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Background. Ganoderma lucidum has certain components with known pharmacological effects, including strengthening immunity
and anti-inflammatory activity. G. lucidum seeds inherit all its biological characteristics. G. lucidum spore polysaccharide (GLSP) is
the main active ingredient to enhance these effects. However, its specific biological mechanisms are not exact. Our research is aimed
at revealing the specific biological mechanism of GLSP to enhance immunity and inhibit the growth of H22 hepatocellular
carcinoma cells. Methods. We extracted primary macrophages (Mø) from BALB/c mice and treated them with GLSP
(800 μg/mL, 400μg/mL, and 200μg/mL) to observe its effects on macrophage polarization and cytokine secretion. We used
GLSP and GLSP-intervened macrophage supernatant to treat H22 tumor cells and observed their effects using MTT and flow
cytometry. Moreover, real-time fluorescent quantitative PCR and western blotting were used to observe the effect of GLSP-
intervened macrophage supernatant on the PI3K/AKT and mitochondrial apoptosis pathways. Results. In this study, GLSP
promoted the polarization of primary macrophages to M1 type and the upregulation of some cytokines such as TNF-α, IL-1β,
IL-6, and TGF-β1. The MTT assay revealed that GLSP+Mø at 400 μg/mL and 800μg/mL significantly inhibited H22 cell
proliferation in a dose-dependent manner. Flow cytometry analysis revealed that GLSP+Mø induced apoptosis and cell cycle
arrest at the G2/M phase, associated with the expression of critical genes and proteins (PI3K, p-AKT, BCL-2, BAX, and caspase-
9) that regulate the PI3K/AKT pathway and apoptosis. GLSP reshapes the tumor microenvironment by activating macrophages,
promotes the polarization of primary macrophages to M1 type, and promotes the secretion of various inflammatory factors and
cytokines. Conclusion. Therefore, as a natural nutrient, GLSP is a potential agent in hepatocellular carcinoma cell treatment and
induction of apoptosis.

1. Introduction

Hepatocellular carcinoma (HCC) is the most life-threatening
disease worldwide, having high mortality and poor prognosis
and an incidence of more than one million cases per year [1].
At present, the treatments for liver cancer are surgery, radio-
therapy, and chemotherapy [2]. Its occurrence and develop-
ment are closely related to various molecular mechanisms
in the cell. Recently, an increasing number of chemical drugs

and new targeted drugs have been developed. However, some
patients are still resistant to drugs. Therefore, the develop-
ment of new natural medicines is expected to become
another strategy for treating liver cancer. Active extracts of
various natural medicinal plants have been tested for cancer
treatment and have shown good antitumor efficacy [3].

Nowadays, researches have focused on the immuno-
modulation and antitumor activity of natural products,
and this has become the focus of emerging research [4].
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Naturally sourced antitumor drugs have been shown to
exhibit therapeutic effects and few adverse reactions in
tumor therapy. They can repair the body’s immune system
and even cure tumors [5]. Ganoderma lucidum, which is
also called “Lingzhi” has been used medicinally for more
than 2000 years [6] and has been regarded as an effective
medicinal compound, reinforcing healthy qi to restore
normal function and prolong life and has almost no toxic
side effects [7]. G. lucidum spores are microscopic and are
ejected from the cap during growth and maturation. These
germ cells have all of G. lucidum genetically active sub-
stances [8]. Modern pharmacological studies have shown
that G. lucidum spores have antitumor effects, increase
immune regulation, lower blood sugar and lipid, increase
anti-inflammatory and antihypoxia ability, and scavenge
free radicals [9].

Macrophages (Mø) play an essential role in humoral and
cellular immunity and in maintaining tissue homeostasis
[10]. Related studies have found that macrophages are
incredibly plastic and can be activated into a series of contin-
uously adjustable functional states under the stimulation of
different environments or drugs [11]. Classically activated
(M1 type) macrophages and alternatively activated (M2 type)
macrophages are the two extremes of this state. The process
by which naive (Mφ type) macrophages are stimulated by
exogenous factors in specific tissues to differentiate into M1
or M2 macrophages is called macrophage polarization [12].
The dynamic balance between M1 and M2 is vital for main-
taining homeostasis. Once the balance is broken, the human
body faces a variety of diseases that can sometimes be treated
with drugs to regulate these macrophages. The transforma-
tion of M1 and M2 macrophages is a dynamic and reversible
process. Directional polarization may provide new methods
for cancer treatment [13, 14].

