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A long testing period is usually required for the life testing of high-reliability products or materials. It is possible to shorten the
testing process by using ALTs (accelerated life tests). Due to the fact that ALTs test products in harsher settings than are typical
use conditions, the life expectancy of the objects they evaluate is reduced. Censored data in which the specific failure timings of
all units assigned to test are not known, or all units assigned to test have not failed, may arise in ALTSs for a variety of reasons,
including operational failure, device malfunction, expense, and time restrictions. In this paper, we have considered the step
stress partially accelerated life test (SSPALT) under two different censoring schemes, namely the type-I progressive hybrid
censoring scheme (type-I PHCS) and the type-II progressive censorship scheme (type-II PCS). The failure times of the items are
assumed to follow NH distribution, while the tampered random variable (TRV) model is used to explain the effect of stress
change. In order to obtain the estimates of the unknown parameters, the maximum likelihood estimation (MLE) approach is
adopted. Furthermore, based on the asymptotic theory of MLEs, the approximate confidence intervals (ACIs) are also
constructed. The point estimates under two censoring schemes are compared in terms of root mean squared errors (RMSEs)
and relative absolute biases (RABs), while ACIs are compared in terms of their lengths and coverage probabilities (CPs). The
performance of the estimators has been evaluated and compared under two censoring schemes with various sample sizes
through a simulation study. Simulation results show that estimates with type-I PHCS outperform estimates with type-II PCS in
terms of RMSEs, RABs, lengths, and CPs. Finally, a real-world numerical example of insulating fluid failure times is presented
to show how the approaches will work in reality.

1. Introduction

The customer’s proclivity to place greater trust and happi-
ness in a product has been thoroughly tested to ensure that it
will fulfil its intended function with high reliability.
Moreover, with the widespread use of computers, auto-
mation, and simulation, the overall quality of the
manufacturing process has improved significantly, making

the goods more reliable than their previous versions. Sci-
entists require failure data to produce an efficient forecast
about the product’s expected life. Obtaining such failure data
using ordinary life testing (OLT) is a time-consuming and
expensive process for such highly reliable goods, and in such
cases, OLTs are not suitable. As a solution, more sophisti-
cated tests, such as ALTs and partial ALTs, are used to get
rapid failures of goods by testing them under more severe
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conditions (such as temperature, voltage, humidity, and so
on) than typical usage settings, resulting in decreased testing
time, labor, and money.

In ALTs, products or materials are evaluated only at
stress levels that are greater than the stress level at which they
function in regular usage, with the hypothesis that a
product’s failure mechanisms and process will follow the
same profile as when tested at normal stress. ALTs are often
classified into three kinds depending on the stress loading
modalities: constant stress ALT, step stress ALT, and pro-
gressive stress ALT (commonly abbreviated to CSALT,
SSALT, and PSALT) [1, 2]. In CSALT, units are tested at
more than one constant high stress level until all failures of
all units are observed or the test is terminated for reasons
such as a censoring scheme or an inexplicable failure cause.
For further information, readers are directed to some good
and relevant references, including [3-14] based on CSALT
models. In SSALT, the testing units are initially subjected to
a starting high level of stress; the failures are noted; and then
the test items are removed at a prespecified time to test at the
next level of stress, and so on. Many scholars have looked at
the SSALT models, including [15-24]. PSALT, in which test
units are exposed to gradually increasing stress over time to
obtain failure data for testing, was initially proposed by [25].
In their study, they obtained estimates of the parameters of
both the exponential and Weibull life distributions under
PSALT. Ever since, numerous authors have looked at PSALT
for various distributions and data kinds, including [26-30].

Censoring in life testing experiments can occur at any
time, either intentionally or unintentionally. In intentional
censoring, testing is ended after a specific period or a
number of failures owing to cost and time limitations,
whereas unintentional censoring is generally caused by
operational failure or equipment malfunction. The most
frequent types of intentional censoring are type-I (time-
constrained) and type-II (failure-restricted). Because of the
specified test termination time in type-I, an experiment may
have a very low failure rate or even no failures, but the
experiment length in type-II censoring may be rather long,
rendering it impractical in many situations. Reference [31]
proposed type-I hybrid censoring, which is basically a
combination of type-I and type-II censoring, to circumvent
these restrictions. One of the most significant shortcomings
of type-1, type-II, and type-I hybrid censorings is that test
items cannot be withdrawn at any time throughout the test
other than the test termination points. More comprehensive
censoring, such as type-II PCS and type-I PHCS, must be
used in life testing studies to solve this issue [32]. In type-II
PCS, a randomly selected sample of # items is first placed on
an experiment with a predefined number of failures m and a
preset randomized removing strategy r,,r,...,r,,. At the
initial failure time y,,, ., the experiment may proceed by
removing r, test items from the remaining n — 1 survivors.
Similarly, at the second failure time y,,, , 1, test items will
be removed from the remaining n — 1 — r; survivals and so
on until the m'™ failure y,,,,,, occurs. When the m'" failure
occurs, the test is stopped, and all the remaining r,, = n —
m— Y r; surviving survivors are eliminated. References
[33-35] provide further details on type-II PCS. However,
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because of the preset size of observable failures, the major
issue with type-II PCS is that the test length may be quite
long, potentially resulting in additional expenditures and
resources. Reference [36] introduces type-I PHCS with
random terminal time T} = min(y,,,, .. T,) as a solution to
this issue, where T, is a preset test stoppage time. The most
significant benefit of this censoring is that the test is now
time-limited. See [32, 35, 36] for further details and insights.

