNI data-
base is adopted for feature extraction of fMRI images. The
fMRI of 675 patients is included in the results. fMRI data
include 285 features classified into five types: average cortical
thickness, the standard deviation of cortical thickness, the
volume of cortical parceling, white matter, and surface area.
The result is the score from 6 separate time points of the
Mini-Mental State Examination: M06, M12, M18, M24,
M36, and M48. The samples that fail to track the consistency
of fMRI and missing results are removed.

0 20 40 60 80 100 120 140

Images

65

70

75

80

85

90

95

100

PS
N

R

PSNR noise reduction criterion

Figure 3: The PSNR value of noise reduction from fMRI images.

Table 2: Scoring system of MMSE and the severity of Alzheimer’s disease.

Score Severity Psychometric analysis Day-to-day functioning

25-30 Low
If there are clinical symptoms of cognitive disability,

a formal cognition test can be useful

Clinically significant, however mild, deficits may be available.
Only the most stressful everyday life tasks are expected

to be affected

20-25 Mild
To further assess the trend and nature of deficits, a

systematic examination can be useful
Meaningful effects. Any monitoring, assistance, and aid

may be needed

10-20 Moderate
The formal assessment of whether there are clear health

indications may be helpful
Obvious deficiency. 24-hour surveillance could be

required

0-10 Severe The patient will not be testable
Impairment labelled. 24-hour surveillance and support

with ADL are likely to be required
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4.3. Mini-Mental State Exam (MMSE). According to certain
risk factors, the cognitive function can decrease (e.g., hyper-
tension, elevated cholesterol, cardiac arrhythmias). The
physical and life quality of older people may be adversely
affected. Dementia is a significant disorder and a cause of
elderly disabilities. The second leading source in the demen-
tation of AD is brain vascular disease or multi-infarct demen-
tia. The Mini-Mental State Exam (MMSE) is an elderly
cognitive function test commonly used; it requires orienta-
tion, attention, memory, language, and visual-spatial ability.
The MMS is broken into two parts; the first only includes
vocal responses and encompasses orientation, memory, and
attention; 21 is the highest score. The second section checks
the ability to name, obey verbal and written orders, automat-
ically write a phrase, and copy a complex Bender-Gestalt
figure-like polygon; the highest score is 9. Patients with seri-
ously affected vision can have some added difficulties due to
the reading and writing involved in part II, which can typi-
cally be eased by broad writing and allowed for in the scoring.
There is a full cumulative score of 30 [59] (see Table 2).

For this paper, the relationship between Alzheimer’s
patients’ functional magnetic resonance imaging (fMRI)
images and their MMSE scores is assessed. Furthermore, a
machine learning model’s training is done on sample data
consisting of 285 features (extracted from an fMRI image)
and the patients’ respective MMSE scores. The training data
contained information for 800 patients with normalized fea-
tures. The test sample consists of 200 datasets of features and
a corresponding MMSE score as well.

4.4. Dimensionality Reduction. For function collection and
reduction, the well-known PCA approach is used. PCA is a
commonly utilized strategy for reducing dimensionality,
extraction of features, and visualization of results. PCA can
be described as the information’s orthogonal projection into
a low-dimensional, linear space known as the principal

spaces. The predicted data variance rises. PCA diminishes
the mean projection cost, defined as the mean square dis-
tance between the data points and their projections [60].
The value of characteristics is sorted in a descending order
to find a sufficient number of characteristics. The total stan-
dard value summation (NCSEðiÞ) is then calculated as the
corresponding sorted value:

NCSE ið Þ = ∑i
n=1eigenvalue nð Þ

∑
N f

n=1eigenvalue nð Þ
, 1 ≤ i ≤Nf , ð7Þ

where the nth function’s value is eigenvalue ðnÞ and the
dimensionality of the function vector obtained by the PCA
method isNf . The result of feature reduction is depicted in
Figure 4. Based on the chart, the minimum value of features
with maximum variance should be chosen. Based on results,
167 features contain 98% variance of all 285 features. There-
fore, classification should continue with these 167 features,
regarding this reduction number of features decremented
by 41.4%.

