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Shared miRNA landscapes of 
COVID-19 and neurodegeneration 
confirm neuroinflammation as an 
important overlapping feature
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Vita Dolžan *
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University of Ljubljana, Ljubljana, Slovenia

Introduction: Development and worsening of most common neurodegenerative 
diseases, such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis, 
have been associated with COVID-19 However, the mechanisms associated with 
neurological symptoms in COVID-19 patients and neurodegenerative sequelae 
are not clear. The interplay between gene expression and metabolite production 
in CNS is driven by miRNAs. These small non-coding molecules are dysregulated 
in most common neurodegenerative diseases and COVID-19.

Methods: We have performed a thorough literature screening and database 
mining to search for shared miRNA landscapes of SARS-CoV-2 infection and 
neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were 
searched using PubMed, while differentially expressed miRNAs in patients with 
five most common neurodegenerative diseases (Alzheimer’s disease, Parkinson’s 
disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple 
sclerosis) were searched using the Human microRNA Disease Database. Target 
genes of the overlapping miRNAs, identified with the miRTarBase, were used for 
the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes 
and Genomes and Reactome.

Results: In total, 98 common miRNAs were found. Additionally, two of them 
(hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers 
of neurodegeneration, as they are dysregulated in all five most common 
neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was 
upregulated in four COVID-19 studies and found to be  dysregulated in 
neurodegeneration processes as well. Screening for miRNA targets identified 746 
unique genes with strong evidence for interaction. Target enrichment analysis 
highlighted most significant KEGG and Reactome pathways being involved 
in signaling, cancer, transcription and infection. However, the more specific 
identified pathways confirmed neuroinflammation as being the most important 
shared feature.

Discussion: Our pathway based approach has identified overlapping miRNAs in 
COVID-19 and neurodegenerative diseases that may have a valuable potential 
for neurodegeneration prediction in COVID-19 patients. Additionally, identified 
miRNAs can be  further explored as potential drug targets or agents to modify 
signaling in shared pathways.
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1. Introduction

Increasing evidence suggests that neurological deficits may develop 
due to infection with SARS-CoV-2 in a substantial proportion of patients 
(Heneka et al., 2020). These deficits may manifest acutely and sub-acutely, 
as well as within the long COVID-19 pathology, and are often referred 
to as neuro-COVID-19 (Chiappelli, 2020). About 36% of cases develop 
neurological symptoms, such as headache, nausea, anosmia, ageusia, 
myalgia/fatigue, confusion, disorientation, and vomiting (Jarrahi et al., 
2020), of which 25% can be attributed to the direct involvement of the 
central nervous system (CNS; Mao et al., 2020). SARS-CoV-2 infection 
causes neurodegeneration (De Felice et al., 2020; Hascup and Hascup, 
2020; Lippi et al., 2020; Karuppan et al., 2021). The exact mechanism of 
how this is initiated is not known. One of the common features shared 
between neurodegeneration and COVID-19 is age. Age is the major risk 
factor for neurodegenerative diseases, while at the same time, older 
patients present with more severe symptoms and prolonged course of 
COVID-19 (Verkhratsky et al., 2020).

There are several explanations, how SARS-CoV-2 virus could 
contribute to neurodegeneration. The virus can directly invade the brain 
via the olfactory bulb, retrograde axonal transport from peripheral 
nerve endings, via hematogenous or lymphatic routes, and across the 
blood–brain barrier (Dolatshahi et al., 2021; Krasemann et al., 2022). 
Infection of the neurons combined with peripheral leukocyte activation 
results in the upregulation of pro-inflammatory cytokines, leading to 
neurodegenerative changes related to neuroinflammation (Verkhratsky 
et al., 2020; Dolatshahi et al., 2021; Haidar et al., 2021; Rosen et al., 
2021). In severe cases, systemic inflammation can cause acute brain 

damage associated with psychiatric symptoms and cognitive 
impairment which is indicative of neurodegeneration (Verkhratsky 
et al., 2020). Furthermore, acute respiratory distress syndrome and 
sepsis often seen in COVID-19 induce hypoxemia and hypoperfusion, 
leading to oxidative stress and neurodegeneration (Verkhratsky et al., 
2020; Dolatshahi et al., 2021; Haidar et al., 2021; Rosen et al., 2021). All 
of the above implies that SARS-CoV-2 is capable of entering the CNS 
and causing neurodegeneration.

The prevalence of neurodegenerative disorders is increasing, mostly 
due to extensions in lifespan, but nowadays COVID-19 may be  a 
contributing factor as well. Several neurodegenerative diseases such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple 
sclerosis (MS) have already been associated with COVID-19, both in 
terms of development and in terms of worse disease prognosis (Ferini-
Strambi and Salsone, 2021; Hu et al., 2021). Although information about 
the link between Huntington’s disease (HD) or amyotrophic lateral 
sclerosis (ALS) and COVID-19 is still scarce, some reports indicating 
that the virus affects the disease diagnosis, prognosis and patient care, 
have been published (Hu et al., 2021; Li and Bedlack, 2021; Vavougios, 
2021). Long before COVID-19 pandemics, it was reported that 
antibodies against coronaviruses can be found in the cerebrospinal fluid 
of PD patients (Fazzini et al., 1992). Coronaviruses can enter the brain 
through the nasal cavity causing anosmia or hyposmia (Antonini et al., 
2020). The latter is one of the main prodromal features of PD and the 
α-synuclein deposition in the olfactory bulb, among other locations, is 
one of the main pathological hallmarks (Kalia and Lang, 2015; Ferini-
Strambi and Salsone, 2021), which indicates a strong association 
between PD and COVID-19. Furthermore, some COVID-19 patients 
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develop cognitive deficits after the primary infection, indicating, that 
there might be  a link between COVID-19 infection and dementia 
pathogenesis (Ye et al., 2020; Douaud et al., 2022). MS may also occur 
in association with COVID-19 infection as there were case reports 
published reporting the MS-like demyelination after the SARS-CoV-2 
infection (Ismail and Salama, 2022).