In ALTs, the life of the test item at the stress level it will be
used in real life is estimated by extrapolating the lifetime data
obtained at high stress levels to the typical usage stress level.
Although such life-stress links are very complicated or
perhaps do not exist in some situations. To address this issue,
PALTs, which may be thought of as a logical combination of
OLTs and ALTs, are more suited for conducting life testing.
In contrast to ALT, test units in PALT are allocated to both
normal and accelerated circumstances in order to gather
failure data. Furthermore, PALT does not require a life-stress
relation to calculate the estimated life of a product under
real-world conditions. CSPALT and SSPALT are two ex-
tensively utilized core PALT classifications. In CSPALT,
product samples are tested under both regular and
accelerated settings at the same time until the test is ended
owing to a censoring scheme or an unforeseen malfunction.
Readers can find more information about CSPALT models
in [5, 37-40]. In SSPALT, products are tested up to pre-
specified time at normal use conditions, and then all
products that still working are assigned to test on accelerated
conditions until the test is ended owing to a censoring
scheme or an unforeseen malfunction. To reflect the effect of
stress change, [41] introduced the TRV model for SSPALT.
More details on TRV models can be found in [41, 42].

Many studies for SSPALT based on different censoring
schemes so far have been carried out; see [43-53] for ex-
ample. Reference [47] considered the SSPALT based on the
TRV model under type-II PCS to obtain the Bayes and ML
estimates of the parameters of the Lomax distribution.
Reference [48] estimated the parameters of the Weibull
exponential distribution using the MLE approach based on
SSPALT with type-II PCS. Reference [49] discussed the
estimation of the stress-strength reliability under the as-
sumption that the strength variable belongs to SSPALT and
the components of strength and stress follow exponential
distributions. Reference [50] described a k-stage SSPALT
and derived model parameter estimates using interval type-I
PCS with equal lengths of inspection interval. Reference [51]
discussed and compared the MLEs of Weibull distribution
parameters and AF based on adaptive type-I PHCS and type-
I PHCS for SSPALT using the TRV model. Reference [52]
investigated and compared MLEs of Burr type-XII distri-
bution and AF under SSPALT based on the TRV model with
type-I and adaptive type-II PHCS. Reference [53] produced
parameter inferences based on SSPALT based on progressive
hybrid censored masked data for a three-component hybrid
system employing power-linear hazard rate distribution as
lifetime distribution.

The NH distribution was proposed by [54] in 2011 as an
extension of the exponential distribution. The NH distri-
bution has some useful and appealing features, such as



Computational Intelligence and Neuroscience

having an always zero mode and a closed-form HF that can
explain increasing, decreasing, and constant hazard rates,
making it an excellent choice in lifetime data analysis. As a
specific case, particular probability distributions, such as the
exponential distribution, may be generated. As a result, itis a
feasible alternative to the Weibull, exponential, and gamma
distributions. So far, several studies such as [55-63] con-
sidering the problem of estimation of the parameters of the
NH distribution using MLE and BE techniques have been
conducted. Assuming that the scale parameter of NH dis-
tribution has a log-linear relation with stress, [55] obtained
MLEs of the parameters under CSALT and SSALT models.
Under CSALT and PSALT for type-II PC data, [56, 57]
considered the MLE and BE techniques to obtain the esti-
mates of model parameters. Reference [59] explored opti-
mum plans for k-level CSALT plans under complete data for
NH distribution using D and C optimality. Recently, taking
into account the MLE and BE techniques, [62] developed a
CSPALT based on type-II PCS for estimating the parameters
of the NH distribution. To the best of the authors’ knowl-
edge, there is no study based on SSPALT that discussed the
estimation of the parameters of the NH distribution and the
AF for type-II PCS and type-I PHCS. Reference [63] used the
NH distribution as a lifetime distribution to estimate un-
known model parameters in SSPALT with adaptive type-II
PHCS and proposed two feasible optimum test approaches
based on the A and D optimality.

This paper has two major goals: first, to present an
SSPALT plan utilizing type-II PCS and type-I PHCS to
estimate the parameters of the NH distribution and AF and,
second, to compare the estimates using different sample
combinations under the two mentioned censoring schemes.
The remainder of the article is divided into the following
sections: Section 2 discusses test assumptions and meth-
odologies. In Section 3, SSPALT with type-II PCS is for-
mulated, and MLEs and associated ACIs are produced.
SSPALT with type-I PHCS is formulated and MLEs and
associated AClIs are obtained in Section 4. In Section 5, for
illustration purposes, a simulation study is carried out, and
the results for the suggested models are discussed. In Section
6, a numerical example of insulating fluid failure times is
utilized to show the applicability of the proposed estimation
approach under SSPALT based on type-II PCS and type-I
PHCS. Finally, Section 7 concludes the study with some
remarks and future research directions.