The results of classification with several methods of
machine learning consisting of KNN, SVM, decision tree
(DT), linear discrimination analysis (LDA), and random for-
est (RF) are illustrated in Figure 5. Regarding the confusion
matrix of Figure 5, the green arrays show the true values,
and red elements indicate false ones. The classification is per-
formed based on four classes, including low, mild, moderate,
and, severe based on theMMSE scoring system. The horizon-
tal gray cells indicate sensitivity, and vertical cells illustrate
precision values for each class. For instance, in the SVM
method, from 690 patients with low severity, 656 (94.1%)
are diagnosed correctly. However, 30 of them are misdiag-
nosed with mild, and four are detected with moderate sever-
ity. In other words, the sensitivity of low, mild, moderate, and
severe is 95.1%, 57.6%, 84.9%, and 100%, respectively.
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Figure 4: The cumulative summation of sorted eigenvalues.
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Moreover, in the RF classifier, from all detected patients in
the mild class, 97.7% (precision) are true. On the other hand,
the precision of low, mild, moderate, and severe classes for
RF classifier is 82.5%, 97.7%, 100%, and 100%, respectively.
The value of the lower-right corner cell in the confusion
matrix is the total accuracy value. To conclude, the results

show that the accuracy of KNN, SVM, DT, LDA, and RF
methods is 77.5%, 85.8%, 91.7%, 79.5%, and 85.1%, respec-
tively. Moreover, the total error value of the classifier is illus-
trated in the lower-right corner with red text. Results
indicated that from all traditional classifiers, DT results with
high accuracy than other methods.
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Figure 5: Confusion matrix of machine learning methods.
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For a better analysis of the machine learning classifiers,
the ROC curve is represented in Figure 6. For each of the
classes, the ROC curve is different because it is plotted based
on binary classification. The horizontal axis displays the ROC

curve’s false-positive trend, and its vertical axis shows the
true-positive rate. In other words, the ROC curve is depicted,
with consideration of each class as the positive state. Based on
the ROC curve, if the values are observed with a low, false-
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Figure 6: ROC curves of machine learning methods.

Table 3: The architecture of the presented CNN method.

Layer Type Properties

1 Feature input 167 × 1 × 1 images

2 Convolution 16 (5 × 5) convolutions with stride [1]

3 ReLU F xð Þ =max 0, xð Þ
4 Fully connected 384 fully connected layer

5 Fully connected 384 fully connected layer

6 Fully connected Four fully connected layer

7 SoftMax σ xð Þi =
exi

∑K
j=1e

xj
, i = 1,⋯, K x = x1,⋯, xKð Þ

8 Classification output For multiclass grouping problems with mutually exclusive groups, the crossentropy loss
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positive rate and high true-positive rate, it is considered
desirable. One of the essential criteria for the classifier’s per-
formance analysis is the area under the curve of ROC curve
called AUC. It can be seen that the DT classifier resulted in
high AUC than other methods. Furthermore, the AUC value
for the severe class is almost identical, almost 100%.

Based on robust multitask features and MMSE score
results, a CNN architecture for assessing or diagnosing Alz-
heimer’s patient severity in this article is presented. The input
layer consists of 167 features for every 1000 patients. There-
fore, input matrix size is 167 × 1. For the convolutional layer,
16 filters with 5 × 5 size are used with stride [1] and zero pad-
ding. Moreover, for activating the layers, the ReLU function
is used to vanish the negative values. Then, four fully con-
nected layers are used with 384, 384, 384, and 4, respectively.
Finally, the SoftMax layer is used to find probability and to
activate the final layers. Then, the classification layer is used
based on the crossentropy considering mutually exclusive
classes. The architecture of the CNN layer is shown in
Table 3.

The results of the classification process are indicated in
Figure 7. The process is performed with core i7, Intel proces-
sor with 3GHz CPU and 12GB RAM. The training process is
done for 420 iterations. The accuracy and loss value of the
training process is depicted in Figure 7. Furthermore, the
confusion matrix of the presented CNNmethod is illustrated
in Figure 8. Based on the low, mild, moderate, and severe sta-
tus of Alzheimer patients, the sensitivity is 98.1%, 95.2%,
89.0%, and 87.5%, respectively. Moreover, the precision value
for low, mild, moderate, and severe is 98.1%, 92.4%, 97.0%,
and 100%, respectively. The absolute accuracy is also 96.7%.
The summary of the results and comparison of the different
classifiers are indicated in Table 4.