Relation between COVID-19 and neurodegeneration has been 
shown in clinical setting observing a simultaneous or sequential 
development of COVID-19 and neurodegeneration, but perturbations 
on molecular level have been detected as well. A proteome study 
described the interactions of SARS-CoV-2 proteins with human 
proteins from several aging-related pathways, such as vesicle 
trafficking (NSP6, NSP7, NSP10, NSP13, NSP15, ORF3A, E, and 
ORF8), lipid modifications (Spike), RNA processing and regulation 
(NSP8, N), ubiquitin ligases (ORF10), and mitochondrial activity 
(NSP4, NSP8, and ORF9C; Gordon et al., 2020; Lippi et al., 2020). 
Moreover, infections with RNA viruses, also SARS-CoV-2  in 
particular, were already associated with increased production of 
α-synuclein (Bouali-Benazzouz and Benazzouz, 2021; Rosen et al., 
2021) and amyloid-β (Aβ; Sun et al., 2021). It has also been shown, 
that SARS-CoV-2 infection could facilitate the spread of aggregated 
tau protein via the secretion of extracellular vesicles (Liu et al., 2021). 
Furthermore, it was reported that the transcriptomic perturbations 
are shared between COVID-19 and HD (Vavougios, 2021). These 
findings indicate a strong molecular link between SARS-CoV-2 and 
neurodegeneration, in particular PD and AD as two most common 
neurodegenerative disorders.

MiRNAs are the most studied small noncoding RNAs. They are 
functional RNA molecules of approximately 22 nucleotides in length 
that lack protein-coding properties (Siedlecki-Wullich et al., 2021). 
MiRNAs regulate gene expression on the post-transcriptional level. 
They bind to the 3-untranslated region of the target messenger RNA 
(mRNA) by a partially complementary sequence. A single miRNA can 
bind hundreds of different mRNA targets. The most frequent 
consequence of miRNA binding is translational repression (Filipowicz 
et al., 2008; Daugaard and Hansen, 2017).

Many miRNAs have already been associated with 
neurodegenerative pathologies and COVID-19 as biomarkers of the 
disease, either in terms of susceptibility or disease prognosis (Ravnik-
Glavač and Glavač, 2020; Dong and Cong, 2021; Kuo et al., 2021; 
Pietrasik et al., 2021; Siedlecki-Wullich et al., 2021; Paul et al., 2022), 
but the overlap between COVID-19 and neurodegenerative diseases 
is unknown. Several miRNAs were repeatedly dysregulated in various 
neurodegenerative diseases, which functionally overlap in pathways 
related to Aβ genesis, regulation of AMPA receptor subunits, 
autophagy homeostasis, apoptosis, microglial activation, blood brain 
barrier maintenance, and neurogenesis (Juźwik et al., 2019). miRNAs 
involved in immune system regulation, more specifically NF-κB 
signaling, were frequently observed to be  dysregulated in 
neurodegeneration processes as well (Juźwik et  al., 2019). Such 
miRNAs involved in both immune and nervous system are called 
neurimmiRs and have already been suggested as potential drug 
targets in neurodegeneration (Soreq and Wolf, 2011). Additionally, 
altered miRNA levels have been associated with the formation of 
reactive oxygen species (ROS) and mitochondrial dysfunction, which 
are both hallmarks of neurodegenerative diseases (Catanesi et al., 
2020). Similarly, many miRNAs are dysregulated in COVID-19 as it 
was shown that SARS-CoV-2 infection significantly alters plasma 

miRNA composition from an early stage of COVID-19 (Fernández-
Pato et al., 2022).

Given the fact that miRNA seem to have a great potential as 
biomarkers of both neurodegenerative diseases and COVID-19, and 
that COVID-19 patients can present with clinical signs of 
neurodegeneration, we  explored, whether miRNA could provide 
information on the shared pathways between neurodegeneration and 
COVID-19 pathogenesis. We have first performed a thorough literature 
screening and database mining to find the shared miRNA landscapes of 
SARS-CoV-2 and neurodegeneration. Next, we also identified shared 
pathways between the two pathologies and listed top miRNA candidates 
that could potentially serve as biomarkers of neurodegeneration in 
COVID-19 patients or as valuable treatment targets or agents to halt or 
prevent neurodegeneration in COVID-19 patients.

2. Methods

Literature screening approach and database mining were 
combined in search for common miRNAs shared between 
neurodegenerative diseases and COVID-19. Pathway enrichment 
analysis was performed on the list of target genes of the 
overlapping miRNAs.

First, differentially expressed miRNA in body fluids or tissues of 
COVID-19 patients were extracted from literature. PubMed search for 
original articles was performed using broad keyword string “COVID-19 
and miRNA” to include as many relevant articles as possible. PRISMA 
flow diagram is presented in the Supplementary Figure S1 (Additional 
file 1). Following exclusion criteria, articles evaluating viral miRNAs, in 
vitro or in silico analyses, articles overlapping with other diseases and 
review articles, commentaries, preprints or articles not in English were 
not included in further analysis. The two authors (SRT and DV) 
independently reviewed all abstracts and articles to evaluate whether 
the study would meet criteria for inclusion in the analysis. If there was 
any disagreement between the authors about the inclusion of a study, a 
third author (KG) reviewed the study and made a decision. Furthermore, 
a list of miRNAs, associated with five most prevalent neurodegenerative 
diseases (AD, PD, MS, ALS and HD), was obtained from The Human 
microRNA Disease Database (HMDD, accessed on 21 .1. 2022; Huang 
et  al., 2019). As HMDD reports only mature miRNAs (without 
specifying the-5p or-3p forms), we used mature miRNA forms also for 
the COVID-19 miRNA list. Key miRNAs were defined as miRNAs 
associated with both COVID-19 and all five neurodegenerative diseases 
and miRNAs deregulated in at least four COVID-19 studies with the 
same direction of effect (up-or down-regulated) and also deregulated in 
at least one neurodegenerative disease.

In search for overlapping miRNAs (Figure 1), a list of unique 
COVID-19 miRNAs was then compared to a list of unique 
neurodegenerative diseases’ miRNAs. Venn diagrams were generated 
using Bioinformatics & Evolutionary Genomics group webtool 
(accessed on 12. 2. 2022; UGent, n.d.).

Next, common miRNAs were screened for gene targets using 
miRTarBase (accessed on 11. 2. 2022; Huang et al., 2020). We chose 
miRTarBase due to the fact that it allows to screen for experimentally 
confirmed target genes with all three strong evidence generating 
methods (Reporter assay, Western blot and qPCR). Only those target 
genes were included in further analysis (Figure 1). However, we were 
not able to differentiate whether a miRNA is up-or down-regulated in 
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COVID-19 patients, because different studies reported different 
directions of effect.

