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An AI‑based novel system 
for predicting respiratory support 
in COVID‑19 patients through CT 
imaging analysis
Ibrahim Shawky Farahat 1, Ahmed Sharafeldeen 2, Mohammed Ghazal 3, 
Norah Saleh Alghamdi 4, Ali Mahmoud 2, James Connelly 5, Eric van Bogaert 5, Huma Zia 3, 
Tania Tahtouh 6, Waleed Aladrousy 1, Ahmed Elsaid Tolba 1,7, Samir Elmougy 1 & 
Ayman El‑Baz 2*

The proposed AI-based diagnostic system aims to predict the respiratory support required for COVID-
19 patients by analyzing the correlation between COVID-19 lesions and the level of respiratory support 
provided to the patients. Computed tomography (CT) imaging will be used to analyze the three levels 
of respiratory support received by the patient: Level 0 (minimum support), Level 1 (non-invasive 
support such as soft oxygen), and Level 2 (invasive support such as mechanical ventilation). The 
system will begin by segmenting the COVID-19 lesions from the CT images and creating an appearance 
model for each lesion using a 2D, rotation-invariant, Markov–Gibbs random field (MGRF) model. 
Three MGRF-based models will be created, one for each level of respiratory support. This suggests 
that the system will be able to differentiate between different levels of severity in COVID-19 patients. 
The system will decide for each patient using a neural network-based fusion system, which combines 
the estimates of the Gibbs energy from the three MGRF-based models. The proposed system were 
assessed using 307 COVID-19-infected patients, achieving an accuracy of 97.72%± 1.57 , a sensitivity 
of 97.76%± 4.08 , and a specificity of 98.87%± 2.09 , indicating a high level of prediction accuracy.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged at the end of 2019 and 
caused the coronavirus disease of 2019 (COVID-19)1. The virus quickly spread across the world, resulting 
in severe impacts on the global economy and public health2. In March 2020, the World Health Organization 
(WHO) declared COVID-19 a global pandemic due to its rapid spread3. The severity of COVID-19 infection 
varied among individuals4. Based on the respiratory support provided to COVID-19 patients, the severity of 
COVID-19 infection was classified into three categories: minimal support (level 0), non-invasive support (level 
1), and invasive support (level 2)5. Individuals with level-0 COVID-19 required minimal support for treatment, 
while those with level-1 COVID-19 had moderate symptoms and required non-invasive ventilation (e.g., soft 
oxygen) to recover. Individuals with level-2 COVID-19 had severe symptoms and required invasive ventilation 
(e.g., mechanical ventilation) for recovery. Figure 1 depicts the three respiratory support levels that COVID-19 
patients may require during treatment and their correlation with CT images. COVID-19 has affected a stagger-
ing 758 million people worldwide, with 6.859 million deaths attributed to incorrect or delayed identification of 
COVID-19 severity6. Thus, identifying the severity of COVID-19 is crucial to determine the appropriate treat-
ment for infected individuals7. Since the beginning of the pandemic, physicians have relied on imaging data 
such as X-ray and CT scans to diagnose the severity of COVID-198. However, this method of classification has 
resulted in incorrect identification of severity, leading to inappropriate treatment and, in some cases, fatalities.
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Many recent studies have proposed AI-based computer-aided diagnosis (CAD) systems that can detect 
COVID-19 severity, but they rely only on imaging data, leading to inaccurate results. In this paper, we present 
a new CAD system that predicts the respiratory support level (i.e., the severity of COVID-19) needed for each 
COVID-19 patient by analyzing the relationship between their CT scan volume and respiratory support, with the 
following contributions: (1) we propose an automatic segmentation system that delineates the lung regions from 
CT scans. (2) This proposed segmentation system is also used to extract lesion regions from region of interest 
selected by a radiologist. (3) A 3D rotation-invariant MGRF model is employed to represent the discrimination 
between different respiratory support levels. (4) Two stages of neural networks are utilized to predict the required 
respiratory support level for each patient by combining the results of each model.

Related work
The emergence of COVID-19 led to the development of CAD systems for diagnosing and classifying its severity. 
Cabitza et al.9 developed machine learning models that accurately detect COVID-19 using blood test results. The 
models were built and validated with data from 371 COVID-19-positive patients and 526 COVID-19-negative 
patients, achieving an overall accuracy of 95.7%. Yao et al.10 developed a machine-learning model that predicts 
the severity of COVID-19 using routine blood and urine test results. They used data from 205 COVID-19 patients 
and employed feature selection techniques and various machine-learning algorithms to build and validate their 
model. The results revealed that the model accurately predicted the severity of COVID-19 based on the patient’s 
blood and urine test results. Brinati et al.11 investigated the feasibility of detecting COVID-19 infection from 
routine blood tests using machine learning algorithms. They collected data from 279 COVID-19-positive and 277 
COVID-19-negative patients and utilized five different machine learning models to classify patients as COVID-19 
positive or negative based on their blood test results. The results indicated that the models accurately detected 
COVID-19 infection from routine blood tests with an overall accuracy ranging from 83.3 to 97.8%. Aktar et al.12 
proposed a CAD system for identifying COVID-19 disease using a Reverse Transcription-Polymerase Chain 
Reaction (RT-PCR) test. Their system had two phases: feature selection and diagnosis. The authors used chi-
square, Pearson correlation, and Student t algorithms in the feature selection phase to choose blood parameters 
that could distinguish between healthy and COVID-19 patients. In the diagnosis phase, they employed different 
machine-learning algorithms, including a decision tree, random forest, gradient boosting machine, and support 
vector machine (SVM), to detect COVID-19 infection. The authors created a new dataset by combining two 
datasets to evaluate the system’s performance. The experimental results demonstrated that the random forest 
algorithm outperformed others with 92% accuracy. Zhang et al.13 proposed a CAD system that can determine 
the severity of COVID-19 infection by analyzing patients’ blood test results. The system categorizes patients 
into either mild or severe cases. The authors employed six different classifiers, including random forest, naive 
Bayes, SVM, k-nearest neighbors (KNN), logistic regression, and neural networks, to determine the severity of 
the disease. They tested the performance of the system on a dataset of 422 COVID-19-positive patients from 
the Shenzhen Third People’s Hospital. The dataset included 38 blood test features for each patient. The authors 
found that naive Bayes outperformed the other classifiers, with an area under the curve (AUC) of 0.90. Previous 
CAD systems had shown that classification based on blood tests alone could not achieve high accuracy, and 
researchers had started using imaging data, such as CT and X-ray, to develop high-performance CAD systems.