2. Test Assumptions and Procedure

In this article, for both type II-PCS and type I-PHCS data, we
made the following assumptions under SSPALT:

al: The SSPALT is formulated using two stress levels S,
and S, (S,<S,), where S, represents use (normal)
stress conditions and S, represents severe (accelerated)
stress conditions.

a2: There are n items that are put on the life test, which
are identical and independent in nature. At least one
failure at each stress S,, and S, must be observed.

a3: The failure time T of each test item follows the NH
distribution, with the probability density function
(PDF), cumulative distribution function (CDF), sur-
vival function (SF), and hazard rate function (HRF)
provided by

ft;a,0) = af(1+6)* "exp[1-(1+60)°],

(D)
t>0,a>0,0>0,

F(t;a,0) =1—exp[1—(1+6)%],t>0,a>0,0>0,
(2)

R(t) =exp[l - (1+6)%],t>0,a>0,0>0, (3)

h(t)=af(1+60)* ,t>0,0>0,0>0, (4)

where 8 and « represents the scale and shape param-
eters of the distribution, respectively. Figure 1 displays
various shapes of PDF and HRF generated with varying
input values of parameters.

a4: All nunits are initially tested under stress S,, until
a prespecified stress change time 7, at which point all
surviving survivors are moved to be tested at stress
S, The switching impact of stress on product life
from S, to S, can be determined by multiplying
inverse of AF by the residual life of the product, and
total life Y at S, may theoretically be described by
the TRV model as follows:

(5)

{TifTST
T+/5_1(T—T)ifT>T,

where T is the lifespan of the test unit at condition S,
and > 1 is the AF, which is in general depends on the
S, and S,. Now, we can describe the PDF and RF of Y
based on a4 as follows:

0ify <0,

fiyifo< y<m, (6)
fL(ify>7,

fy)=

Oify <0,
R, (»)ifo< y<1, (7)
R,(y)ify>r.

R(y) =

Using equations (1), (2), (5)-(7), the following expres-
sions can be obtained easily:
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FiGure 1: The PDF and HRF curves with various combinations of the values of parameters.

0if y <0,

F() =4 f1(y;0,0) = aB(1 +0y)* exp[1 - (1 + 0y)*]ifo< y <7, (8)
fr(y) = apO[1 +0(z+B(y— )" 'exp[1 {1+ 0( + B(y - D)}*]ify > 7,
0if y <0,

R(y) =14 R (y;a,0) = exp[l - (1 + 0y)*]if0< y <7, 9

R,(y) =exp[l-{1+0(t+p(y-1)}"]ify>T.

3. SSPALT Formulation and Parameter
Inference with Type-II PCS

In this section, we determined the MLEs and ACIs of the
parameters using the SSPALT model and type-II PCS. As-
sume that all n components/items are assigned to stress level
S,, to begin the testing process with some of the prespecified
test restrictions 7,m, and ry, 7, ..., 7,, (T < m<n). Continue
the experiment at stress S, until time 7, assuming that
Vigmn < Yomn <+ < Vn mn are the failure data observed
before 7 and ry,7,...,r, are the total number of items
eliminated at usage stress S, due to the type-II PCS. All
components/items that have not failed/been removed by
time 7 are now allocated to test at S,, and the experiment
continues to run in the same manner as at S, until the
occurrence of m™ failure. The observed failure sample at S,, is
Vi +1mn < Vn+2mn < < Vimmn and the total removals are
T4 Tn42 - > Tnome Finally, when m" failure is observed,
the test is stopped, and all remaining r,, =n—m - Y7 'r,

test items that have not yet failed are removed from the
experiment.

The test description makes it clear that the total number
of failures observed at S, prior to time 7 is n;, and conse-
quently, (m — n,) is the total number of failures observed at
S, Under SSPALT, the entire observed failure data with
type-II. PCS of size m will now be of the form
YVimn <Yomn< ' < ynl,m,n <7< yn1+1,m,n < <Vimm and
therefore, the appropriate likelihood function may thus be
expressed as follows:

L0009 =CTTAONR O T 1200 1R O]

i=n;+

(10)

where C=n(n-1-r)(n-2-r,—ry)...(n—-m) (n-
m-Y""'r) and y, = Yimmi=12,3...m. Now using
equations (1), (3), (8), and (9), and equation (10) can be
rewritten as follows:

L(y,a0.p=C ﬁ aB(A () exp{1 = (A(y:)) Hexp[1 - (A(5:)]}"

i=1

m

(11)

- [T aBo{B())*  exp{1 = (B (1)) Hexp[1 - (B(3)) 1}

i=n +1



Computational Intelligence and Neuroscience

where A(y;)= (1+0y,), B(y;)={1+60(z+B(y;-1)}
and B(y;) —1=0(r+B(y; — 7). Now, the log-likelihood
Log(y, a, 0, ) = € of equation (11) can be derived as follows:
= logC + mloga + mlogb + (m — n; )logf
+(a=1) Y log(A(y;)) = ). (ri+ 1) (A())
i=1 i=1

Z (ri + 1)[B(y)]"

i=n,+1

ca-1) Y log[B()] -

i=n +1

(12)

3.1. Point Estimates. Now, by differentiating (12) with re-
spect to a, fand®, the following equations are obtained:

ag %+210g(A()’,) ch(l+r) (7)) log (A Z log{B(y,)} Z (1+r){B(y )} log{B(y)} =0, (13)

g_/iz (mgnl)-i_((x— l)ei:nzl;H {(;l(y gl nzlﬂ (1 +1’) T){B(yi)}zx—l -0, (14)

or_m Vi N a1 ¢ THB(yi— 1)