A list of identified unique target genes served as a template for 
pathway enrichment analysis (Figure 1). Two different approaches 
were used; Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment was performed using The Database for Annotation, 
Visualization and Integrated Discovery (DAVID) Functional 
annotation tool (accessed on 11. 2. 2022; Huang da et al., 2009a,b), 
while Reactome (accessed on 12. 2. 2022) was used for Reactome 
pathway enrichment (Sidiropoulos et al., 2017). p-values below 0.05 
after false discovery rate (FDR) adjustment were considered 
statistically significant. Top twenty significant pathways were 
visualized with bubble plots using GraphPad Prism 9 (GraphPad 
Software, San Diego, CA, USA).

3. Results

Between March 2020 and 20th January 2022, 29 articles 
investigated miRNA expression changes associated with SARS-CoV-2 
infection, mostly in plasma, serum or blood cell samples. In total, 226 
unique miRNAs were identified, while 62 (27.4%) miRNAs were 
reported in more than one study. In patients with COVID-19, 108 
(47.8%) miRNAs were down-regulated, 78 (34.5%) were up-regulated 
and 40 (17.7%) were either up- or down-regulated (Table 1). The most 
commonly identified miRNAs were hsa-miR-142, which was down-
regulated in 3 studies (5p form) and up-regulated in 2 studies (3p form 
in 1 study, 5p in 1), hsa-miR-144, which was down-regulated in 3 
studies (3p form in 2 studies, 5p in 1) and up-regulated in 2 studies 
(both 3p and 5p form in 1 study), and hsa-miR-320a, which was 
down-regulated in 2 studies (3p form in 1 study) and up-regulated in 

3 studies (3p form in 2 studies). Additionally, hsa-miR-155 was 
upregulated in 4 studies. Among these, only hsa-miR-155 showed 
consistent direction of effect across the studies, which is why 
we highlighted it as a key miRNA.

Based on HMDD data, 114 unique miRNAs were dysregulated in 
AD, 88 miRNAs in MS, 83 miRNAs in PD, 20 miRNAs in HD and 63 
miRNAs in ALS (Additional file 2: Supplementary Tables S1a–e). The 
overlap of miRNAs between different neurodegenerative diseases is 
presented in a Venn diagram in Figure  2A. In total, 234 unique 
miRNAs were associated with at least one neurodegenerative disease.

Comparison between neurodegenerative disease- and COVID-
19-related miRNAs identified 98 common differentially expressed 
miRNAs (Figure 2B). Only two miRNAs, hsa-miR-34a and hsa-miR-
132, were associated with all five investigated neurodegenerative 
disorders. Consequently, we added these two miRNAs to the list of 
key miRNAs.

For all 98 common miRNAs associated with at least one 
neurodegenerative disease and COVID-19, experimentally confirmed 
target genes were extracted from miRTarBase (Additional file 3: 
Supplementary Table S2). Screening resulted in 746 unique target 
genes confirmed with strong evidence. Target genes for common 
miRNAs hsa-miR-34a (47 genes) and hsa-miR-132 (10 genes) are 
presented in Table 2.

Pathway enrichment analysis revealed, that miRNA target genes 
were significantly enriched (FDR < 0.05) in 112 KEGG pathways 
(Additional file 4: Supplementary Table S3a) and 608 Reactome 
pathways (Additional file 4: Supplementary Table S3b). Among the 20 
most significant KEGG pathways (Figure  3A), 11 (55%) were 
associated with cancer, 6 (30%) with signaling, and 2 (10%) with 
infections and 1 (5%) with other biological processes. Among the 20 
most significant Reactome pathways (Figure  3B), 10 (50%) were 

FIGURE 1

Workflow of the analysis. Integration of literature and database screening to identify miRNAs associated with neurodegenerative diseases and 
COVID-19, their target genes and pathway enrichment analysis. AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus 
disease 2019; HD, Huntington’s disease; HMDD, Human microRNA Disease Database; MS, multiple sclerosis; PD, Parkinson’s disease.
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TABLE 1 miRNAs with changed expression levels in COVID-19.

Reference Disease stages Sample type miRNA

Up-regulated miRNA Down-regulated miRNA

Tang et al. (2020)
Moderate vs.

severe vs. HC

Red blood cell depleted 

whole blood

hsa-miR-3605-3p hsa-miR-486-3p hsa-miR-146a-5p hsa-miR-31-5p hsa-miR-342-3p

hsa-miR-15b-5p hsa-miR-18a-3p hsa-miR-486-5p hsa-miR-21-5p hsa-miR-99a-5p hsa-miR-181a-2-3p

hsa-miR-142-5p

Li et al. (2020) Mild + moderate vs. HC Peripheral blood hsa-miR-16-2-3p hsa-miR-6501-5p hsa-miR-618 hsa-miR-183-5p hsa-miR-627-5p hsa-miR-144-3p

Centa et al. (2020) Severe vs. HC Post mortem lung biopsies / hsa-miR-26a-5p hsa-miR-29b-3p hsa-miR-34a-5p

Zheng et al. (2020) Mild vs. moderate vs. severe
Peripheral blood 

mononuclear cells

hsa-miR-100-5p hsa-miR-26a-5p hsa-miR-374b-5p hsa-let-7e-5p hsa-miR-328-3p hsa-miR-671-3p

hsa-miR-10395-3p hsa-miR-26b-5p hsa-miR-374c-5p hsa-miR-10399-3p hsa-miR-3615 hsa-miR-6772-3p

hsa-miR-138-5p hsa-miR-32-5p hsa-miR-376a-3p hsa-miR-10a-5p hsa-miR-423-5p hsa-miR-6842-3p

hsa-miR-144-5p hsa-miR-338-3p hsa-miR-4,772-5p hsa-miR-11400 hsa-miR-423-3p hsa-miR-7706

hsa-miR-144-3p hsa-miR-33a-3p hsa-miR-4,791 hsa-miR-1249-5p hsa-miR-424-3p hsa-miR-7977

hsa-miR-181c-5p hsa-miR-708-5p hsa-miR-514a-3p hsa-miR-1273 h-3p hsa-miR-4646-3p hsa-miR-877-5p

hsa-miR-186-5p hsa-miR-95-3p hsa-miR-548w hsa-miR-130b-5p hsa-miR-4659b-3p hsa-miR-92b-3p

hsa-miR-6718-5p hsa-miR-374a-5p hsa-miR-139-5p hsa-miR-484 hsa-miR-941-1

hsa-miR-139-3p hsa-miR-490-3p hsa-miR-941-2

hsa-miR-145-5p hsa-miR-5193 hsa-miR-941-3

hsa-miR-1908-5p hsa-miR-584-5p hsa-miR-941-4

hsa-miR-195-3p hsa-miR-625-3p hsa-miR-941-5

hsa-miR-320a-3p hsa-miR-6501-5p hsa-miR-942-5p

Sabbatinelli et al. (2021) Tocilizumab treatment vs. HC Serum / hsa-miR-146a-5p

Garg et al. (2021) Mechanically ventilated vs. HC Serum
hsa-miR-21 hsa-miR-208a hsa-miR-499 /

hsa-miR-155

Bagheri-Hosseinabadi et al. 