Shahin et al.14 proposed a CAD system for detecting COVID-19 using CT images of patients, which grades the 
severity of the infection based on imaging data. The system comprises two main steps. In the first step, the authors 
used a modified version of the k-means algorithm to enhance the visibility and contrast of ground glass opaci-
ties. In the second step, they employed SVM to diagnose each patient. According to their experimental results, 
the system achieved an accuracy of 80%. On the other hand, Kogilavani et al.15 proposed a deep-learning CAD 
system that uses patients’ CT images for COVID-19 classification. They employed various convolutional neural 
network (CNN) architectures, including VGG16, DeseNet121, MobileNet, NASNet, Xception, and EfficientNet 
to classify patients into COVID-19 or non-COVID-19 groups. The authors used a dataset of 3833 patients col-
lected from Kaggle to train and test their system. Their experimental results showed that the VGG16 architecture 
outperformed the other classifiers, achieving an accuracy of 97.68%. Yu et al.16 presented a COVID-19 sever-
ity identification system that utilized a patient’s CT volume to identify the severity of the disease. The system 
employed four deep-learning algorithms, including ResNet-50, Inception-V3, ResNet-101, and DenseNet-201, to 

Figure 1.   An illustrative example of the Correlation between CT lesions and respiratory support levels: (a) 
minimal support, (b) non-invasive support, and (c) invasive support.
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extract features from CT images. These features were then fed into a machine learning algorithm to identify each 
case as severe or non-severe. The authors tested their system using a dataset consisting of 202 COVID-19-positive 
patients collected from three hospitals in Anhui, China. The authors evaluated their system using five machine 
learning algorithms, including linear SVM, KNN, linear discriminant, Adaboost decision tree, and cubic SVM. 
The results showed that using DenseNet-201 with a cubic SVM model outperformed the other models, achieving 
an accuracy of 95.20%. Nigam et al.17 proposed a deep-learning CAD system that could identify the presence 
of COVID-19 infection based on a patient’s X-ray. The system used VGG16, DenseNet121, Xception, NASNet, 
and EfficientNet architectures to detect COVID-19 infection. To evaluate the system’s performance, the authors 
used a dataset consisting of 16,634 patients collected from various hospitals in India. The results showed that the 
EfficientNet architecture outperformed the others, achieving an accuracy of 93.48%. Alqudah et al.18 conducted 
a study to compare the performance of several hybrid machine learning models, including CNNs, random 
forest (RF), SVM, and KNN, for the detection of COVID-19 from chest X-ray images. To evaluate the models’ 
performance, they used a dataset consisting of 1057 chest X-ray images, including 506 COVID-19-positive and 
551 COVID-19-negative cases. The results showed that the CNN-based models outperformed the other models 
in terms of accuracy, sensitivity, specificity, and AUC. The best-performing CNN model achieved an accuracy 
of 96%, a sensitivity of 95%, a specificity of 97%, and an AUC of 0.99.

AI-based techniques have shown promise in assisting with the diagnosis and grading of COVID-19 severity 
using CT images, as demonstrated by the studies mentioned above. However, it is important to note that there are 
no published studies that specifically examine the correlation between radiology findings of COVID-19 lesions 
and the required respiratory support in infected patients. In this paper, we aim to investigate the potential cor-
relation between the radiology features of COVID-19 lesions and the required respiratory support in infected 
patients. This investigation could provide valuable insights into the management of COVID-19 patients and 
may lead to improved treatment strategies. Below, will describe in detail the major steps of the proposed system.

Method
In this paper, we proposed a new CAD system that predicts the respiratory support level required for each 
COVID-19 patient to recover from infection. The CAD system consists of four main steps. Firstly, the patient’s 
lung is segmented, followed by extraction of the lesion in the second step. To estimate the texture and morphol-
ogy of the lesions, we trained an appearance model using the MGRF algorithm in the third step. The algorithm 
is applied three times to represent the lesion appearance at the three respiratory support levels. Finally, a two-
stage neural network is used to diagnose and grade each patient into one of the three levels. Figure 2 illustrates 
the main steps of our CAD system.

Lung segmentation
To design a high-performance CAD system, we must use the markers extracted directly from COVID-lesions. 
To achieve this goal, we designed our system to start by extracting the lung region, followed by COVID-lesion 
segmentation. This two-step sequential design ensures accurate segmentation of COVID-lesions and avoids 
errors in cases where the lesions are close to the chest region. We achieved lung segmentation using our previ-
ously published method in19. This approach utilizes the first and second-order appearance models of lung and 
chest tissues to accurately segment the lung area, taking into account the similarity in appearance of certain lung 
tissues to other chest tissues such as bronchi and arteries. We extracted the first-order appearance model of the 
CT image using discrete Gaussian kernels and used a new version of the expectation-maximization algorithm 
to calculate the model parameters. The MGRF algorithm estimated the second-order appearance model by rep-
resenting the pairwise interaction of the 3D lung tissues. Figure 3 shows the results of our segmentation method 

Figure 2.   A schematic illustration of the proposed CAD system architecture.
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applied to three individuals with varying respiratory support levels needed during COVID-19 infection. For 
more details on our segmentation method, please refer to19,20.

COVID‑lesion segmentation
First, an expert radiologist carefully selects the region of interest around the largest cross-section over COVID-19 
lesions aiming to enhance the accuracy of lesion detection. Then, we used the segmentation models mentioned 
above to differentiate between normal lung tissues and COVID-19 lesions. In addition, we employed connected 
region analysis as an extra step. Figure 4 showcases some of the segmented COVID-19 lesions.