Tumor-associated macrophages (TAMs) are similar to
the function of immune cells in the tumor microenvironment
and mainly infiltrate the tumor matrix to mediate inflamma-

tion [15]. The secretion of cytokines, chemokines, growth
factors, and proteases and the regulation of intracellular sig-
naling pathways play a vital role in modulating the function
of TAMs and tumor cells. The tumor microenvironment
combines chronic inflammation, low oxygen levels, nutri-
tional deficiencies, and acidosis, creating extremely complex
dynamic systems [16] that regulate tumor growth, prolifera-
tion, metastasis, and immune escape. Therefore, we think
that the treatment of tumors by reducing the stress state of
the tumor’s internal environment and then feeding it back
to the tumor cells may promote tumor cell apoptosis or
autophagy [17, 18]. Supernatant transfer of various cell
cocultures in vitro has been used to mimic the tumor micro-
environment [19].

By comparing the content and composition of GLSP and
G. lucidum polysaccharides (GLP), we found that the overall
structure is similar, but there are still many differences. At
present, more than 200 kinds of substances have been sepa-
rated, of which the largest is β-glucan and a few are α-glucan
[20]. Although there have been many studies on GLP,
because the shell of G. lucidum spores is hard and difficult
to remove completely, we apply a brand-new removal wall
technology that makes it possible to extract GLSP with higher
purity. GLSP has better physical and chemical properties
than GLP, and its application prospects are broader [21,
22]. Besides, GLSP plays a vital role in nourishing and pro-
tecting the liver, resisting radiation, resisting gene mutations,
and resisting inflammation. Such effects have not been con-
firmed in GLP-related studies.

In our previous experiments, we found that the G. luci-
dum spore water extract had no inhibitory effect on H22 liver
cancer cells and no cytotoxicity. However, when added to
macrophages, it had a significant inhibitory effect on H22
liver tumor cells. To clarify the antitumor mechanism of G.
lucidum spores, we studied the antitumor activity of G. luci-
dum spore polysaccharides (GLSP). We speculate that it is
one of the targets of liver cancer, as shown in Figure 1.
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Figure 1: GLSP enhances immunity and induces tumor cell apoptosis by activating macrophages. GLSP: Ganoderma lucidum spore
polysaccharide.
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2. Materials and Methods

2.1. Cells and Animals. Mouse H22 cells were obtained from
Jiangsu KeyGEN BioTECH Co., Ltd. The culture conditions
were 90% RMPI1640 medium + 10% FBS, cultured in an
incubator at 37°C, 5% CO2, and saturated humidity. Sixteen
BALB/c mice (male; age range, 4-6 weeks), weighing 20:0 ±
2:0 g, were obtained from the Vital River Laboratory Animal
Technology Limited Company (Beijing, China). The labora-
tory condition is at room temperature (25 ± 2°C) and humid-
ity (65 ± 5%). The ethics committee of Beijing University of
Chinese Medicine and the China Academy of Chinese Med-
icine Sciences approved all the experiments (No. 2016-0012).

2.2. Primary Macrophage Extraction. Mice about six weeks
old were shaved on a clean bench for disinfection. The ani-
mals were euthanized by cervical dislocation, and they were
then immersed in 75% alcohol for 3-5 s by the tail. The mice
were then fixed on the dissection table. After scrubbing the
peritoneal wall with 75% alcohol, 1mL precooled PBS was
injected into the abdominal cavity with a 5mL syringe, and
the abdomen was gently massaged for 2-3min. Under aseptic
conditions, the abdominal wall was opened, the peritoneum
was exposed, and the abdominal wall was scrubbed with
75% alcohol. The peritoneal fluid was aspirated with a
syringe and centrifuged at 4°C at 1000 rpm/min for 10min.
Finally, 10% calf serum RPMI-1640 solution was used to sus-
pended cells. Peritoneal macrophages were collected, viable
cells > 95% with trypan blue staining were collected, the cell
concentration was adjusted to 5:0 × 105 cells/mL with
RPMI-1640 medium, and they were inoculated into culture
flasks and placed in a 5% CO2, 37

°C incubator. After 4 hours
of culture, the nonadherent cells were washed with PBS to
obtain purified peritoneal macrophages.

2.3. Preparation of Ganoderma lucidum Spore Powder. A
total of 80 g of the wall-removed G. lucidum spore powder
was extracted with 95% ethanol in a 5000mL round flask.
After removing ethanol, the residue was added 2400mL of

water (30 times the amount of water) and refluxed for 3 h.
The solution was then filtered and concentrated to 80mL.
Then, 425mL of 95% ethanol diluted to 80% ethanol was
added while stirring, let stand for 12 h at 0-4°C, and filtered.
The precipitate was taken and dissolved in water and chloro-
form with n-butanol (5 : 1) mixed solution for extraction
according to the Sevag method. Then, the solution was
shaken for 15min, the organic layer was removed, and the
extraction was repeated four times, concentrated, and dried
to obtain GLSP. The GLSP content was 92.7% according to
the test method of the 2015 edition of the “Pharmaceuticals
of the People’s Republic of China.” HPLC chromatograms
of standard monosaccharide solution and GLSP hydrolysate
are shown in Figure 2.