(2021)
COVID-19 vs. HC Blood / hsa-miR-10b

Mi et al. (2021)
Osteogenic

differentiation in COVID-19
Blood hsa-miR-4485 /

Yang et al. (2021) COVID-19 vs. HC Plasma / hsa-miR-451a

(Continued)
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TABLE 1 (Continued)

Reference Disease stages Sample type miRNA

Up-regulated miRNA Down-regulated miRNA

Li et al. (2021) COVID-19 vs. HC Blood

hsa-miR-16-2-3p hsa-miR-6501-5p hsa-miR-505-5p hsa-miR-183-5p hsa-miR-4521 hsa-miR-18b-5p

hsa-miR-5695 hsa-miR-4659a-3p hsa-miR-125b-5p hsa-miR-627-5p hsa-miR-144-3p hsa-miR-3613-5p

hsa-miR-10399-3p hsa-miR-142-5p hsa-miR-618 hsa-miR-21-5p hsa-miR-199a-3p hsa-miR-29b-2-5p

hsa-miR-20a-5p hsa-miR-199b-3p hsa-miR-32-5p

hsa-miR-18a-5p hsa-miR-96-5p

Keikha et al. (2021) COVID-19 (grades 1–5) vs. HC Blood hsa-miR-17-3p hsa-miR-31-3p hsa-miR-29a-3p hsa-miR-126-3p

Saulle et al. (2021)
COVID-19 pregnant vs. 

uninfected pregnant women
Blood

hsa-miR-21 hsa-miR-29c hsa-miR-155 /

hsa-miR-23b hsa-miR-98 hsa-miR-150

hsa-miR-28 hsa-miR-326 hsa-miR-146

hsa-miR-29a hsa-miR-17

hsa-miR-92 hsa-miR-223

Farr et al. (2021) Moderate vs. severe vs. HC Plasma

hsa-let-7e-5p hsa-miR-1290 hsa-miR-4,742-3p hsa-miR-766-3p hsa-miR-5189-3p hsa-miR-3913-5p

hsa-miR-195-5p hsa-miR-103a-3p hsa-miR-423-5p hsa-miR-651-5p hsa-miR-6772-3p hsa-miR-28-5p

hsa-let-7a-5p hsa-miR-320b hsa-miR-320c hsa-miR-1275 hsa-miR-145-3p hsa-miR-551b-3p

hsa-miR-483-5p hsa-miR-193a-5p hsa-miR-142-3p hsa-miR-3198 hsa-miR-4772-3p hsa-let-7i-3p

hsa-miR-3125 hsa-miR-206 hsa-miR-92a-3p hsa-miR-627-5p hsa-miR-1226-3p hsa-miR-548 k

hsa-miR-30a-5p hsa-miR-148a-3p hsa-miR-6,721-5p hsa-miR-4662a-5p hsa-miR-589-3p hsa-miR-18a-3p

hsa-miR-27a-5p hsa-miR-320a-3p hsa-let-7f-5p hsa-miR-3684 hsa-miR-210-3p hsa-miR-491-5p

hsa-miR-2116-3p hsa-miR-576-5p hsa-miR-3617-5p hsa-miR-3115 hsa-miR-6503-3p

hsa-miR-31-5p hsa-miR-197-3p hsa-miR-500b-3p hsa-miR-769-3p hsa-miR-3065-3p

hsa-miR-664b-3p hsa-miR-873-5p hsa-miR-150-5p

Donyavi et al. (2021) Acute and post-acute 

COVID-19 vs. HC

Peripheral blood 

mononuclear cells

hsa-let-7b-3p hsa-miR-146a-3p hsa-miR-29a-3p /

hsa-miR-155-5p

Grehl et al. (2021) Mild vs. severe Plasma hsa-miR-4516 hsa-miR-320b hsa-miR-629-5p hsa-miR-454-3p hsa-miR-126-3p hsa-miR-342-3p

hsa-miR-362-5p hsa-miR-320c hsa-miR-1180-3p hsa-miR-625-3p hsa-miR-146b-5p hsa-miR-193b-3p

hsa-miR-548 k hsa-miR-320d hsa-miR-502-3p hsa-miR-30b-5p hsa-miR-30c-5p hsa-miR-190a-5p

hsa-miR-320a-3p hsa-miR-185-5p hsa-miR-192-5p hsa-miR-144-5p hsa-miR-365b-3p

hsa-miR-451a hsa-miR-29a-3p hsa-miR-122b-5p

hsa-miR-197-3p hsa-miR-363-3p hsa-miR-122-3p

hsa-miR-29b-3p hsa-miR-99a-5p

(Continued)
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TABLE 1 (Continued)

Reference Disease stages Sample type miRNA

Up-regulated miRNA Down-regulated miRNA

Chen et al. (2021) COVID-19 vs. HC Peripheral blood 

mononuclear cells

hsa-miR-485-5p hsa-miR-3614-5p hsa-let-7d-3p hsa-miR-548ar-3p hsa-miR-514a-3p hsa-miR-4521

hsa-miR-1226-3p hsa-miR-103a-2-5p hsa-miR-652-3p hsa-miR-125b-1-3p hsa-miR-615-3p hsa-miR-142-5p

hsa-miR-196a-5p hsa-miR-184 hsa-miR-1291

hsa-miR-34c-5p hsa-miR-192-5p hsa-miR-4772-5p

hsa-miR-708-3p hsa-miR-499a-5p hsa-miR-141-3p

hsa-miR-27a-3p hsa-miR-340-3p hsa-miR-3615

hsa-miR-642a-5p hsa-miR-581 hsa-miR-659-5p

hsa-miR-509-3-5p hsa-miR-3194-3p hsa-miR-132-5p

hsa-miR-511-5p hsa-miR-4473

Pimenta et al. (2021) Non-hospitalized vs. 