8 UL g A0 e 2 g .
- Z (1+7) (T4 Bl - DB =0.

The MLEs (@, 6, E) of the unknown parameters («, 6, 8)
of the model discussed here can be obtained by solving
equations (13)-(15) simultaneously. Unfortunately, the
system of equations (13)-(15) is nonlinear; therefore, no
closed-form solution can be obtained analytically. As a result
of this problem, some iterative methods must be used to
obtain estimates of unknown parameters (a, 8, ) of the
model. There are several iterative approaches, such as the
Newton-Raphson method for solving nonlinear equations.
In this case, we implemented the optim () function of the R

statistical software/language to solve our nonlinear
equations.
e e de |
o> Oa 08 Oa Of
2 2 2
(=] o¢ o¢ ot
00 oax 99> 0B 0o
o't ot 0%
[ 0B0oa 0008 op* | @op)

3.2. Interval Estimates. In this subsection, using the as-
ymptotic properties of MLEs, we determine the ACIs of
model parameters. Given specific regularity requirements,
asymptotic features indicate that MLEs are approximately
distributed according to the normal distribution with mean
zero and variance (F)™!, which can be represented math-
ematically as follows:

@-ah-68-p~N(0, (A7),

where (F)™! is the inverse of the observed Fisher infor-
mation matrix and is commonly referred to as a variance-
covariance matrix for MLEs. It is possible to derive it as
follows:

(16)

var(@) covar(ab) covar(&ﬁ)

=| covar(6a) var(9) covar(/gg)- (17)

covar (B&) covar (@B) var (B)



The elements of F can be expressed by the following
equations:
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T =B A0 g aF - ¥ (B loglB O]

e m 2 ‘! ) w2

ﬁz_y_ _) W‘“(“‘l);(lJf”i))’i (A(»))

—(a-1) ZIW—MO(—I) Zl(1+r) T+ B(y; - 1)) {B(yl-)}o‘_2
Bzf__i(m—nl) 7(}}' —ala- +r)(y;—-1
B R -1e* 1;1 BO)P (a- 16" 1;1 (1L+m) i =B}
(18)
RANAT X(A( - (AL 1+ alog(A()
¢ 3 DR S 1) s - MBI alogl )

e e Zo(yi-1) & a1
e a5 o B B0 st

a ? B ny+n, ny+n,
KA AT 0y e S 00 DO B0

Now, two-sided 100(1 — A)% ACIs for the parameter
@, 0, and f can be obtained as follows:

&+ Zyp\var(@); 0 + Z,,\var (0); B + Z,,\var(B), (19)

where +Z,,, represents standard normal distribution’s
upper and lower A2t percentlle var (&), Var(G) and var (ﬁ)
are the diagonal entries of (F)!

4. SSPALT Formulation and Parameter
Inference with Type-I1 PHCS

In this section, SSPALT with type-I PHCS will be formulated
first, followed by MLEs and ACIs of model parameters. In
SSPALT with type-I PHCS, a random sample of # test items
is randomly allocated for testing under stress S, with pre-
fixed experimental restrictions 7,m, T, and progressive re-
moval pattern r,,t,...,1,. Now, r,i=1,2, ...n; test
items are removed from the test randomly at it failure
observation y;,, . and the experiment continue to run until

time 7(r>y,). At time 7, all of the survivors
n—mny — ?:‘;1 r; at S, are removed and then assigned for
testing at S, until the random termination time

T§ = min(y,, ... To) of the experiment. For y,, ., . < T, this
means that the m"" failure y,,,,,, is observed before time T,

L(y,a06,pB) :CHfl ()[R,
=1

and the test is stopped at m'" failure time y,, ,, , by removing
all the remaining survivals r, =n-m- Y7 'r,
Ymmn > To» this means m™ failure is not observed before
time T, and only ] failures are observed; then, at time T,
test will be terminated by removing all r,, =n—J - ¥, r;
remaining survivals. Hence, under SSPALT with type-I
PHCS, we observed two types of data: (i) y,,,,<
YVomn < *+0 < Y mn =7< Y +1,mn < <Vmmn ifym,m,n
< TO and (11) yl,m)n < y2,m,n <see < ynl+1,m,n <7< yn1+1,m,n
<o <Yt Yy STy < Vo snymn

Suppose that #, is the size of failure sample observed at
S, before time 7 and n, is the size of the observed failure
sample at S, after time 7. Under SSPALT, the entire observed
failure data with type type-I PHCS will now be of the form

ylmn<y2mn <yn M = T<yn+lmn< <ymmn
<T,,and therefore, the- appropriate likelihood functlon may

be expressed as follows:

ny+n,

()" H F2 () [Ry (9)]" [R ()],

i=n;+1

(20)

where

C=nn-1-r)n-2-r -1y for

(n—J-Ym'r)
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case (i), ny+mn,=m; and for case (ii), n, +n, =].
Y +jmw - - -» Ymmn ar€ not observed. Now using equations
(1) (3) (8), (9), and (23) can be rewritten as follows:

L(y, & 6, B) = Cﬁ aB(A(7;))" "exp{1 = (A ()" Hexp{1 - (A ()" })"

i=1

@
- [T aBo{B()* "exp{1 = (B(y:))"Hexp{1 - (B(3)) '} [exp{1 = (B(To))"H",
i=n;+1
where A(y;)= (1+0y,), B(y;)={1+60(z+B(y; - 1)},
and B(Ty) ={1+6(7+p(T,-1))}. Now, log-likelihood
Log(y,a, 0, B) = I of equation (24) can be derived as follows:
1 =1ogC + (1, +n,) (loga + 1ogh) + nylogf + nyr{1 — (B(T,))*} + (a = 1) Zl log(A(y;))
ny ny+n, ny+n, o (22)
£ (W)L (Ap) T+ (@=1) Y log{By)}+ Y (1+m){1-(B(3))}
i=1 i=n;+1 i=n;+1
4.1. Point Estimates. Now, by differentiating (25) partially
with respect to «,fandfB, the following equations are
obtained:
o n +n, "
5=~ mr{B(T)}"log{B(T,)} Zlog(A(yz Z (1+7) (A(y:)log(A(y)) + ). log{B
i=n;+1
(23)
= D (L) {B(y)} log{B(y)} = 0,
i=n;+1
o n +n,
ST (e + BTy~ ) B(T,)) )"
n;+n, B( n;+n, ( ) (24)
¥i) )’z
- 1 B =0,
AT (yz)} @ ;1 (1+7) 220 B (!
ot 0Ty - BT +@-10 Y LD a0'S (141 (- DBODF =0 (25)
op g e T ERILIC T T

The MLEs (&6, B) of model parameters (a, 6, 8) under ~ mented to solve nonlinear equations.
type I-PHCS can be obtained by solving equations (26)-(28)
simultaneously. Unfortunately, again the system of equa-
tions (26)—(28) is nonlinear; therefore, no closed-form so- 4.2. Interval Estimates. The same approach outlined in
lution can be obtained analytically. Again, the optim () Subsection 3.2 can be used to produce ACIs. The entries in
function of the R statistical software/language is imple-  the Fisher information matrix are as follows:
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o= B ToglB (I - ¥ (1) A g (A = Y (1 r) BN gl )
% = _m;z”z —nyra(a— 1)(%) (B(T)} ' = (a- 1) (A( Nk —a(a- I)Z (1+7)y  (A(y))*?

”1*”2 (B yl o ( ( ) 1)2 a—2
ala—1) 1+r B(y;
.3 iy 2,00 o)
a—zi = 2 myra(a— 16 (Ty - 1) {B(T)}* - (a - 16" nfz LT); - a(a-1)¢" nfz (1+7) (i =)’ (B
op B i=n +1 {B(»)} i=ny+1
o't 9 a1 «
5™ 30 o (BT~ )BT [+ alogla (s + BT =D+ 3
-3 (A alog(A )} 4 ’;{(g()y)}l
8 ) P )y 1+ g8 ()
S5~ 55 3m ~ (T~ DB} 1+ alog(BT} + > o)
S ) DB 1+ aloglBO)
ol ; ag = —ara(Ty = DB} 1+ a(B) - )]+ - 1) Y {(;(;)gl
ra Y (1n) (- DB HBO)
(26)
5. Simulation Study Step 3: Generate type-II PC sample from NH distri-

In this section, Monte Carlo simulation techniques were
used to determine the unknown parameters of the distri-
bution and AF. MLEs in type-II PCS and type-I PHCS are
compared using RMSEs and RABs, whereas ACIs are
compared using lengths and CPs. The simulation was run for
prefixed values of n,m,t,T,, and the removal scheme
(ry,ry...s7p ... 7,,). The parameters and AF are then
estimated using different samples of type-II PC and type-I
PHC data obtained through simulation under SSPALT. The
estimation process is carried out in accordance with the
following steps using numerical simulation:

Step 1: Initialize n,m randT,.
Step 2: Initialize a, f3, 6.

bution as follows:

(i) Generate a random sample (u;,u,, .. .,u, ) of size
n, from uniform distribution U (0, 1) with re-
movals (ry,7,,...,7, ) at stress S,,. The failure data
at stress S,, from the NH distribution may then be
derived using the inverse CDF technique by using
the following equation:

1-

y; = % [{1-1log(1 — )} - 1ify;<7i=1,2,...,n
(27)

(ii) Similar to step (i), the failure data at stress S, from
the NH distribution may then be derived by using
the following equation:



Computational Intelligence and Neuroscience

o

T T T T T T T
2000

0 2000 6000 10000 0 6000 10000 0 2000 6000 10000
Number of Simulations Number of Simulations Number of Simulations
(@) (b) (©
1M 2000 1L | (]
1500 2000
1500 — B
S 1000 - ) g ]
) g =]
= 3 . g
s 2. 1000 < 1000 —
e : :
— =21
500 500 500
0- 0 - 0- l T T T 1
T T 10 15 20 25 30
0.5 1.5 2.5 35 05 1.0 15 20 25
0
a B
(d) (e) )
FIGURE 2: Plots of type-II PCS data based on SSALT.
171 a (n-m), i=m,
y,~=ﬁ[§{(1—log(1—”i)) —1}—T]+T,yi>T, Schemel-r:{
T .
0, otherwise,
i=12,...,m, (n-15m+1), i=m,
(28) Scheme?2: r; =
1, otherwise, (29)
where n,=m-n, and the removals are ( )
Tpat> Tnaz - o> Tpe AL m!h failure y,,,. . ,» stop the test n-m . i=1,2,...,m
. - . m
by removing all r,,, = n—m — Y 'r; survivals. Scheme3: r; =
Step 4: Obtain type-I PHC data under SSPALT by 0, otherwise.

repeating  steps 1-3.  Stop the test at
T =min (¥, T0)- I ¥ e n<To stop the test at
time y,,. ., by removing all r, =n-m- Y r,

survivals (case I). If y,,,. ... , > T, stop the test at time T,
by removing all r,, =n— j - Zz]=_1l r; survivals (case II).
Step 5: Obtain the MLEs of the parameters ® = (@, B, 0)
using some numerical techniques from equations
(13)-(15) simultaneously for type-II PCS and from
equations (26)-(28) simultaneously for type-I PHCS
using the data generated in steps 1-4.