The results of the comparison between the presented
architecture and traditional machine learning methods are
shown in Table 4. Based on results, the sensitivity of the pre-
sented method outperforms other approaches. The sensitiv-
ity indicates the power of the method to diagnose disease
severity based on the inputs. Therefore, the magnitude of it
represented the potential of the classifiers. In other words,
the sensitivity of the proposed CNN architecture is higher
than that of other methods. The precision also shows the
potential of results or reliability of the method. For instance,
the precision of the CNNmethod is 98.1% for the low class. It

means that, from all patients that the CNN recognized as
low-severity patients, 98.1% are correct. To conclude the
results, the presented CNN method’s accuracy is 96.7% and
higher than other methods. In the next priority, DT, SVM,
RF, LDA, and KNN indicate high accuracy, respectively.

5. Conclusion

AD is an incurable brain illness affecting a large percentage of
the planet. To enhance patients’ lives and establish effective
care and targeted drugs, early detection of AD is critical.
The machine learning approaches are used to diagnose the
seriousness of AD focused on fMRI images. To start the
training process, matched-filter technique is applied to
increase the contrast of the 3D images and decrease the noise
or outlier of images. The ADNI containing fMRI data of 675
patients is used. The fMRI data include 285 features base on
the robust multitask feature learning algorithm. The
response (target) is the Mini-Mental State Examination score
that shows the severity of AD including low, mild, moderate,
and severe categories.

Furthermore, the machine learning model’s training task
is implemented using sample data consisting of 285 features
(extracted from an fMRI image) and the patients’ respective
MMSE scores. The training data contained information for
800 patients with normalized features. The test sample con-
sists of 200 datasets of features and a corresponding MMSE
score as well. Then, the PCA approach is used for feature
selection and reduction. Based on results, 167 features con-
tain 98% variance of all 285 features. The classification is per-
formed with several machine learning methods consisting of
KNN, SVM, DT, LDA, random forest (RF), and CNN. The
results show that the accuracy of the KNN, SVM, DT, LDA
RF, and presented CNN method is 77.5%, 85.8%, 91.7%,
79.5%, 85.1%, and 96.7%, respectively. For the presented
CNN architecture, for the low, mild, moderate, and severe
status of Alzheimer patients, the sensitivity is 98.1%,
95.2%,89.0%, and 87.5%, respectively. Moreover, the preci-
sion value for low, mild, moderate, and severe is 98.1%,
92.4%, 97.0%, and 100%, respectively. In the next priority,
DT, SVM, RF, LDA, and KNN indicate high accuracy,
respectively. The detection of the severity of AD could help
discover medications by having improved pathogenesis for
evaluating the efficacy of target therapies that can delay the

Table 4: Comparison of the diagnosis methods used in this paper.

Class KNN SVM DT LDA RF Presented CNN

Sensitivity

Low 94.6% 95.1% 94.9% 91.0% 99.9% 98.1%

Mild 51.1% 57.6% 94.3% 50.2% 54.6% 95.2%

Moderate 6.8% 84.9% 61.6% 61.6% 47.9% 89.0%

Severe 0.0% 100% 12.5% 87.5% 25.0% 87.5%

Precision

Low 79.0% 86.5% 96.9% 83.4% 82.5% 98.1%

Mild 70.1% 80.0% 80.6% 70.6% 97.7% 92.4%

Moderate 83.3% 89.9% 83.3% 61.6% 100% 97.0%

Severe 0% 100% 50.0% 63.6% 100% 100%

Accuracy 77.5% 85.8% 91.7% 79.5% 85.1% 96.7%
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development of the disease. It can help recognize patterns of
brain structural changes associated with the progression of
Alzheimer’s by combining clinical imaging with DL methods
that can help identify risk factors and prognostic markers.
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