2.4. Modeling and Drug Delivery. H22 cells were treated for
24 h under different conditions: only DMEM (control), GLSP
(800μg/mL, 400μg/mL, and 200μg/mL), macrophage super-
natant, and GLSP (800μg/mL, 400μg/mL, and 200μg/mL)
+macrophage supernatant combination. The concentrations
of GLSP (800μg/mL, 400μg/mL, and 200μg/mL) used in
this study resulted in no inhibitory activity on macrophage
growth. Culture supernatants were collected to measure
levels of TNF-α, TGF-β1, IL-6, and IL-1β. Each group of cells
was subsequently harvested to determine intracellular reac-
tive oxygen species (ROS) production for western blot
(WB) analyses and other experiments.

2.5. MTT Assay. H22 cells were digested, counted, and
prepared into a cell suspension at a concentration of 5 ×
104 cells/mL. The plate was placed at 37°C, 5% CO2 for
24 h in a box. The drug was diluted with complete medium
to the required concentration (200μg/mL, 400μg/mL, and
800μg/mL). Then, 100μL of the corresponding drug-
containing medium and 100μL of macrophage supernatant
were added to each well. After 24 h of incubation in the
box, 20μL MTT (5mg/mL) (Amresco, Solon, Ohio, USA)
was added and continued to incubate for 4 h in the incubator.
150μL DMSO was added to dissolve the MTT and shaken
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Figure 2: HPLC chromatograms of standard monosaccharide solution and GLSP hydrolysate.
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gently for 10mins. Absorbance was then measured at λ = 490
nm; the optical density (O.D.) was determined to calculate
the inhibition rate. Inhibitory rate ð%Þ = ½ðC − TÞ/C� × 100,
where C is the control group and T is that of the treat-
ment group.

2.6. Cell Cycle Analysis. H22 cells were treated with macro-
phages and different concentrations of GLSP (200μg/mL,
400μg/mL, and 800μg/mL) for 24 h, collected by digestion,
and made into cell suspensions. The cells were washed twice
with PBS (centrifuged at 1000 rpm, 5min). The prepared
single-cell suspension was stored at 4°C and washed with
PBS before staining the fixing solution. Next, 100μL RNaseA
was added to a 37°C water bath for 30min and added 400μL
propidium iodide (PI) staining and mixed well. Then, it was
incubated at 4°C for 30min. Flow cytometry analysis (Bec-
ton-Dickinson FACSCalibur; Becton-Dickinson, USA)
detected the fluorescence of the PI-DNA complex and at
488nm red fluorescence.

2.7. Annexin V-FITC/PI Double Staining Assay. H22 cells
were treated with macrophages and GLSP for 24 h, and the
cells were collected. Cells were washed twice with PBS. Then,
500μL of Binding Buffer was added to suspend the cells, 5μL
of Annexin V-FITC was added and mixed well, and 5μL of
PI was added and mixed with 5μL propidium iodide (PI)
using an Annexin V-FITC/PI staining kit (KeyGEN Bio-
TECH), Cat number: KGA105-KGA108. This was incubated
for 15min in the dark. Flow cytometry analysis was used to
detect cell apoptosis.

2.8. Intracellular Reactive Oxygen Species (ROS) Analysis.
Cellular ROS were detected using a ROS Assay Kit (KeyGEN
BioTECH Co., Ltd., Nanjing, China), Cat number: KGT010-
1. DCFH-DA was diluted with serum-free culture medium at
1 : 1000 to a final concentration of 10μM. After the cells were
collected, they were suspended in the diluted DCFH-DA and
incubated at 37°C for 20min. The cells were mixed by inver-
sion every 3-5min. Cells were washed with serum-free cell
culture medium three times to remove the DCFH-DA that
had not entered the cells. ROS were analyzed using flow
cytometry. Data processing was performed using Cell Quest.

2.9. Mitochondrial Membrane Potential (MMP) Analysis.
Mitochondrial membrane potential (MMP) was detected
using a JC-1 Apoptosis Detection Kit (KeyGEN BioTECH
Co., Ltd., Nanjing, China), Cat number: KGA601-KGA604.
H22 cells were treated with macrophages and GLSP for
24 h, before cell collection. 100μL 10x incubation buffer
was diluted with 900μL sterile deionized water to make 1x
incubation buffer. The incubation buffer was mixed and pre-
heated to 37°C. 1μL JC-1 was added to 500μL 1x incubation
buffer, vortexed, and mixed to prepare JC-1 working solu-
tion. A total of 500μL JC-1 working solution was used to sus-
pend the cells uniformly and incubated for 15-20min in an
incubator at 37°C and 5% CO2. Washing was made twice
with 1x incubation buffer, and 500μL of 1x incubation buffer
was used to resuspend the cells.