Learning the appearance of COVID‑19 lesions
The proposed approach considers each COVID-lesion as the realization of a piecewise stationary Markov–Gibbs 
random field (MGRF)21–27. The MGRF is constructed such that joint probabilities, i.e., voxel-voxel interactions, 
are central-symmetric. This means that the appearance of infected lung regions is modeled as a random process, 
in which the probability of each voxel being infected depends on the appearance of neighboring voxels. The 
use of a central-symmetric system of voxel–voxel interactions is crucial because it captures the circular sym-
metry of the lesion structure and allows for precise modeling of the appearance of COVID-19 lesions. Denote 
the neighborhood system of the MGRF by n ; then every nν ∈ n, ν = 1, . . . ,N , is specified by a pair of positive 
real numbers (dν , dν) . The nν-neighborhood of voxel x is the set {x′ | dν < �x − x′� ≤ dν} , where � · � denotes 
Euclidean distance. Figure 5 illustrates such a neighborhood system with dν = ν − 1

2 and dν = ν + 1
2.

Consider an image pair (g,m) from our training data set comprising a CT slice and its ground truth labeling, 
respectively. Denote by R the set of  “object” voxels, i.e. voxels within the infected lung region. Then the restricted 
neighborhood system is the set of voxels

Finally let f0 and fν denote empirical distributions (i.e., relative frequency histograms) of gray levels in R and 
gray level co-occurrences (i.e., the frequency of co-occurrences) in cν , respectively:21,28

cν = {(x, x′) | x ∈ R, x′ ∈ R, (x, x′) ∈ nν}

(1)f0(q) =|R|−1
∣

∣{x ∈ R | g(x) = q}
∣

∣;

Figure 3.   An illustrative example of the proposed segmentation approach for three patients requiring different 
levels of respiratory support during COVID-19 infection at 2D axial (first row), sagittal (second rows), and 
coronal (third row) cross-sections: (a) Level 0, (b) Level 1, and (c) Level 2. The images showcase the accuracy of 
the segmentation approach for various respiratory support levels.
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The empirical distribution (i.e., Eq. 1) represents the fundamental principle used to determine the frequency 
of each estimated Gibbs energy value within COVID lesions. Conversely, the frequency of co-occurrences (i.e., 
Eq. 2) signifies the joint occurrence frequency of two Gibbs energy values, which plays a pivotal role in construct-
ing the second-order appearance of COVID-19 lesions.

The MGRF distribution of object voxel gray levels within an element of the training data (gt ,mt), t = 1, . . . ,T 
is the Gibbs distribution

(2)fν(q, q
′) =|cν |

−1
∣

∣{(x, x′) ∈ cν | g(x) = q, g(x′) = q′}
∣

∣.

Figure 4.   An illustrative example of the proposed lesion segmentation approach on three COVID-19 patients 
with varying respiratory support requirements at 2D axial (first row), sagittal (second rows), and coronal (third 
row) cross-sections: (a) minimal support (Level 0), (b) non-invasive support (Level 1), and (c) invasive support 
(Level 2).

Figure 5.   Central-symmetric neighborhood of a voxel within a CT slice. The neighborhood (orange band) of 
voxel x contains voxels within a distance ν ± 1

2
 of x.
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where ρν = |cν |/|R| is the mean size of the restricted neighborhoods relative to the size of the entire sublattice 
R . Since the premise of using the MGRF model is that lungs affected by a particular pathology (in this case 
COVID-19) will produce CT features alike in appearance, it is practical to approximate some of the quanti-
ties in Eq. (3) by their averages with respect to set of training images. Namely, |Rt | ≈ Rob = 1

T

∑T
t=1 |Rt | , and 

|cν,t | ≈ cν,ob = 1
T

∑T
t=1 |cν,t | . With the condition that elements of the training set are statistically independent 

(e.g., if each CT image is taken from a different patient), the Gibbs distribution may be further simplified28:

Here, the estimated restricted neighborhood size ρν = cν,ob/Rob , and estimated weights F0,ob and Fν,ob again 
denote average values with respect to the set of training images.

Structural zeros can arise when there are little training data to identify the MGRF model, e.g., if only a 
relatively small lung region is affected by the disease. Then, by chance, some gray levels do not occur, or do not 
co-occur with certain other gray levels, in the training data and the corresponding elements of the weight vectors 
are zero. Test data where these values do occur then have zero likelihood. We deal with this potential problem 
by using pseudo-counts. For Eqs. (1) and (2), substitute the following, modified versions:

Here Q is the number of discrete gray levels. The parameter ε can be chosen according to several criteria. 
Following28, we set ε to effect unit pseudo-count in the denominator, i.e. ε := 1/Q (Eq. 4) or ε := 1/Q2 (Eq. 5).

It remains only to estimate the Gibbs potentials. Using the same analytical approach as in28, these are approxi-
mated using the centered, training-set averaged, normalized histograms:

With the model now fully specified, the Gibbs energy of the lesion, or affected region of the lung, b within a 
test image g is obtained from the equation

Here, N′ is a selected top-rank index subset of the neighborhood system n , and F0(g, b) and Fν(g, b) are just 
the histogram and normalized co-occurrence matrix, respectively, of object voxels in the test data. The training 
procedure for the MGRF model is summarized in Algorithm 1.

Algorithm 1. MGRF training model.

Neural network based grading system
We designed a two-stage neural network to determine the level of respiratory support that each patient needed 
to recover from COVID-19. In the first stage, we use three feed-forward neural networks for training and testing 
the three estimated CDF percentiles separately. Therefore, we combined the testing results of the three neural 

(3)
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networks and fed them into the final feed-forward neural network, in which we identified the appropriate res-
piratory support level needed for each patient. We used a backpropagation algorithm to train and test the four 
neural networks. Algorithm 2 shows the steps of the backpropagation method, which we followed to train our 
networks. Our neural network performance increased using the best values for the model’s hyperparameters. 
Several approaches can be used to identify the optimal values for hyperparameters. We used a random search 
strategy, which depended on randomly selected points from the hyperparameter space, and then tested the 
model’s performance on the training data for each random sample. The number of hidden layers in the feedfor-
ward network, the size of each hidden layer, and the hidden layer neurons’ activation function were all hyperpa-
rameters. A random search revealed that the rectified linear unit (ReLU) activation function and three hidden 
layers of 9, 10, and 21 neurons, respectively, were the values of the optimal hyperparameters for our system.