hospitalized vs. severe vs. HC

Saliva hsa-miR-200c-3p /

de Gonzalo-Calvo et al. (2021) Hospitalized vs. ICU

survivor vs. non-survivor

Plasma hsa-miR-27a-3p hsa-miR-148a-3p hsa-miR-491-5p hsa-miR-16-5p hsa-miR-150-5p hsa-miR-486-5p

hsa-miR-27b-3p hsa-miR-199a-5p hsa-miR-92a-3p hsa-miR-451a

Fayyad-Kazan et al. (2021) COVID-19 vs.HC Plasma hsa-miR-15a-5p hsa-miR-19b-3p hsa-miR-92a-3p hsa-miR-17-5p hsa-miR-142-5p

hsa-miR-19a-3p hsa-miR-23a-3p hsa-miR-320a

McDonald et al. (2021) COVID-19 vs. HC Serum and urine hsa-miR-2392 /

Haroun et al. (2022) COVID-19 vs. HC Plasma hsa-miR-155 /

Agwa et al. (2021) Mild vs. severe vs. HC Blood hsa-miR-4257 /

Gutmann et al. (2022) Non-severe vs. severe vs. HC Plasma hsa-miR-122 hsa-miR-133a /

Mild vs. moderate vs. severe

Wu et al. (2021) COVID-19 vs. HC Plasma hsa-miR-29b-3p hsa-miR-1246 hsa-miR-186-5p hsa-miR-15a-5p

Meidert et al. (2021) Mild vs. severe vs. HC Extracellular vesicles from 

serum

hsa-miR-193a-5p hsa-miR-197-3p hsa-miR-206 /

hsa-let-7 g-5p hsa-miR-20a-5p

Akula and Bolin (2022) Moderate+severe vs. HC Blood hsa-miR-3197 hsa-miR-4690-5p hsa-miR-1915-3p hsa-miR-150-5p hsa-miR-122-5p hsa-miR-494-3p

hsa-miR-3652 hsa-miR-375

Liu et al. (2022) Moderate vs. severe vs. HC Blood hsa-miR-130a-3p hsa-miR-29b-3p /

(Continued)
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associated with signaling, 4 (20%) with transcription, 3 (15%) with 
immune system, 1 (5%) with cancer and 2 (10%) with other biological 
processes. Their association with neuroinflammation, neuroprotection, 
and cell senescence is further described in the discussion.

4. Discussion

Among miRNAs, dysregulated in patients with COVID-19, 
almost half were previously associated with at least one 
neurodegenerative disease. Three key miRNAs were identified as 
potential biomarkers of neurodegeneration in COVID-19: 
hsa-miR-34a, hsa-miR-132, and hsa-miR-155. Target genes of all 
shared miRNAs were enriched in several pathways associated with 
neurodegeneration, including neuroinflammation promoting 
signaling pathways, pathways related to neuroinflammation 
mediators, neuroprotective pathways, and cellular senescence pathway.

4.1. Interplay between COVID-19 and 
neurodegenerative diseases: Key miRNAs

Downregulation of hsa-miR-34a and hsa-miR-132 was 
associated with COVID-19 and all five investigated 
neurodegenerative diseases, whereas hsa-miR-155 was found to 
be upregulated in at least four COVID-19 expression studies and was 
also associated with several of the investigated neurodegenerative 
diseases. All listed COVID-19-related miRNAs were identified in 
human studies, whereas not all neurodegeneration-related miRNAs 
were identified in human samples. According to the HMDD, all 
three listed key miRNAs were confirmed to be associated with AD 
and MS in human studies. Furthermore, hsa-miR-132 was associated 
with PD and ALS in patients, while hsa-miR-34a was associated with 
ALS in patients as well. Other associations between one of the key 
miRNAs and a certain neurodegenerative disease were identified in 
other types of models. Expression of miRNA is spatiotemporally 
specific. It is affected by various factors, such as age, comorbidities, 
SARS-CoV-2 strain, COVID-19 vaccination status, time from SARS-
CoV-2 infection, etc.(Martínez-Fleta et al., 2021) The choice of tissue 
for expression analysis and also taking into account the listed factors 
is thus important. However, considering that COVID-19 may induce 
a systemic inflammatory response, which relates to disease severity 
(Ferrara and Vitiello, 2021; Ramos-Casals et al., 2021), choosing 
plasma as a readily accessible reservoir of miRNAs originating from 
different tissues is reasonable. In body fluids, signaling molecules, 
including miRNAs, have been found as extracellular vesicle’s (EV) 
cargo. Understanding the role of EVs as important mediators of 
intercellular communication, their potential in miRNA associated 
gene regulation of COVID-19 patients has previously been studied 
(Meidert et al., 2021; Wang Y. et al., 2021). Furthermore, another 
potential mechanism for EV transfer to periphery can be associated 
with the breakdown of blood brain barrier, an overlapping feature of 
many neurodegenerative diseases and COVID-19 as well (Hill, 2019; 
Bonetto et al., 2022). To date, different miRNAs of neuronal origin 
have been found in blood plasma samples (Serpente et al., 2020; 
Bonetto et al., 2022).

Of note, we considered the identified miRNAs only as potential 
biomarkers of a certain phenotype, e.g., neurodegeneration in T
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COVID-19 patients, meaning that they do not necessarily have to 
be of neuronal origin. However, we speculate that COVID-19 has 
similar effects on miRNA expression in both CNS and peripheral 
tissues. Studies on patients or human cell lines are emphasized with 
the hsa- prefix, whereas no prefix indicates different animal models.

4.1.1. Hsa-miR-34a
Hsa-miR-34a is one of the miRNAs associated with COVID-19 

and all neurodegenerative diseases investigated in our study. Relative 
expression of hsa-miR-34a-5p was significantly down-regulated in 
post mortem lung biopsies of patients that died of COVID-19 
compared to controls that died of other causes (Centa et al., 2020).

Dysregulation of miR-34a was observed in ALS (Raheja et al., 
2018; Rizzuti et al., 2018; Kmetzsch et al., 2021), PD (Grossi et al., 
2021; Yang et al., 2022), AD (Sarkar et al., 2016; Cosín-Tomás et al., 

2017; Li et al., 2020; Li and Cai, 2021), HD (Reynolds et al., 2018), and 
MS (Ghadiri et al., 2018). In AD, hsa-miR-34a was overexpressed in 
specific brain regions (Sarkar et  al., 2016; Li and Cai, 2021), but 
downregulated in blood or CSF (Cosín-Tomás et al., 2017; Li et al., 
2020). In PD, this miRNA was enriched in small EVs and associated 
with disease duration and clinical characteristics (Grossi et al., 2021). 
Hsa-miR-34a was also associated with disease relapse in MS (Ghadiri 
et al., 2018) and disease duration in ALS (Raheja et al., 2018), while 
upregulation in CSF of ALS patients was also observed (Rizzuti et al., 
2022). It was proposed as a negative regulator of C9ORF72, a gene 
commonly mutated in familial ALS (Kmetzsch et al., 2021).