2.10. Macrophage Cell Phenotype Detection. Macrophages
were inoculated during the logarithmic growth phase into a
six-well plate. After the drug was incubated for 24h, the cells
were collected and washed twice with PBS to collect 5 × 105
cells. Then, the supernatant was removed by centrifugation,
and 90μL PBS was added to resuspend the cells. The appro-
priate amounts of antibodies CD86 (BioLegend 105007) and
CD206 (BioLegend 141703) were added. The cells were then
incubated for 30min at 37°C, 400μL PBS was added, and the
cell phenotype was detected by flow cytometry.

2.11. Enzyme-Linked Immunosorbent Assay (ELISA)
Analysis. Cytokine levels were determined using a commer-
cial ELISA kit (Proteintech, Rosemont, IL, USA). First, all
samples, reagents, and working standards were prepared as
instructed by the manufacturer. The required number of
microplate strips was removed, and the microwells were
placed in the strip holder. Then, 100μL of each standard
and sample was added to the appropriate wells. A cover seal
was pressed firmly onto the top of the microwells. The plate
was incubated for 90min at 37°C in a humid environment.
Then, the sealing mold was removed, 100μL was added to
each well, and antibody diluent was used to dilute at 1 : 30,
except for blanks. And the plates were incubated at 37°C for
1 h. 100μL of TMB was added to each well, shaken gently,
and color developed at 37°C for 15 minutes. 50μL stop solu-
tion was added to each hole. Sample absorbance was read at
450 nm using a Multiskan™ GO (Thermo Fisher Scientific,
Waltham, MA, USA) detector system.

2.12. Quantitative Real-Time PCR (RT-qPCR).We continued
to explore changes in PI3K, AKT, BAX, BCL-2, and caspase-
9 mRNAs. Total RNA from each sample was extracted using
a TRIzol reagent (Thermo Fisher Scientific, Waltham, MA,
USA). Then, the determination of RNA concentration and
purity and synthesis of cDNA first strand was carried out
with 20μL system, using a RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific). The sequences for
primers listed in Table 1 were designed by Primer6 and then
synthesized by a biotechnology company (Sangon Biotech
Co., Ltd., Shanghai, China). The SYBR® Green PCR Master
Mix (Thermo Fisher Scientific) was used to amplify cDNA
in the Multicolor Real-time PCR Detection System (Bio-

Table 1: Primer sequences used in the RT-qPCR analysis.

Gene Sequences (5′-3′)

PI3K
Forward AGGGAAGCGAGACGGCACTTT

Reverse CCACTACGGAGCAGGCATAGCA

AKT
Forward CCAAGCACCGTGTGACCATGAA

Reverse TGGCGACGATGACCTCCTTCTT

BAX
Forward CCAGGATGCGTCCACCAAGAAG

Reverse CCGTGTCCACGTCAGCAATCAT

BCL-2
Forward TGCCACCTGTGGTCCATCTGA

Reverse CTCTGCGAAGTCACGACGGTAG

Caspase-9
Forward GCCACTGCCTCATCATCAACAA

Reverse AGCGGAATCGGTGCTCAAGTT
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Rad Laboratories Inc.). The PCR parameters were as follows:
95°C for 5min, followed by 40 cycles of 95°C for 15 s and
72°C for 40 s, followed by 60°C for 1min and 95°C for 15 s.
The 2−ΔΔCt method was used to calculate the results.

2.13. Western Blot Analysis. H22 cells treated with different
intervention reagents, including 800μg/mL GLSP, macro-
phage culture supernatant, and macrophage culture superna-
tant containing 800μg/mL GLSP, were added to the plates
and cultured continuously for 24h. Then, trypsin without
EDTA was used for digestion, followed by centrifugation
and RIPA lysis solution (Biomiga, Santiago, CA, USA) addi-
tion. In line with the molecular weight of the target protein
BAX (21 kDa), BCL-2 (26 kDa), CASP-9 (46 kDa), p-AKT
(60 kDa), PI3K (85 kDa), and AKT (56 kDa), proteins were
transferred onto polypropylene fluoride (PVDF) mem-
branes. Nonfat milk (5%) was used to dilute the antibody.
The antibodies used were anti-BAX (50599-2-Ig, mouse
polyclonal, diluted 1 : 4,000), anti-CASP-9 (10380-1-AP, rab-
bit polyclonal, diluted 1 : 1000), anti-PI3K (60225-1-Ig,
mouse polyclonal, diluted 1 : 5000), anti-AKT (60203-2-Ig,
mouse polyclonal, diluted 1 : 2000), and anti-GAPDH
(60004-1-lg, mouse monoclonal, diluted 1 : 5,000). All of the
above antibodies were from the Proteintech Group: anti-
BCL-2 (ab182858, diluted 1 : 2,000; Abcam Group, Cam-
bridge, MA, USA) and anti-p-AKT (CST 4060s, diluted
1 : 2,000; CST, MA, USA). The Tanon-5200 system (Tanon,
Shanghai, China) was used for exposure. The intensity of
the target protein band was read using Tanon Gis software
(Tanon).