Step 6: Repeat steps 1-5 up to 10,000 times, obtain the
average MLEs with their RMSEs and RABs.

Step 7: Obtain ACIs with their lengths and CPs.

Step 8: Adopt the following progressive censoring
schemes for different specified sets of values of
(n,m,7,T,) and (a, 3, 6) under SSPALT:

Taking into account the above-mentioned algorithm, we
set the initial values for (7,T,)=(0.40, 0.65), (0.50, 0.80),
(0.60, 1.20) and the combinations of sample sizes
(n,m) = (80, 50), (80, 60), (100, 60), (100, 70), (120, 70), (120,
80). Assuming that the true values of parameters
(a,3,0)=(1.7, 1.3, 1.5), the MLEs of the parameters with
their respective RABs and RMSEs are obtained and given in
Tables 1-3 under both types of censored data. Lengths and
CPs of corresponding 95% ACIs are also computed and
provided in Tables 4-6. Figure 2 depicts plots of 10000
repetitions of type-II PCS data based on SSALT. Compar-
ative plots of RMSEs and RABs are given in Figures 3-5.
Comparative plots of lengths and CPs of corresponding 95%
AClIs are given in Figures 6-8.

From the results in Tables 1-3 and Figures 3-5, it can
easily be observed that the results are consistent and the
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FIGURE 3: Plots of RMSEs and RABs of the estimates with a =1.7, =1.3, 8= 1.5, and (7= 0.40, T, = 0.65): (a) type-I and type-II RMSE « with
t=0.40, T = 0.65; (b) type-I and type-II RAB « with ¢ =0.40, T, = 0.65; (c) type-I and type-II RMSE f with ¢ =0.40, Ty = 0.65; (d) type-I and
type-II RAB 8 with t=0.40, T, = 0.65; (e) type-I and type-II RMSE 0 with t=0.40, Ty = 0.65; and (f) type-I and type-II RAB 6 with ¢=0.40,

Ty =0.65.
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FIGURE 4: Plots of RMSEs and RABs of the estimates with « = 1.7, $=1.3, 8 =1.5, and (7= 0.50, T, = 0.80): (a) type-I and type-II RMSE « with
t=0.50, T =0.80; (b) type-I and type-II RAB « with #=0.50, T, = 0.80; (c) type-I and type-II RMSE f with £ =0.50, T, = 0.80; (d) type-I and

type-II RAB S with t=0.50, T, =0.80; (e) type-I and type-II RMSE 6 with t=0.50, T, = 0.80; and (f) type-I and type-II RAB 8 with ¢=0.50,
T, = 0.80.
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F1GURE 5: Plots of RMSEs and RABs of the estimates with a =1.7, $=1.3, 8= 1.5, and (7= 0.60, T, = 1.20): (a) type-I and type-Il RMSE « with
t=0.60, To=1.20; (b) type-I and type-II RAB « with ¢t =0.60, T, =1.20; (c) type-I and type-II RMSE f with t =0.60, T, =1.20; (d) type-I and

type-II RAB 8 with t=0.60, T; =1.20; (e) type-I and type-II RMSE 6 with ¢ =0.60, Ty =1.20; and (f) type-I and type-II RAB 6 with ¢ = 0.60,
Ty =1.20.
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FIGURE 6: 95% ACIs lengths and CPs of the estimates with « = 1.7, = 1.3, 8 = 1.5, and (7 =0.40, T, = 0.65): (a) type-I and type-II 4:95% ACls
of a with true values of a=1.7, f=1.3, =1.5, and (t=0.40, T, =0.65); (b) type-I and type-II 4:95% ACIs of « with true values of a =1.7,
f=13, 0=1.5, and (t=0.40, T, =0.65); (c) type-I and type-II 4:95% ACIs of 8 with true values of «=1.7, $=1.3, 6=1.5, and (¢t =0.40,
To=0.65); (d) type-I and type-II 4:95% AClIs of 8 with true values of «=1.7, $=1.3, 8 =1.5, and (¢ =0.40, T, = 0.65); (e) type-I and type-II
95% ACIs of 0 with true values of a = 1.7, §=1.3, 0=1.5, and (t=0.50, T, = 0.80); and (f) type-I and type-II 4:95% ACIs of 0 with true values