Algorithm 2. Backpropagation algorithm.

Performance evaluation metrics
To evaluate the performance of our diagnostic system with three outcome levels, we used Cohen’s Kappa, which 
is a statistical measure of inter-rater agreement commonly used in such situations. One of the main benefits of 
using Cohen’s Kappa is its ability to take into account the possibility of chance agreement among raters, which 
is particularly important when the outcome prevalence is low or the categories are imbalanced. Moreover, 
Cohen’s Kappa can provide valuable insights into the sources of disagreement among raters, which can be used 
to improve the accuracy of the diagnostic system. The Cohen’s Kappa coefficient for a three-level diagnostic 
system is calculated as follows:

where Acco is the observed accuracy between the output of the proposed diagnostic system and the ground 
truth and Acce is the expected agreement between the outcome of the proposed diagnostic system and our gold 
standard reference standard. For a three-level diagnostic system, Acco and Acce are calculated as:

and

where TPL2 is the number of true positives for the Level 2 respiratory support, high-risk category, TPL1 is the 
number of true positives for the Level 1 respiratory support, TPL0 is the number of true positives for the Level 1 
respiratory support, FNL2 is the number of false negatives for the Level 2 respiratory support, FNL1 is the num-
ber of false negatives for the Level 1 respiratory support, FNL0 is the number of false negatives for the Level 0 
respiratory support, FPL2 is the number of false positives for the Level 2 respiratory support, and N is the total 
number of subjects.

(8)Cohen’s Kappa =
Acco − Acce

1− Acce
= 1−

1− Acco

1− Acce

(9)Acco =
TPL2 + TPL1 + TPL0

N

(10)
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[

TPL2 + FNL2

N

]

×

[

TPL2 + FPL2 + TPL1 + TPL0 + FNL1 + FNL0

N

]

+

[

TPL1 + FNL1

N

]

×

[
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N
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N
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In addition to reporting the observed accuracy and Cohen’s Kappa, we will report the true positive rate (i.e., 
sensitivity) and true negative rate (i.e., specificity) for each respiratory level.

All methods were carried out in accordance with relevant guidelines and regulations. The Institutional Review 
Board (IRB) of University of Louisville approved the study and its methods and confirmed that the research study 
followed all appropriate protocols and legal requirements. Patients (or, in the case of deceased patients, next of 
kin or legal guardian) provided informed consent.

Experimental results
To test the performance of our proposed method, we collected a dataset consisting of 307 CT chest volumes 
from the University of Louisville, USA. Based on the support repository provided for each patient, the dataset 
was categorized into three distinct groups. These groups included 167 cases with minimum support (level 0), 69 
cases with non-invasive support (level 1), and 71 cases with invasive support (level 2).

To assess the performance of our CAD system, cross-validation approaches with 4, 5, and 10 folds are 
employed. Additionally, other machine learning classifiers are utilized to highlight the potential of our system 
performance. The performance of our system is shown in Table 1. As shown in Table 1, the proposed system 
outperform all other classifiers, achieving an accuracy of 97.72± 1.57 and a kappa of 96.58± 2.36 , using 10-fold 
cross-validation. Moreover, using 5-folds and 4-folds cross validation, the system consistently demonstrates a 
high accuracy of 93.79± 1.37 and 92.77± 1.7 , and kappa of 90.68± 2.05 and 89.18± 2.52 , respectively. These 
outcomes highlight the promise of the proposed system in predicting the respiratory support level for COVID-
19 patients. Also, the area under the receiver operating characteristic (ROC) curve (AUC) for each of the three 
categories are estimated to show the performance of the proposed method in differentiating between the three 
categories, as shown in Fig. 6. The figure demonstrates the capability of the proposed method for distinguishing 
between the three levels, achieving AUC of 0.9957, 0.9923, and 0.9984 for levels 0, 1, and 2, respectively, using 
10-fold cross-validation. To visually demonstrate the capability of the MRGF models in distinguishing between 
three levels, Fig. 7 shows the color map of Gibbs energy estimated from three MGRF models for three patients 
with different respiratory support requirements. As shown in the figure, the Gibbs energy estimated from the 
MGRF model tuned using a given level of respiratory support is higher for a patient requiring that particular 
level, compared to other models. This confirms the capability of the proposed system in effectively differentiating 
between the three levels of respiratory support.

Due to the varying length of Gibbs energy for each patient is different, CDF percentiles are utilized as new, 
scale-invariant representations of the estimated Gibbs energy. Figure 8 shows the mean and standard deviation 
of CDF percentile for three respiratory support levels, as estimated from three models. As shown in the figure, 
representing the patient with the CDF percentiles leads to an obvious separation between the three respiratory 
support levels, which demonstrates the system’s ability to effectively distinguish between the different COVID-19 
respiratory support levels. However, some of these features partially overlap with those associated with differ-
ent respiratory support levels. Thus, the decisions/probabilities of each model are fused using another neural 
network to increase the system’s performance and separability between the three levels, as presented in Fig. 9. 
As demonstrated in the figure, it is easy for the fused neural network to predict the respiratory support level 
needed for each patient. All of these results show the system’s accuracy and effectiveness in correctly predicting 
the patient’s need for respiratory support based on CT scans. Hence, this could result in more precise diagnoses, 
better treatment strategies, and better patient outcomes.