2.14. Statistical Analysis. Dates are presented as the mean ±
standard deviation ðSDÞ. The data were analyzed using
SPSS 22.0 and one-way analysis of variance (ANOVA),
or a nonparametric test was used for data processing
based on the normality test. And a least significant differ-

ence (LSD) method was adopted for comparisons between
groups. P value < 0.05 was considered a statistically signif-
icant difference.

3. Results

3.1. Cytotoxic Effect of GLSP andMacrophage Supernatant on
H22 Cells. The activity of GLSP-treated H22 cells was
detected using an MTT assay. Results showed that the prolif-
eration of H22 cells was not affected by treatment with GLSP
(Figure 3(a)). However, H22 cell proliferation was notably
inhibited by macrophage supernatant + 400μg/mL GLSP or
+800μg/mL GLSP (P < 0:01) (Figure 3(b)). The results also
showed a dose-dependent increase in the inhibition rate of
GLSP ð400 μg/mL and 800 μg/mLÞ +Mø versus the control
group (P < 0:01) (Figure 3(c)).

3.2. GLSP-Activated Macrophages Induce Cell Cycle Arrest at
the G2/M Phase in H22 Cells.We examined the cell cycle dis-
tribution after treatment with GLSP and macrophage+GLSP.
The percentage of H22 cells treated with macrophages+GLSP
(800μg/mL) in the G2/M phase was significantly higher than
that in the control group (Figures 4(a) and 4(b)) (P < 0:01),
whereas treatment with GLSP alone did not induce the
same effect.

3.3. GLSP-Activated Macrophages Promote the Apoptosis of
H22 Cells. Results showed that the percentage of apoptotic
H22 cells was significantly increased upon macrophage
+GLSP treatment (Figures 5(a) and 5(b)) (P < 0:01). These
results indicated that GLSP-activated macrophages effec-
tively induced H22 cell apoptosis.

We also examined GLSP-induced changes in MMP.
GLSP-activated macrophage treatment induced the conver-
sion of red fluorescence to green fluorescence, indicating a
decrease in MMP (Figure 5(c)) (P < 0:01). As ROS generation
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Figure 3: Inhibitory effects of GLSP and GLSP+Mø on the proliferation of H22 cells. (a) MTT assay reveals no effect on the viability of H22
cells treated with GLSP for 24 h; (b) MTT assay reveals a decrease in the viability of H22 cells treated with different concentrations of GLSP
+Mø for 24 h, ∗∗P < 0:01 vs. control group (24 h); (c) the inhibition rate increases in H22 cells treated with different concentrations of GLSP
+Mø. ∗∗P < 0:01 vs. H22 cell control group. GLSP: Ganoderma lucidum spore polysaccharide; OD: optical density.
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is closely related to mitochondrial apoptosis, ROS was
detected to test whether oxidative stress had an effect on
GLSP-activated macrophage-induced apoptosis in H22 cells.
As shown in Figures 5(d) and 5(e), GLSP-activated macro-
phages led to a significant increase in intracellular ROS levels
compared to that of the control group (P < 0:01). Therefore,
the elevation of ROS production may be a relevant cause of
GLSP-activated macrophage-induced apoptosis.