of x=1.7, =13, §=1.5, and (t=0.40, To=0.65).
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FIGURE 7: 95% AClIs lengths and CPs of the estimates with « = 1.7, §=1.3, 8 =1.5, and (7= 0.50, T = 0.80): (a) type-I and type-II 95% ACIs of
a with true values of a = 1.7, $=1.3, 6= 1.5, and (t=0.50, T, = 0.80); (b) type-I and type-II 5:95% ACISs of « with true values of a = 1.7, = 1.3,
0=1.5, and (t=0.50, T, =0.80); (c) type-I and type-II 95% ACIs of 3 with true values of =1.7, $=1.3, §=1.5, and (¢ =0.50, T, = 0.80);
(d) type-I and type-II 5:95% ACIs of 3 with true values of a =1.7, §=1.3, 0 =1.5, and (t=0.50, T, = 0.80); (e) type-I and type-II 95% AClIs of
0 with true values of «=1.7, =1.3, =1.5, and (t=0.50, T, = 0.80); and (f) type-I and type-II 5:95% AClIs of 8 with true values of a =1.7,
B=1.3, 6=15, and (t=0.50, To=0.80).

estimates are quite close to their true values for both cases of
censored data. Estimates based on type-I PHCS in most of
the cases are with smaller RMSEs and RABs as compared to
the estimates based on type-II PCS. RMSEs and RABs are

decreasing as a result of an increase in values of n and m for
fixed values of (7,T,) in all cases for both censoring
schemes, and this is expected because the results are more
accurate for large samples. The RMSEs and RABs are
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FIGURE 8: 95% ACIs Lengths and CPs of the estimates with a=1.7, f=1.3, 8=1.5, and (7= 0.60, Tp =1.20): (a) type-I and type-II 95% AClIs
of a with true values of a=1.7, =13, §=1.5, and (t=0.60, T, =1.20); (b) type-I and type-II 95% ACIs of «a with true values of a=1.7,
B=13, 0=1.5, and (t=0.60, To=1.20); (c) type-I and type-II 95% ACIs of B with true values of a=1.7, f=1.3, §=1.5, and (£=0.60,
Ty =1.20); (d) type-I and type-II 95% ACIs of § with true values of a = 1.7, f = 1.3, 8= 1.5, and (t = 0.60, T, =1.20); (e) type-I and type-II 95%
ACIs of 6 with true values of «=1.7, f=1.3, =1.5, and (t=0.60, Tp=1.20); and (f) type-I and type-II 95% AClIs of 0 with true values of
a=1.7, =13, 6=1.5, and (t=0.60, T =1.20).

considerably smaller for type-I PHCS than that of type-II
PCS in most of the cases. For fixed values m, 7, and T, a
decreasing pattern is observed in the values of the RMSEs

and RABs with an increase in the values of n for type-I
PHCS. The same pattern is also observed for type-II PCS but
RMSEs and RABs are smaller for type-I PHCS in general for
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TaBLE 7: Insulating fluid data.

0.19 0.78 0.96 1.31 2.78
7.35 8.01 8.27 12.06 31.75

3.16 4.15 4.67 4.85 6.50
32.52 33.91 36.71 72.89

TaBLE 8: MLEs, K-S distances, and p-values based on complete insulating fluid data.

Distribution Alpha Beta Theta K-S test p-value
NH distribution 0.497859 0.276878 — 0.14238 0.7855
Weibull generalized exponential 15.121028 0.002218 0.785 0.20329 0.3625
Generalized exponential 0.803419 0.102165 — 0.22958 0.2309

CDF

Data

—— Empirical --- WGED
— N-H GED

(a)

Data

—— Empirical --- WGED
— N-H GED

(b)

FIGURE 9: (a) Plot of the empirical CDF versus fitted CDF and (b) histogram of data against fitted PDF.

TaBLE 9: The generated type-II PC and type-I PHC data sets.

Type-1I PC data

Normal stress: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 6.50
Accelerated stress: 7.35, 8.01, 12.06, 31.75, 32.52

Type-I PHC data

Normal stress: 0.19, 0.78, 0.96, 1.31, 4.67, 4.85, 6.50
Accelerated stress: 7.35, 8.27, 12.06, 31.75, 33.91

TaBLE 10: MLEs with their related MSEs under SSPALT.

o 0
Censoring P
MLE MSE MLE MSE MLE MSE
Type-1I PCS 0.895165 0.00234 0.358743 0.00198 1.201932 0.000365
Type-1I PHCS 0.942767 0.000823 0.462885 0.000519 1.266381 0.000173

all cases. With an increase in the time of stress change 7, the
RMSEs and RABs are decreasing for fixed values of n, T,
and m, and this is also quite obvious due to the fact that
increasing the stress change time may result in more failures
under normal use conditions.

For fixed values of n,m, and 7 with an increasement in
censoring time T;, RMSEs and RABs result in decreasing

values for type-I PHCS, but this is not true for type-II PCS
because the predetermined numbers of failures in type-II
PCS, and when T, increases, no additional failures are
observed in type-II PCS. From Tables 4-6 and Figures 6-38, it
is also observed that the lengths and CPs of 95% ACIs are
reasonably precise for both censoring schemes in all cases
but the ACIs are narrower for type-I PHCS.
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As the values of n and m increase, the lengths of the ACIs
decrease, and CPs are approaching 95%, and this is natural
since the accuracy of the estimates depends on the size of the
sample. For fixed values of 7 and T';, with an increase in the
values of n and m, the lengths of ACIs are getting narrower
for all cases under the two considered censoring schemes. It
is also noted that the width of ACIs for type-I PHCS is
smaller than that of type-II PCS. ACIs are also getting
narrower with an increasement in both stress change time 7
and censoring time T, for fixed values of n and m for type-I
PHCS. The same pattern is true for type-II PCS, but ACIs for
type-I PHCS are smaller than that of type-II PCS in general
for all cases.