Discussion
Individuals with COVID-19 infection suffer from respiratory impairments and Acute Respiratory Distress Syn-
drome (ARDS). So, many COVID-19 patients need mechanical ventilation or soft oxygen to recover from the 
infection35. COVID-19 patients who need an intensive care unit (ICU) may suffer from acute renal failure and 
organ dysfunction, such as heart failure. Unfortunately, the death rate of COVID-19 infection for patients who 
needed ICU reached 97% at the early stages of the epidemic36,37. So, identifying the individuals that need ICU 
from the beginning of the COVID-19 infection is the only way to fight COVID-19 and reduce its death rate. This 
paper proposes a new, fast (with an average processing time of 66.55± 25.06 s), automated, and accurate CAD 
system that predicts the respiratory support level needed for each patient to recover from COVID-19 infection. 
To do this, this system identifies the correlation between the patient’s CT image and the respiratory support 
level. Our empirical results show that our proposed method achieved an accuracy of 97.72%. Several related 
studies used AI techniques to diagnose or grade the severity of COVID-19 infection using X-rays, CT scans, or 
medical data9–18,38–43, or to diagnose other diseases44–54. In these studies, many machine learning algorithms are 
adopted, such as CNN, SVM, KNN, VGG16, and Xception. These studies attained accuracy rates of 92.0–97.68%. 
However, they suffer from some drawbacks: (1) many recent works are based on deep learning algorithms with 
many convolution layers to perform feature extraction steps, which may increase the time required to identify 
COVID-19 severity. The increase in processing time is an acceptable trade-off, since deep learning automatically 
extracts relevant features instead of relying on a prior set of hand-crafted features. (2) Several existing studies 
have proposed a CAD system to classify the COVID-19 infection without determining the disease severity. (3) 
All recent works were based on clinical or imaging data without showing the correlation between these data and 
the repository support level that each patient had already preserved. AI has demonstrated its value in medical 
applications and gained widespread acceptance due to its high accuracy and predictability. By synergistically 
incorporating AI with chest imaging and other clinical data, it has the potential to significantly augment thera-
peutic outcomes. AI holds significant potential in detecting lung inflammation in CT medical imaging during the 
COVID-19 diagnosis stage. Furthermore, it offers the capability to precisely segment areas of interest from CT 
scans, further advancing the diagnostic process. Thus, acquiring self-learned characteristics for diagnosis or other 
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applications becomes straightforward. By integrating multimodal data, including clinical and epidemiological 
information, within an AI framework, it becomes feasible to generate comprehensive insights for detecting and 
treating COVID-19 patients and potentially curbing the spread of this pandemic.

Conclusions
As mentioned in this paper, it is evident that COVID-19 resulted in a significant mortality rate primarily attrib-
uted to the erroneous or delayed determination of the necessary level of respiratory support for each patient. 
So, utilizing AI techniques to accurately identify the necessary respiratory support level for each patient at the 
onset of the infection becomes an imperative and unavoidable. In this paper, we proposed a new CAD system 
that utilizes CT chest volumes to accurately predict the required respiratory support level for each COVID-19 

Table 1.   Comparison between the proposed system and different machine learning techniques. Significant 
values are in [bold].

Classifier Metrics

Class evaluation Overall evaluation

Level 0 Level 1 Level 2
Overall accuracy 
(%) Kohen Kappa (%)