3.4. GLSP Activate Macrophage Polarization. Macrophages
are dynamic cells that react to different stimuli by adjusting

their functional state. Classically activated macrophages,
M1 type, and alternatively activated M2 type are the two
extremes of this state. We investigated the polarizing effect
of GLSP treatment on macrophages. CD86 analysis revealed
that H22 tumor cells had no effect on macrophage polariza-
tion, but GLSP treatment could activate macrophages, which
polarized towards M1 type (P < 0:01) (Figures 6(a) and 6(b)).
CD206 analysis revealed that H22 tumor cells and GLSP
independently could increase M2 type macrophages (P <
0:01), but H22 GLSP+macrophages reduced the amount of
M2 type (Figures 6(a) and 6(c)). As shown in Figure 5(d),
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Figure 4: GLSP induces H22 cell arrest at the G2/M phase. (a) Cell cycle distribution of H22 cells treated with GLSP and macrophage
supernatant. (b) Percentage in different periods of the cell cycle after GLSP treatment. ∗∗P < 0:01 vs. H22 cell control group. GLSP:
Ganoderma lucidum spore polysaccharide.
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Figure 5: GLSP-activated macrophages induce H22 cell apoptosis. (a) Flow cytometric apoptosis in each group. (b) Percentages of apoptotic
cells in each group. (c) FACS assessed MMP based on fluorescent mitochondria. (d) Analyses of ROS levels in H22 cells upon different
concentrations of GLSP treatment. (e) Production of intracellular ROS in H22 detected by flow cytometry. Mean Cell Quest Pro analyzed
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H22+macrophages+GLSP improved the ratio of M1/M2.
Therefore, GLSP increases the expression of M1 type macro-
phages and decreases the expression of M2 type macro-
phages. The cocultivation group improved the ratio of
M1/M2, which affects the polarization of macrophages.

3.5. Effect of GLSP on Cytokine Production. As shown in
Figure 7, the TNF-α (Figure 7(a)), IL-1β (Figure 7(b)), IL-6
(Figure 7(c)), and TGF-β1 (Figure 7(d)) levels were signifi-
cantly higher in the macrophage+GLSP group than in the
control group (P < 0:01) and in the H22+macrophage+GLSP
group than in the H22+macrophage group (P < 0:01).

3.6. GLSP Activate Macrophages Affecting the PI3K/AKT and
Mitochondria-Mediated Apoptotic Signaling Pathways. In the
above experiments, GLSP activate macrophages effectively,
thereby inducing apoptosis and other changes in H22 cells.
Thus, we used RT-qPCR and western blot to explore the
differences in apoptotic cell molecules and the PI3K/AKT
signaling pathway. At the genetic level, the levels of PI3K
were significantly decreased in GLSP+macrophage-treated
H22 cells compared with the control group (P < 0:01)

(Figure 8(a)). In Figure 8(b), the levels of AKT were not
affected in GLSP+macrophage-treated H22 cells versus the
control group. We measured the levels of BAX, BCL-2, and
CASP-9. The levels of proapoptotic BAX were markedly
increased, and antiapoptotic BCL-2 was significantly
decreased in GLSP+macrophage-treated H22 cells versus
the control group (P < 0:01) (Figures 8(c) and 8(d)). Levels
of CASP-9 were increased in GLSP+macrophage-treated
H22 cells versus control cells (P < 0:01) (Figure 8(e)).

We continued to explore changes at the protein level. In
Figures 8(a) and 8(c), the levels of PI3K were significantly
decreased in GLSP+macrophage-treated H22 cells versus
the control group (P < 0:01). Similarly, the levels of p-AKT
were significantly decreased in GLSP+macrophage-treated
H22 cells (P < 0:01) (Figures 9(a) and 9(d)). In Figure 8(e),
the levels of AKT were not affected in GLSP+macro-
phage-treated H22 cells. We also measured the protein
levels of BAX, BCL-2, and CASP-9 and found that the
levels of proapoptotic BAX were markedly increased
(P < 0:01) (Figures 9(b) and 9(f)), and the level of antiapop-
totic BCL-2 was significantly decreased in GLSP+macro-
phage-treated H22 cells versus control groups (P < 0:01)
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Figure 6: Effect of GLSP on the expression of M1 and M2 macrophage markers: (a) triple staining of flow cytometry analysis of macrophage
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(Figures 9(b) and 9(g)). Levels of CASP-9 were increased in
GLSP+macrophage-treated H22 cells versus control cells
(P < 0:01) (Figure 9(h)). These results indicated that GLSP
+macrophages could simultaneously activate genes and pro-
teins in the mitochondria-mediated apoptotic signaling
pathway.

4. Discussion

The primary characteristics of tumors are malignant prolifer-
ation and imbalance between cell proliferation and apoptosis
[23]. Inhibiting proliferation and inducing apoptosis are
excellent strategies for tumor treatment [24]. Previous
research has shown that GLSP and G. lucidum triterpenes
in G. lucidum spore powder can effectively inhibit tumors
[25, 26]. The antitumor mechanism of G. lucidum spore
powder includes inhibition of tumor cell proliferation, induc-
tion of tumor cell apoptosis, and termination of the tumor

cell cycle. Early experiments in our group had found that
the water extract of G. lucidum spores showed no appar-
ent inhibitory effect on tumor cells and no cytotoxicity
change. However, after coculture with immune cells such
as macrophages, it showed inhibition of tumor cell charac-
teristics. In order to determine the mechanism of action of
the antitumor effect of G. lucidum spores, we separately
studied GLSP, G. lucidum spore triterpene, and G. lucidum
spore oil. Finally, it was discovered that GLSP is the mate-
rial basis for activating macrophages to enhance immunity
and antitumor activity.