MiR-34a regulates multiple processes that can contribute to 
neurodegeneration, such as neuronal differentiation, synaptic 
plasticity, neurogenesis, cognitive function, brain aging and energy 
metabolism (Dickson et al., 2013; Sarkar et al., 2016; Grossi et al., 
2021). Specifically, miR-34a can regulate several genes important for 
AD pathogenesis, such as sirtuin 1 (SIRT1), ADAM metallopeptidase 
domain 10 (ADAM10), triggering receptor expressed on myeloid cells 
2 (TREM2), and BCL2 apoptosis regulator (BCL2; Nunomura and 
Perry, 2020). Hsa-miR-34a can directly decrease expression of tau 
protein, a key player in AD pathogenesis (Dickson et al., 2013). Studies 
have also shown that miR-34a affects Aβ induced neurotoxicity 
through regulation of beta-secretase 1 (BACE1; Li et al., 2020), as well 
as amyloid precursor protein (APP) processing and cognitive defects 
(Cosín-Tomás et al., 2017; Jian et al., 2017). Additionally, this miRNA 
was implicated in signaling pathways associated with endothelial 
dysfunction (Centa et al., 2020) and acting as a tumor suppressor in 
different types of cancer (Li et  al., 2021). It may also affect ROS 
production and response to oxidative stress by regulating expression 
of nuclear factor erythroid 2-related factor 2 (NRF2, encoded by 
NFE2L2) and other genes (Climent et al., 2020; Nunomura and Perry, 
2020). NRF2 is a transcription factor that plays an important role in 
various neurodegenerative diseases and was even proposed as a 
potential therapeutic target (Saha et al., 2021).

Hsa-miR-34a target genes are overrepresented in pathways 
associated with viral infectious diseases (Centa et al., 2020) and 

A B

FIGURE 2

Venn diagrams. Venn diagrams showing the overlap between miRNAs associated with different neurodegenerative diseases separately (A) and the 
overlap between miRNAs associated with at least one neurodegenerative disease and COVID-19 (B). AD, Alzheimer’s disease; ALS, amyotrophic lateral 
sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington’s disease; MS, multiple sclerosis; PD, Parkinson’s disease.

TABLE 2 Experimentally confirmed hsa-miR-34a and hsa-miR-132 target 
genes, associated with five investigated neurodegenerative disorders and 
COVID-19.

miRNA Target genes

hsa-miR-34a-3p LDHA

hsa-miR-34a-5p AXL, BCL2, BIRC5, CCND1, CD44, 

CDK4, CDK6, DLL1, E2F3, FOSL1, 

FUT8, GALNT7, GAS1, GFRA3, 

HDAC1, HNF4A, HOTAIR, INHBB, 

JAG1, KDM4A, KLF12, KLF4, L1CAM, 

MAGEA12, MAGEA2, MAGEA3, 

MAGEA6, MAP2K1, MAP3K9, MDM4, 

MET, MYB, MYC, MYCN, NOTCH1, 

NOTCH2, PDGFRA, PDGFRB, POU5F1, 

RICTOR, SIRT1, SIRT7, SNAI1, SRC, 

TCF7, YY1

hsa-miR-132-3p ARHGAP32, CDKN1A, EGFR, FOXO1, 

HBEGF, HN1, KLHL11, MAPK1, RAF1, 

RB1
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hsa-miR-34a was dysregulated in response to infection with 
various viruses, especially human papilloma virus and influenza A 
virus, where hsa-miR-34a was downregulated [reviewed in (Lv 
et al., 2019)]. Several hsa-miR-34a target genes have already been 
found to be differentially expressed in RNA sequencing studies or 
protein levels were found to be  changed due to SARS-CoV-2 

infection, such as AXL (Wang S. et al., 2021) BCL2 (Lorente et al., 
2021), LDHA (Xu et  al., 2021), SIRT1 (Bordoni et  al., 2021; 
D'Agnillo et al., 2021), PDGFRB (Kamp et al., 2022), and MYC 
(Banaganapalli et al., 2021). AXL is involved in virus cell entry 
(Naik et al., 2022), while BCL2 is an apoptosis inhibitor (Yapasert 
et al., 2021). LDHA was upregulated on both mRNA (Qi et al., 

A

B

FIGURE 3

Bubble plots showing most significant enriched pathways. Bubble plots showing 20 most significant enriched Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (A) and Reactome (B) pathways. The x-axis represents the percentage of 746 miRNA target genes associated with a specific pathway 
represented on the y-axis. Size of the bubble represents the number of genes associated with a specific pathway and the color of the bubble reflects 
the p-value after false discovery rate (FDR) adjustment.
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2021) and protein (Xu et al., 2021) levels and shows potential as a 
distinguishing biomarker between healthy and SARS-CoV-2 
infected people. Expression of SIRT1 mRNA, a major inhibitor of 
oxidative stress–induced senescence in lung endothelial and 
epithelial cells, was shown to be decreased in COVID-19 (D'Agnillo 
et al., 2021). All this shows, that downregulation of hsa-miR-34a 
in COVID-19 may be  one of the factors contributing to the 
neurological complications in COVID-19 patients.

4.1.2. Hsa-miR-132
Second miRNA associated with all investigated neurodegenerative 

diseases and COVID-19 was hsa-miR-132. Relative expression of 
hsa-miR-132-5p was significantly down-regulated in peripheral 
mononuclear cell samples of COVID-19 patients (Chen et al., 2021).

MiR-132 is one of the most commonly dysregulated miRNAs in 
neurodegenerative diseases, particularly in AD (Lau et al., 2013; Ma 
et al., 2014; Smith et al., 2015; Salta and De Strooper, 2017; El Fatimy 
et al., 2018; Cha et al., 2019; Li and Cai, 2021), but also PD (Alieva 
et al., 2015; Yang et al., 2019; Shu et al., 2020; Gong et al., 2022), ALS 
(Vrabec et al., 2018), MS (Miyazaki et al., 2014; Regev et al., 2017) and 
HD (Fukuoka et  al., 2018). Hsa-miR-132 was consistently 
downregulated in AD, both in the brain and blood, including in 
neurally-derived EVs (Lagos et al., 2010; Smith et al., 2015; Pichler 
et al., 2017; Cha et al., 2019; Tasker et al., 2021). On the other hand, 
upregulation of hsa-miR-132 was mostly observed in PD, where it was 
also associated with disease duration and severity and dopaminergic 
neurodegeneration (Yang et  al., 2019; Gong et  al., 2022), but 
downregulation was also reported by some studies (Shu et al., 2020). 
Additionally, increased expression was observed after treatment 
(Alieva et al., 2015).