6. Real-Life Data Application

In this section, we will implement the models for the real
data set of insulating fluid failures, which was initially re-
ported in [64] (page 105). Table 7 displays 19 breakdown
times (in minutes) for an insulating fluid placed between two
electrodes exposed to a 34kV voltage. The goal of the ex-
periment was to see if the time to breakdown at this voltage
follows an exponential distribution as predicted by theory. If
necessary, the distribution can be utilized to estimate the
likelihood of fluid breakdown during real-world applica-
tions. Reference [35] investigated the data further in the
context of type-II PCS, whereas [65] investigated the data in
the context of adaptive type-II PCS.

We begin by verifying that the NH distribution may be
utilized to examine the provided data set. The Kolmo-
gorov-Smirnov (K-S) goodness-of-fit test is used to fit the
NH distribution to real data as well as to compare the
results of the NH distribution with other existing similar
distributions such as the generalized exponential and
Weibull generalized exponential distributions. The K-S test
compares a real data set to a similar probability distribu-
tion. The test employs the K-S distance between the em-
pirical distribution and the referenced cumulative
distribution, as well as the associated p-values for the
goodness of fit. Table 8 shows the MLEs of unknown pa-
rameters, K-S distances, and p-values for all three com-
peting distributions, including the NH, generalized
exponential, and Weibull generalized exponential distri-
butions for the considered data set. The R statistical soft-
ware/language is utilized for the computation of MLEs, K-S
distances, and p-values for each. Figure 9 exhibits a plot of
the empirical CDF versus fitted CDF, as well as a histogram
of data against fitted PDF of the NH, generalized expo-
nential, and Weibull generalized exponential distributions.
From Table 8 and Figure 9, we can see that the NH dis-
tribution, when compared to the other distributions, gives a
very excellent fit to the provided data set. As a result, the
given data can be used as an illustration for our models.

Now, in SSPALT, we set the value of 7 = 7 and the total
number of failures, m = 12, which are chosen from a total of
19 (= n) observations, and the removal scheme, which is set
to ry=ry=r3=ry=r5=r,=0, r,=rg=rg=1 at use
stress level, while r\y=r, =7, =0,r3=1, r,=r;5=
re=0,1r;,=rg=r,y=1 at accelerated stress level to
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generate the type-II PC data for illustration purpose. The
generated type-1I PC data is provided in Table 9. The MLEs
of the parameters and their related MSEs under SSPALT
with initial values of 0.497859 and 0.276878 computed for
the generated type-II PC data are shown in Table 10.
Similarly, we set the value of 7 = 6.5, T, = 35 and the total
number of failures, m = 12, which are chosen from a total of
19 (= n) observations and the removal scheme, which is set
tory=ry=ry=r,=0,r5=rg=r,=1Lrg=rg=r,=0at
normal stress levels and 1, =0,r,=1,r;=r,=
r15 =0, = 1,7, =0,7;4 =7, = 1 at high stress levels to
generate the type-I PHC data. The generated type-I PHC
data is provided in Table 9. The MLEs of the parameters and
their related MSEs under SSPALT with initial values of
0.497859 and 0.276878 computed for the generated type-I
PHC data are shown in Table 10.

7. Conclusions

In this article, an SSPALT model with type-II progres-
sively and type-I progressively hybrid censored data has
been developed. Under the premise that the TRV model
describes the life of the experimental units and the life-
times of experimental units follow the NH distribution,
MLEs of the unknown parameters and AF were derived.
The Monte Carlo simulation study was used to compute
point and interval estimates of the parameters numeri-
cally. As per the simulation results, the MLEs are fairly
near to their real values and are consistent with small
RMSEs and RABs for both censoring schemes. It is also
noted that ACIs are relatively precise, and the predicted
values for both censoring techniques fall within these
ranges. As a result, it is possible to infer that the esti-
mations are performed satisfactorily. Point estimates were
compared based on their RMSEs and RABs, while interval
estimates were compared based on their lengths and CPs.
As a comparison between the two censoring schemes, it is
found that the RMSEs and RABs for type-I PHCS are
smaller than those for type-II PCS in all the sampling
combinations. It is also noticed that the lengths of the
ACIs of type-I PHCS are more precise than those of type-
IT PCS in all cases. The CPs of type-I PHCS are closer to
95% than type-I PCS. In general, it can therefore be
concluded that type-I PHCS performs better than type-II
PCS-based MLEs and ACs in terms of RMSEs, RABs,
lengths, and CPs.

To demonstrate the applicability of the suggested esti-
mation technique under SSPALT based on type-II PCS and
type-I PHCS, a real-life numerical example of insulating
fluid failure times is employed. As per the K-S distance and
the p-value, the data set shows a good match for the NH
distribution. To ensure that the distribution is a good fit for
this data, we plotted the empirical CDF vs the fitted CDF, as
well as a data histogram versus the fitted PDF of the NH
distribution. In the future, the Bayesian estimation approach
might be used to estimate the parameters under SSPALT for
the same censoring schemes. The optimum SSPALT design
can also be established in terms of the time and cost con-
straints on the test.
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