GLSP can activate the immune response. It improved
the immune state to achieve the balance of the body’s
immune state and inhibit the development of tumors
[27]. MTT results showed that GLSP alone did not affect
the proliferation of H22 tumor cells, showing no cytotoxicity.
Nevertheless, it inhibited H22 tumor cells by activating mac-
rophages. In our cell cycle experiments, we found that the
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Figure 7: Increasing of proinflammatory cytokine expression by GLSP in macrophages. (a) TNF-α levels; (b) IL-1β levels; (c) IL-6 levels; (d)
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macrophage supernatant containing GLSP can block tumor
cells in the G2/M stage, whereas the macrophage supernatant
alone had no blocking effect on H22 tumor cells. Cell cycle
arrest at the G2/M phase shows that there is damage in the
intracellular DNA, which is challenging to repair.

The mitochondrial apoptosis pathway is an integral part
of the endogenous cell apoptosis regulation [28]. The
endogenous pathway is activated by cellular stress, DNA
damage, developmental signals, and loss of survival factors
[29]. BCL-2 family proteins are composed of proapoptotic
factors (BAX, Bad, Bak, and Noxa) and antiapoptotic fac-
tors (BCL-2, BCL-xL, BCL-w, and Mel-1) [30]. The BCL-2
family members are located on the mitochondria and can
control its permeability, the release of cytochrome C, the
activation of “priming” CASP-9, and the subsequent activa-
tion of “executive” CASP-3. Endogenous apoptosis can be
inhibited through prosurvival signaling pathways such as
PI3K/AKT and MAPK [31, 32]. The PI3K/AKT pathway
is an intracellular signaling pathway with phos-
phatidylinositol kinase and serine/threonine kinase activity.
It is involved in regulating cell proliferation, apoptosis, sur-

vival, growth, and other cellular physiological functions, and
these processes are known to be affected in tumors [33].
The regulation of PI3K/AKT activation is one of the hot
topics in tumor pharmacology. As downstream molecules
of PI3K/AKT, BCL-2 family proteins play a vital role in reg-
ulating apoptosis, mainly through endogenous pathways.
Many survival factors can activate the PI3K pathway, lead-
ing to the activation of AKT, and AKT plays an essential
role in cell survival signal transduction. PTEN has a nega-
tive regulatory effect on the PI3K/AKT pathway [34]. Acti-
vated AKT can phosphorylate and inhibit Bad, BAX, CASP-
9, GSK-3, and FOXO1 [32]. Western blot and RT-qPCR
results showed that GLSP downregulated the expression of
PI3K and p-AKT genes and proteins in H22 cells. Our
results showed a reduced phosphorylation level of AKT by
inhibition of the PI3K/AKT signaling pathway, which
simultaneously downregulates the expression of BCL-2 in
H22 cells at mRNA and posttranslational levels and upregu-
lates the expression of BAX, indicating that GLSP can
inhibit the PI3K/AKT signaling pathway and induce apo-
ptosis in liver cancer H22 cells (Figure 10).
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Figure 8: Effect of GLSP andMø on the mRNA levels of PI3K/AKT and mitochondria-mediated apoptotic signaling pathway genes. H22 was
treated with GLSP or Mø for 24 h, and then, the (a) mRNA levels of PI3K, (b) AKT, (c) BAX, (d) BCL-2, and (e) CASP-9 were detected by
qPCR. The histogram bars represent three independent experiments, and the values are the mean ± SD. ∗∗P value < 0.01 versus the control
group. GLSP: Ganoderma lucidum spore polysaccharide.
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The monocyte-macrophage system is an essential part of
innate immunity [35, 36]. During inflammation or infection,
monocytes in the blood are recruited into the tissue and dif-
ferentiate into mature macrophages, a group of highly het-
erogeneous cells. Depending on the microenvironment,
macrophages can polarize into different functional pheno-
types [37]. According to their different activation states, they