MiR-132 is one of the most abundant brain miRNAs and it was 
proposed as a neuroprotective miRNA that regulates multiple 
processes in the nervous system, such as neuronal differentiation, 
survival and migration, synaptic plasticity, neurogenesis, apoptosis, 
memory, and cognitive function (Smith et al., 2015; Salta and De 
Strooper, 2017; Zhang and Bian, 2021). Several miR-132 target genes 
were identified and many are also important in neurodegenerative 
diseases, such as BACE1, APP, SIRT1, acetylcholinesterase (ACHE), 
nitric oxide synthase 1 (NOS1), and mitogen-activated protein kinase 
(MAPK1; Miyazaki et al., 2014; Salta and De Strooper, 2017; Qu et al., 
2021; Zhang and Bian, 2021). It also regulates signaling pathways, e.g., 
PI3K/AKT and Notch signaling (Salta and De Strooper, 2017). 
Importantly, miR-132 exerts a neuroprotective effect against Aβ and 
glutamate excitotoxicity and decreases tau protein expression 
(Dickson et al., 2013; Smith et al., 2015; El Fatimy et al., 2018; Varma-
Doyle et al., 2021). Several studies have proposed that it could be a 
potential treatment target as restoration of miR-132 expression 
improved cognitive function in animal models (Qu et al., 2021; Zhang 
and Bian, 2021).

Hsa-miR-132 also plays an important role in inflammation and 
immune response (Salta and De Strooper, 2017). It represses 
inflammatory cytokines such as interleukin 1β (IL-1β), tumor necrosis 
factor (TNFα) and interleukin 6 (IL-6; Salta and De Strooper, 2017; 
Gong et al., 2022). Expression of hsa-miR-132 target genes, such as 
MAPK1 (Hasankhani et  al., 2021), and FOXO1 (Jha et  al., 2020), 
involved in neuroinflammation or neuroprotective mechanisms, 
respectively, was found to be  affected in COVID-19 patients. 
Interestingly, hsa-miR-132 was previously upregulated in response to 

infection with different viruses (Lagos et al., 2010; Buggele et al., 2012; 
Qi et  al., 2014; Zhang et  al., 2019). Its upregulation decreased 
interferon response through interferon regulatory factor 1 (IRF1) in 
H1N1 influenza A virus infection (Zhang et  al., 2019). It was 
speculated that miR-132 might be associated with nervous system 
complications such as encephalitis after varicella-zoster virus infection 
(Qi et al., 2014). All these findings suggest that hsa-miR-132 might 
be a factor contributing to neurological complications in COVID-19 
patients and should be investigated in further studies.

4.1.3. Hsa-miR-155
Hsa-miR-155 expression was upregulated in blood or peripheral 

blood mononuclear cells in four studies on COVID-19 (Donyavi et al., 
2021; Garg et al., 2021; Saulle et al., 2021; Haroun et al., 2022). It was 
upregulated in both acute and post-acute patients and was further 
upregulated in severe or critically ill COVID-19 patients or patients 
that died (Donyavi et al., 2021; Garg et al., 2021; Haroun et al., 2022). 
It could also differentiate between COVID-19 and influenza-
associated acute respiratory distress syndrome (Garg et al., 2021). 
Studies have therefore proposed hsa-miR-155 as a potential diagnostic 
biomarker for COVID-19 (Donyavi et al., 2021; Garg et al., 2021; 
Haroun et al., 2022).

Previous studies have found that miR-155 plays an important 
role in several neurodegenerative diseases: ALS (Cunha et al., 2018; 
Raheja et al., 2018), PD (Caggiu et al., 2018; Oliveira et al., 2020), 
AD (Song and Lee, 2015; Liang and Wang, 2021), and MS (Lopez-
Ramirez et al., 2014; Ma et al., 2014; Niwald et al., 2017; Regev et al., 
2017; Baulina et al., 2018). It was consistently upregulated in most 
studies on AD, PD, MS, ALS (Juźwik et al., 2019; Slota and Booth, 
2019; Zingale et al., 2021). In PD, hsa-miR-155 was increased in 
patients treated with L-dopa and was proposed as a disease 
progression biomarker and potential treatment target (Caggiu et al., 
2018). It was also associated with patients’ clinical characteristics in 
ALS and MS (Niwald et al., 2017; Raheja et al., 2018). Recently, in 
CSF EVs, miR-155 was specifically expressed in patients with 
encephalitis (Torii et al., 2022).

MiR-155 is widely regarded as a central proinflammatory miRNA 
in CNS, associated with numerous processes of neuroinflammation, 
including polarization, neurotoxicity, activation of different cell types 
and cell plasticity (Lopez-Ramirez et al., 2014; Gaudet et al., 2018; 
Slota and Booth, 2019). It could serve as a negative regulator of blood–
brain barrier permeability through regulation of cell–cell complex 
molecules and focal adhesion components (Lopez-Ramirez et  al., 
2014). In different models, it was proposed as a potential therapeutic 
target in neurodegenerative diseases (Rastegar-Moghaddam 
et al., 2022).

Hsa-miR-155 is also abundantly expressed in B-cells, T-cells, 
macrophages, and dendritic cells (Zeng et al., 2015). It regulates T 
lymphocyte function: development and activation, cell–cell interaction 
and interferon γ signaling (Song and Lee, 2015). MiR-155 is associated 
with proinflammatory cytokines IL-1β, TNFα and IL-6, as well as 
auto-immunity (Lopez-Ramirez et  al., 2014; Thome et  al., 2016; 
Rastegar-Moghaddam et  al., 2022). It was also associated with 
immune system disorders, infection, and cancer (Climent et al., 2020).

Among most important targets of hsa-miR-155 are suppressor of 
cytokine signaling 1 (SOCS1), inositol polyphosphate-5-phosphatase 
D (SHIP1), and interleukin 13 receptor subunit alpha 1 (IL13RA1; 
Gaudet et al., 2018; Slota and Booth, 2019; Zingale et al., 2021). In AD, 
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it was also associated with AD-related genes such as 
phosphatidylinositol binding clathrin assembly protein (PICALM) 
and sortilin related receptor 1 (SORL1), and production of Aβ 
(Rastegar-Moghaddam et al., 2022). In PD, it was associated with 
Parkinsonism associated deglycase (DJ-1) and inflammatory responses 
induced by α-synuclein (Thome et al., 2016; Rastegar-Moghaddam 
et al., 2022). It was also associated with response to oxidative stress, 
NRF2 and inducible NO synthase (Climent et al., 2020).