4-fold

Random forest29
Sensitivity (%) 90.79± 8.89 57.80± 6.24 62.39± 10.82

76.81± 3.84 61.04± 6.06
Specificity (%) 71.74± 8.13 95.18± 3.77 91.43± 5.4

Decision trees30
Sensitivity (%) 83.27± 7.98 51.46± 9.29 46.04± 17.58

67.53± 7.04 45.88± 11.25
Specificity (%) 70.8± 6.19 86.55± 7.74 88.63± 5.83

Naive Bayes31
Sensitivity (%) 88.29± 5.07 67.28± 7.57 65.17± 13.4

78.23± 4.53 63.98± 7.29
Specificity (%) 78.49± 13.14 93.89± 2.19 90.52± 3.38

SVM32
Sensitivity (%) 90.11± 5.6 63.29± 5.72 67.87± 14.51

78.94± 1.4 64.77± 1.62
Specificity (%) 76.67± 8.09 95.14± 2.46 91.32± 2.22

KNN33
Sensitivity (%) 90.79± 7.00 68.23± 17.28 67.97± 17.59

78.91± 1.89 64.5± 3.08
Specificity (%) 72.4± 9.31 95.54± 2.28 93.42± 3.89

AdaBoost34
Sensitivity (%) 91.36± 7.95 62.07± 8.79 49.93± 15.53

75.18± 4.21 58.62± 7.13
Specificity (%) 71.12± 9.5 92.26± 2.84 92.65± 4.15

Proposed system
Sensitivity (%) 93.27 ± 3.68 92± 0 93± 2

92.77 ± 1.7 89.18± 2.52
Specificity (%) 95± 1.15 97.55± 1.88 96.57 ± 0.98

5-fold

Random forest29
Sensitivity (%) 92.47± 6.67 63.77± 11.53 64.23± 13.48

79.46± 2.36 65.60± 4.62
Specificity (%) 73.29± 10.11 95.95± 2.78 93.17± 5.38

Decision trees30
Sensitivity (%) 78.93± 8.95 60.27± 13.82 43.90± 17.26

66.61± 5.13 45.90± 9.16
Specificity (%) 71.43± 9.86 86.14± 5.89 87.41± 9.39

Naive Bayes31
Sensitivity (%) 89.40± 3.95 66.20± 10.97 62.98± 15.64

78.08± 3.56 63.57± 5.87
Specificity (%) 77.96± 13.38 93.48± 3.21 91.00± 3.77

SVM32
Sensitivity (%) 92.40± 3.29 69.36± 11.85 63.27± 9.88

80.43± 2.17 67.37± 4.33
Specificity (%) 77.5± 8.55 95.18± 3.03 92.68± 3.26

KNN33
Sensitivity (%) 94.72± 2.43 63.77± 11.53 61.73± 12.07

80.03± 1.54 66.52± 3.04
Specificity (%) 71.33± 9.41 96.34± 0.80 94.71± 2.95

AdaBoost34
Sensitivity (%) 91.88± 5.56 62.11± 11.61 49.81± 15.62

75.37± 3.51 59.12± 5.85
Specificity (%) 70.01± 14.42 92.72± 3.27 92.43± 6.25

Proposed system
Sensitivity (%) 92.38± 2.61 93.05± 2.78 96± 2.24

93.79± 1.37 90.68± 2.05
Specificity (%) 96.52± 1.34 97.56± 1.73 96.6± 2.19

10-fold

Random forest29
Sensitivity (%) 91.54± 18.57 67.03± 7.02 65.39± 16.86

79.95± 4.94 66.5± 9.01
Specificity (%) 77.84± 6.51 94.91± 14.61 92.16± 3.77

Decision trees30
Sensitivity (%) 83.55± 19.80 61.42± 9.31 51.98± 22.75

71.08± 6.97 52.75± 12.43
Specificity (%) 71.12± 6.86 91.14± 15.09 88.53± 6.30

Naive Bayes31
Sensitivity (%) 90.28± 21.38 68.46± 6.91 63.69± 14.36

79.26± 3.65 65.62± 6.94
Specificity (%) 78.51± 5.56 93.74± 14.52 92.07± 5.73

SVM32
Sensitivity (%) 92.54± 21.83 67.71± 5.73 65.25± 18.28

80.63± 5.77 67.57± 11.09
Specificity (%) 76.75± 4.62 95.83± 17.16 92.73± 3.72

KNN33
Sensitivity (%) 94.90± 24.36 64.67± 4.46 65.43± 10.29

81.14± 4.82 68.45± 8.41
Specificity (%) 73.56± 4.69 96.81± 11.73 94.52± 2.37

AdaBoost34
Sensitivity (%) 86.04± 21.96 64.53± 19.02 60.69± 18.44

77.13± 5.54 61.89± 10.16
Specificity (%) 71.52± 3.74 92.2± 17.29 94.94± 4.14

Proposed system
Sensitivity (%) 96.27 ± 4.82 99± 3.16 98± 4.26

97.72± 1.57 96.58± 2.36
Specificity (%) 99.5± 1.58 98.55± 2.34 98.55± 2.34
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patient’s recovery. Once the respiratory support level is determined for each patient, physicians can then pro-
vide personalized treatment recommendations, which have the potential to significantly reduce mortality rates. 
The results of this study demonstrated the promise of integrating spatial MGRF model with machine learning 
to predict respiratory support level in COVID-19 patients. However, this study has some limitations. One of 
them is the need for improvement in lesion segmentation, as the proposed segmentation relies heavily on the 
selection of the region of interest by a radiologist. Furthermore, additional investigation is necessary to assess 

Figure 6.   ROC curve of the proposed system using (a) 4-fold, (b) 5-fold, and (c) 10-fold cross-validation.

Figure 7.   An illustrative color map example of Gibbs energies for (a) level 0, (b) level 1, or (c) level 2; tuned 
using level 0, level 1, or level 2 COVID-19 lesions.
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how well the system performs with an external dataset. In the future, we intend to propose a fully automatic 
lesion segmentation system as well as improve the proposed system’s accuracy by extracting additional features 
that can be discovered through deep learning. Moreover, we intend to assess the efficacy of the grading system 
used in this paper (i.e., the levels of respiratory support) by conducting a comparative analysis with established 
radiology grading techniques.

Data availability
Correspondence and requests for materials should be addressed to Ayman El-Baz.

Received: 9 October 2023; Accepted: 29 December 2023

References
	 1.	 Huang, F. et al. Identifying covid-19 severity-related SARS-COV-2 mutation using a machine learning method. Life 12, 806 (2022).
	 2.	 Gambhir, E., Jain, R., Gupta, A. & Tomer, U. Regression analysis of covid-19 using machine learning algorithms. In 2020 Interna-

tional Conference on Smart Electronics and Communication (ICOSEC), 65–71 (IEEE, 2020).
	 3.	 Saadat, S., Rawtani, D. & Hussain, C. M. Environmental perspective of covid-19. Sci. Total Environ. 728, 138870 (2020).
	 4.	 Verity, R. et al. Estimates of the severity of covid-19 disease. MedRxiv 2020-03 (2020).
	 5.	 Montrief, T., Ramzy, M., Long, B., Gottlieb, M. & Hercz, D. Covid-19 respiratory support in the emergency department setting. 

Am. J. Emerg. Med. 38, 2160–2168 (2020).
	 6.	 WHO. WHO Coronavirus (COVID-19) Dashboard—covid19.who.int. https://​covid​19.​who.​int/. Accessed 06 Mar 2023 (2023).
	 7.	 Rahmani, A. M. & Mirmahaleh, S. Y. H. Coronavirus disease (covid-19) prevention and treatment methods and effective param-

eters: A systematic literature review. Sustain. Cities Soc. 64, 102568 (2021).
	 8.	 Borakati, A., Perera, A., Johnson, J. & Sood, T. Diagnostic accuracy of X-ray versus CT in covid-19: A propensity-matched database 

study. BMJ Open 10, e042946 (2020).
	 9.	 Cabitza, F. et al. Development, evaluation, and validation of machine learning models for covid-19 detection based on routine 

blood tests. Clin. Chem. Lab. Med. 59, 421–431 (2021).
	10.	 Yao, H. et al. Severity detection for the coronavirus disease 2019 (covid-19) patients using a machine learning model based on the 

blood and urine tests. Front. Cell Dev. Biol. 683, 25 (2020).
	11.	 Brinati, D. et al. Detection of covid-19 infection from routine blood exams with machine learning: A feasibility study. J. Med. Syst. 

44, 1–12 (2020).

Figure 8.   Estimated error average of CDF percentiles for three levels when tuning MGRF parameters using (a) 
level 0, (b) level 1, or (c) level 2.

Figure 9.   Estimated error average of traing data that represent each patient.

https://covid19.who.int/


12

Vol:.(1234567890)

Scientific Reports |          (2024) 14:851  | https://doi.org/10.1038/s41598-023-51053-9

www.nature.com/scientificreports/

	12.	 Aktar, S. et al. Machine learning approach to predicting covid-19 disease severity based on clinical blood test data: Statistical 
analysis and model development. JMIR Med. Inform. 9, e25884 (2021).

	13.	 Zhang, R.-K., Xiao, Q., Zhu, S.-L., Lin, H.-Y. & Tang, M. Using different machine learning models to classify patients into mild 
and severe cases of covid-19 based on multivariate blood testing. J. Med. Virol. 94, 357–365 (2022).