are mainly divided into classically activated macrophages
(M1 type) and alternatively activated macrophages (M2 type)
[38]. The polarization of phagocytic cells is affected by vari-
ous cytokines in the microenvironment [39]. When the epi-
thelial barrier is destroyed and pathogenic microorganisms
invade, a large number of circulating monocytes are recruited
under the action of chemokines and differentiate into
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Figure 9: Effect of GLSP and Mø on the expression of PI3K/AKT and mitochondria-mediated apoptotic signaling pathway proteins. H22
cells were treated with GLSP or Mø for 24 h, and then, the protein levels of PI3K, AKT, p-AKT, BAX, BCL-2, and CASP-9 were detected
by WB. (a) Protein expression of PI3K/AKT signal pathway; (b) protein expression of BAX, BCL-2, and CASP-9; (c) relative
PI3K/GAPDH protein; (d) relative p-AKT/AKT protein; (e) relative AKT/GAPDH protein; (f) relative BAX/GAPDH protein; (g) relative
BCL-2/GAPDH protein; (h) relative caspase-9/GAPDH protein, and values are the mean ± SD. ∗∗P value < 0.01 vs. control group. GLSP:
Ganoderma lucidum spore polysaccharide.
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proinflammatory cells, namely, M1macrophages, induced by
local cytokines [40]. M1 macrophages have potent cytotoxic-
ity; are highly sensitive to LPS; secrete many inflammatory
factors and reactive oxygen products, such as IL-6, IL23,
and TNF-α; promote inflammation cascades and tissue dam-
age; activate Th1/Th17 adaptive immunity; and promote the
elimination of pathogenic microorganisms. M2 type macro-
phages also increase during the disease, inhibit the inflamma-
tory response, avoid excessive damage to the tissue, and, at
the same time, remove pathogenic bacteria and cell debris
in the process of inflammation subsiding. They also promote
tissue repair and immune balance. The immune balance of
the intestine depends on the two types of macrophages work-
ing together and coordinating with each other. Therefore,
regulating the balance between M1 and M2 macrophages is
essential for the occurrence and development of cancer [41].

TAMs are derived from monocytes in the blood system
and enter tumor tissues under the action of chemokines
[42]. The colony-stimulating factor secreted by tumor cells
can prolong the survival time of TAMs. When TAMs are
moderately activated in the tumor environment (M1 type),
they exert antitumor immune function, which can kill tumor
cells and destroy vascular endothelium, thereby inhibiting
tumor development. However, if this stimulus is not sup-
pressed in a short time, TAMs will be polarized into M2 type
under the action of various cytokines secreted by tumor cells,
which is why most TAMs in tumor tissues are M2 type [38].
In contrast to the M1 type, M2 TAMs can secrete growth fac-
tors, angiogenesis factors, and proteases, thereby stimulating
tumor cell proliferation, promoting angiogenesis and tumor
cell invasion and migration, and escaping the surveillance
of antitumor immunity [43]. Therefore, the induction of sec-
ondary polarization of TAMs in tumor tissues and the trans-

formation of M2 TAMs to M1 have become an essential
target for tumor therapy in recent years [44]. Previous
research has found that glycopeptide derived from G. luci-
dum (Gl-PS) could promote polarization of M1 macrophage
vs. M2 macrophages [45]. In our macrophage typing experi-
ments, GLSP can increase the number of CD86+ cells, which
is an M1 macrophage marker. When H22 tumor cells were
cocultured with macrophages, we found that GLSP decreased
the number of CD206+ macrophages, an M2 type marker.
Overall, when H22 tumor cells are cocultured with macro-
phages in the TME, GLSP increases the ratio of M1/M2 mac-
rophages. Therefore, we can speculate that GLSP has a
regulatory effect on M1 and M2 macrophages in the tumor
microenvironment.

Currently, chemotherapy is one of the most common
cancer treatments, but it has noticeable side effects [46]. In
contrast, “nutritional drugs” are known for their low toxicity.
“Nutrition” is a concept that has attracted much attention to
prevent and treat diseases [47]. Traditional Chinese medicine
(TCM) is a rich source of nutritional medicine that has been
used for thousands of years [48]. It has an excellent effect
on treating many chronic diseases. Additionally, TCM can
also be used as part of a daily diet. TCM is a safe and effec-
tive way to prevent and treat diseases. GLSP is one of the
foremost effective ingredients in TCM as it has a wide range
of therapeutic effects and relatively low toxicity. It is a
promising nutritional drug and has attracted wide attention
in biomedicine in recent years [49, 50]. The above studies
revealed that GLSP activates macrophages to induce apo-
ptosis of H22 hepatocellular carcinoma cell in vitro and
the biological mechanism. Next, we will continue to verify
the biological activity of GLSP to enhance immunity and
antitumor in vivo.
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5. Conclusions

In summary, GLSP reshapes the tumor microenvironment
by activating macrophages, regulating the polarization of
macrophages, and promoting the secretion of various inflam-
matory factors and cytokines. Moreover, we found that GLSP
can block H22 tumor cells in the G2/M phase by activating
macrophages and can activate PI3K/AKT signaling pathways
to affect the mitochondrial apoptotic pathway and promote
tumor cell apoptosis. Therefore, as a natural nutrient, GLSP
can alter macrophage polarity and has potential to reshape
the tumor microenvironment activity.
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