	14.	 Shahin, O. R., Abd El-Aziz, R. M. & Taloba, A. I. Detection and classification of covid-19 in ct-lungs screening using machine 
learning techniques. J. Interdiscip. Math. 25, 791–813 (2022).

	15.	 Kogilavani, S. et al. Covid-19 detection based on lung ct scan using deep learning techniques. Comput. Math. Methods Med. 20, 
22 (2022).

	16.	 Yu, Z. et al. Rapid identification of covid-19 severity in ct scans through classification of deep features. Biomed. Eng. Online 19, 
1–13 (2020).

	17.	 Nigam, B. et al. Covid-19: Automatic detection from x-ray images by utilizing deep learning methods. Expert Syst. Appl. 176, 
114883 (2021).

	18.	 Alqudah, A. M., Qazan, S., Alquran, H., Qasmieh, I. A. & Alqudah, A. Covid-19 detection from x-ray images using different 
artificial intelligence hybrid models. Jordan J. Electr. Eng. 6, 168–178 (2020).

	19.	 Sharafeldeen, A., Elsharkawy, M., Alghamdi, N. S., Soliman, A. & El-Baz, A. Precise segmentation of COVID-19 infected lung 
from CT images based on adaptive first-order appearance model with morphological/anatomical constraints. Sensors 21, 5482. 
https://​doi.​org/​10.​3390/​s2116​5482 (2021).

	20.	 Sharafeldeen, A. et al. Accurate segmentation for pathological lung based on integration of 3d appearance and surface models. In 
2023 IEEE International Conference on Image Processing (ICIP), https://​doi.​org/​10.​1109/​icip4​9359.​2023.​10222​525 (IEEE, 2023).

	21.	 El-Baz, A. S., Gimel’farb, G. L. & Suri, J. S. Stochastic Modeling for Medical Image Analysis (CRC Press, 2016).
	22.	 Sharafeldeen, A. et al. Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using 

OCT images. Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​021-​83735-7 (2021).
	23.	 Elsharkawy, M. et al. Early assessment of lung function in coronavirus patients using invariant markers from chest x-rays images. 

Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​021-​91305-0 (2021).
	24.	 Farahat, I. S. et al. The role of 3d ct imaging in the accurate diagnosis of lung function in coronavirus patients. Diagnostics 12, 696 

(2022).
	25.	 Elsharkawy, M. et al. Diabetic retinopathy diagnostic CAD system using 3d-oct higher order spatial appearance model. In 2022 

IEEE 19th International Symposium on Biomedical Imaging (ISBI), https://​doi.​org/​10.​1109/​isbi5​2829.​2022.​97615​08 (IEEE, 2022).
	26.	 Alghamdi, N. S. et al. Segmentation of infant brain using nonnegative matrix factorization. Appl. Sci. 12, 5377. https://​doi.​org/​10.​

3390/​app12​115377 (2022).
	27.	 Elsharkawy, M. et al. A novel computer-aided diagnostic system for early detection of diabetic retinopathy using 3d-OCT higher-

order spatial appearance model. Diagnostics 12, 461. https://​doi.​org/​10.​3390/​diagn​ostic​s1202​0461 (2022).
	28.	 Gimel’farb, G. L. Image Textures and Gibbs Random Fields (Springer, 1999).
	29.	 Speiser, J. L., Miller, M. E., Tooze, J. & Ip, E. A comparison of random forest variable selection methods for classification prediction 

modeling. Expert Syst. Appl. 134, 93–101. https://​doi.​org/​10.​1016/j.​eswa.​2019.​05.​028 (2019).
	30.	 Kotsiantis, S. B. Decision trees: A recent overview. Artif. Intell. Rev. 39, 261–283. https://​doi.​org/​10.​1007/​s10462-​011-​9272-4 (2011).
	31.	 Yang, F.-J. An implementation of Naive Bayes classifier. In 2018 International Conference on Computational Science and Compu-

tational Intelligence (CSCI), 301–306. https://​doi.​org/​10.​1109/​CSCI4​6756.​2018.​00065 (2018).
	32.	 Pisner, D. A. & Schnyer, D. M. Chapter 6–support vector machine. In Machine Learning (eds Mechelli, A. & Vieira, S.) 101–121 

(Academic Press, 2020). https://​doi.​org/​10.​1016/​B978-0-​12-​815739-​8.​00006-7.
	33.	 Zhang, S., Li, X., Zong, M., Zhu, X. & Cheng, D. Learning k for knn classification. ACM Trans. Intell. Syst. Technol. 8, 1–19. https://​

doi.​org/​10.​1145/​29905​08 (2017).
	34.	 Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. 

Sci. 55, 119–139. https://​doi.​org/​10.​1006/​jcss.​1997.​1504 (1997).
	35.	 Arentz, M. et al. Characteristics and outcomes of 21 critically ill patients with covid-19 in Washington state. JAMA 323, 1612–1614 

(2020).
	36.	 Richardson, S. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with covid-19 in 

the New York city area. JAMA 323, 2052–2059 (2020).
	37.	 Jiang, X. et al. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Comput. 

Mater. Contin. 63, 537–551 (2020).
	38.	 Bhargava, A., Bansal, A. & Goyal, V. Machine learning-based automatic detection of novel coronavirus (covid-19) disease. Mul-

timed. Tools Appl. 81, 13731–13750 (2022).
	39.	 Fahmy, D. et al. How AI can help in the diagnostic dilemma of pulmonary nodules. Cancers 14, 1840. https://​doi.​org/​10.​3390/​

cance​rs140​71840 (2022).
	40.	 Batouty, N. M. et al. State of the art: Lung cancer staging using updated imaging modalities. Bioengineering 9, 493. https://​doi.​org/​

10.​3390/​bioen​ginee​ring9​100493 (2022).
	41.	 Chieregato, M. et al. A hybrid machine learning/deep learning covid-19 severity predictive model from ct images and clinical data. 

Sci. Rep. 12, 1–15 (2022).
	42.	 Adhikari, N. C. D. Infection severity detection of covid19 from x-rays and ct scans using artificial intelligence. Int. J. Comput. 38, 

73–92 (2020).
	43.	 Balaha, H. M., El-Gendy, E. M. & Saafan, M. M. CovH2SD: A COVID-19 detection approach based on Harris Hawks Optimization 

and stacked deep learning. Expert Syst. Appl. 186, 115805. https://​doi.​org/​10.​1016/j.​eswa.​2021.​115805 (2021).
	44.	 Sharafeldeen, A. et al. Texture and shape analysis of diffusion-weighted imaging for thyroid nodules classification using machine 

learning. Med. Phys. 49, 988–999. https://​doi.​org/​10.​1002/​mp.​15399 (2021).
	45.	 Sandhu, H. S. et al. Automated diagnosis of diabetic retinopathy using clinical biomarkers, optical coherence tomography, and 

optical coherence tomography angiography. Am. J. Ophthalmol. 216, 201–206. https://​doi.​org/​10.​1016/j.​ajo.​2020.​01.​016 (2020).
	46.	 Sharafeldeen, A. et al. Diabetic retinopathy detection using 3d oct features. In 2023 IEEE 20th International Symposium on Bio-

medical Imaging (ISBI). https://​doi.​org/​10.​1109/​isbi5​3787.​2023.​10230​785 (IEEE, 2023).
	47.	 Elsharkawy, M. et al. The role of different retinal imaging modalities in predicting progression of diabetic retinopathy: A survey. 

Sensors 22, 3490. https://​doi.​org/​10.​3390/​s2209​3490 (2022).
	48.	 Saleh, G. A. et al. Impact of imaging biomarkers and AI on breast cancer management: A brief review. Cancers 15, 5216. https://​

doi.​org/​10.​3390/​cance​rs152​15216 (2023).
	49.	 Sharafeldeen, A. et al. Thyroid cancer diagnostic system using magnetic resonance imaging. In 2022 26th International Conference 

on Pattern Recognition (ICPR). https://​doi.​org/​10.​1109/​icpr5​6361.​2022.​99561​25 (IEEE, 2022).
	50.	 Elgafi, M. et al. Detection of diabetic retinopathy using extracted 3d features from oct images. Sensors 22, 7833. https://​doi.​org/​

10.​3390/​s2220​7833 (2022).
	51.	 Haggag, S. et al. A computer-aided diagnostic system for diabetic retinopathy based on local and global extracted features. Appl. 

Sci. 12, 8326. https://​doi.​org/​10.​3390/​app12​168326 (2022).
	52.	 Baghdadi, N. A, Malki, A., Balaha, H. M., Badawy, M., Elhosseini, M. A3C-TL-GTO: Alzheimer automatic accurate classification 

using transfer learning and artificial gorilla troops optimizer. Sensors 22(11), 4250. https://​doi.​org/​10.​3390/​s2211​4250 (2022).

https://doi.org/10.3390/s21165482
https://doi.org/10.1109/icip49359.2023.10222525
https://doi.org/10.1038/s41598-021-83735-7
https://doi.org/10.1038/s41598-021-91305-0
https://doi.org/10.1109/isbi52829.2022.9761508
https://doi.org/10.3390/app12115377
https://doi.org/10.3390/app12115377
https://doi.org/10.3390/diagnostics12020461
https://doi.org/10.1016/j.eswa.2019.05.028
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1109/CSCI46756.2018.00065
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1145/2990508
https://doi.org/10.1145/2990508
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.3390/cancers14071840
https://doi.org/10.3390/cancers14071840
https://doi.org/10.3390/bioengineering9100493
https://doi.org/10.3390/bioengineering9100493
https://doi.org/10.1016/j.eswa.2021.115805
https://doi.org/10.1002/mp.15399
https://doi.org/10.1016/j.ajo.2020.01.016
https://doi.org/10.1109/isbi53787.2023.10230785
https://doi.org/10.3390/s22093490
https://doi.org/10.3390/cancers15215216
https://doi.org/10.3390/cancers15215216
https://doi.org/10.1109/icpr56361.2022.9956125
https://doi.org/10.3390/s22207833
https://doi.org/10.3390/s22207833
https://doi.org/10.3390/app12168326
https://doi.org/10.3390/s22114250


13

Vol.:(0123456789)

Scientific Reports |          (2024) 14:851  | https://doi.org/10.1038/s41598-023-51053-9

www.nature.com/scientificreports/

	53.	 Balaha, H. M., Shaban, A. O., El-Gendy, E. M. Saafan, M. M. A multi-variate heart disease optimization and recognition framework 
abstract. Neural Comput. Applic. 34(18) 15907–15944. https://​doi.​org/​10.​1007/​s00521-​022-​07241-1 (2022).

	54.	 Yousif, N. R., Balaha, H. M., Haikal, A. Y., El-Gendy, E. M. A generic optimization and learning framework for Parkinson disease 
via speech and handwritten records abstract. J. Ambient Intell. Humaniz. Comput. 14(8), 10673–10693. https://​doi.​org/​10.​1007/​
s12652-​022-​04342-6 (2023).

Acknowledgements
Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R40), 
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Dr. Ghazal acknowledges the support 
from Abu Dhabi University’s Office of Research and Sponsored Programs (Grant #19300792).

Author contributions
I.S.F., A.S., M.G., N.S.A., A.M., J.C., E.V.B., H.Z., T.T., W.A., A.E.T., S.E., and A.E.-B.: conceptualization, develop-
ing the proposed methodology for the analysis, formal analysis, and review and edit the manuscript. I.S.F., and 
A.S.: software, validation and visualization, and prepared initial draft. A.E.-B.: project administration. M.G., 
N.S.A., W.A., A.E.T., S.E., and A.E.-B.: project directors.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.E.-B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1007/s00521-022-07241-1
https://doi.org/10.1007/s12652-022-04342-6
https://doi.org/10.1007/s12652-022-04342-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An AI-based novel system for predicting respiratory support in COVID-19 patients through CT imaging analysis
	Related work
	Method
	Lung segmentation
	COVID-lesion segmentation
	Learning the appearance of COVID-19 lesions
	Neural network based grading system
	Performance evaluation metrics

	Experimental results
	Discussion
	Conclusions
	References
	Acknowledgements