A lot of studies have shown that hsa-miR-155 plays a crucial role 
in response to microbial infections and is upregulated in response to 
various viruses [reviewed in (Zeng et  al., 2015; Jafarzadeh et  al., 
2021)]. Hsa-miR-155 is involved in both adaptive and innate antiviral 
immune response and it affects both inflammatory response and anti-
virus response, e.g., viral clearance and persistence (Jafarzadeh et al., 
2021). Hsa-miR-155 was also upregulated in viral infection of the CNS 
(Slota and Booth, 2019; Zingale et al., 2021). In coronavirus-induced 
neurologic disease model, miR-155 enhanced T cell trafficking to the 
CNS and was associated with host defence by regulating cytolytic 
activity and cytokine secretion (Dickey et al., 2016). In COVID-19 it 
was suggested to be  associated with the signature cytokine storm 
(Donyavi et al., 2021). Importantly, this miRNA was associated with 
susceptibility to virus-induced neurologic disease such as encephalitis 
(Dickey et al., 2016). All these findings provide ample support that 
hsa-miR-155 regulation might be an important factor contributing to 
neurological complications in COVID-19 patients and should 
be investigated in further studies.

4.1.4. Other miRNAs
Additionally, three miRNAs (hsa-miR-142, hsa-miR-144, and 

hsa-miR-320a) were dysregulated in blood or peripheral blood 
mononuclear cells in five studies on COVID-19 (Li et al., 2020; Tang 
et al., 2020; Zheng et al., 2020; Chen et al., 2021; Duecker et al., 2021; 
Farr et al., 2021; Fayyad-Kazan et al., 2021; Grehl et al., 2021; Li et al., 
2021). Even though the reported direction of effect was not consistent 
among studies, further studies could provide more insight regarding 
the role of these miRNAs, as they were also often implicated 
in neurodegeneration.

MiR-142 downregulation promotes inflammatory processes and 
affects response to oxidative stress by regulating NRF2 expression 
(Sørensen et al., 2016; Regev et al., 2017; Tang et al., 2020; Varma-
Doyle et  al., 2021). It plays an important role in hematopoesis, 
inflammation, lung development, and response to viral infections 
(Shrestha et  al., 2017). Changes in hsa-miR-142 expression were 
reported in ALS (Matamala et  al., 2018), PD (Liu et  al., 2019; 
Barbagallo et al., 2020), AD (Kumar et al., 2013; Sørensen et al., 2016; 
Song and Kim, 2017), and especially in MS (Ma et al., 2014; Regev 
et al., 2016, 2017, 2018; Mandolesi et al., 2017; Raheja et al., 2018; De 
Vito et al., 2022). It was also associated with disease progression in MS 
and ALS (Regev et al., 2016; Mandolesi et al., 2017; Regev et al., 2017; 
Matamala et al., 2018; Raheja et al., 2018; Regev et al., 2018; De Vito 
et al., 2022).

MiR-144 plays an important role in cancer, regulating cell 
proliferation, migration, apoptosis and other signaling pathways 
(Zhou et al., 2020). MiR-144 can also promote oxidative stress, as it 
regulates NRF2  in cooperation with hsa-miR-34a (Climent et  al., 
2020). It was identified as a negative regulator of host response to RNA 
viruses in mice models (Rosenberger et al., 2017). Hsa-miR-144 was 
dysregulated in ALS (Liguori et al., 2018; Raheja et al., 2018), PD 

(Xing et al., 2020; Zago et al., 2022), AD (Cheng et al., 2013), and MS 
(Roshani et al., 2021).

MiR-320a affects multiple processes associated with 
neurodegeneration and has been proposed as an important regulator 
of blood–brain barrier permeability (Sepramaniam et al., 2010; Aung 
et al., 2015). Altered hsa-miR-320a expression was observed especially 
in MS, where it was associated with disease relapse (Aung et al., 2015; 
Regev et al., 2016; Regev et al., 2018), but also in ALS and AD (Denk 
et al., 2018; Raheja et al., 2018; Tan et al., 2021). Interestingly, hsa-miR-
320a was previously associated with adenoviral infection in lung cells 
(Zhao et al., 2015) and downregulated in HIV-1 patients suffering 
from mild cognitive impairment (Fatima et al., 2017).

4.2. Interplay between COVID-19 and 
neurodegenerative diseases: Key pathways

Our Reactome and KEGG pathway enrichment analyses 
highlighted some of the most significant pathways that could link 
COVID-19 and neurodegenerative diseases.

Overall, the most enriched pathways within the Reactome top 20 
list belong to various signaling processes. Some of them are very 
broad and rather unspecific, such as »Diseases of signal transduction 
by growth factor receptors and second messengers«, »Signaling by 
receptor tyrosine kinases«, »Intracellular signaling by second 
messengers«, and »Signal transduction«. Additionally, three of the 
pathways are very general transcription-related pathways, such as 
»Generic transcription pathway«, »RNA Polymerase II transcription«, 
and »Gene expression (Transcription)«. Also the »Developmental 
biology« pathway according to the Reactome database (Sidiropoulos 
et al., 2017) presents processes taking place long before COVID-19 
and its neurological consequences occur and is thus not further 
discussed. More than half of the pathways identified with the KEGG 
pathway enrichment analysis are associated with cancer (“Pathways 
in cancer,” “MicroRNAs in cancer,” “Proteoglycans in cancer,” 
“Pancreatic cancer,” “Prostate cancer,” “Chronic myeloid leukemia,” 
“Colorectal cancer,” “Melanoma,” “Small cell lung cancer,” “Bladder 
cancer” and “Non-small cell lung cancer”). This can indicate a strong 
overlap between COVID-19 disease and cancer pathways and can 
also have implications for cancer treatment (Zong et  al., 2021). 
Additionally, two other pathways, “Focal adhesion” and “Signaling 
pathways regulating pluripotency of stem cells,” are very broad and 
unspecific and are thus not discussed in this paper.

However, several identified pathways show an important 
relationship between COVID-19 pathogenesis and 
neurodegeneration. A lot of these pathways indicate that 
neuroinflammation is the key shared process. Pivotal shared 
neuroinflammation promoting entities are pathways related to 
phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (AKT) 
signaling and mitogen-activated protein kinase (MAPK) signaling, 
whereas shared neuroprotective mechanisms belong to pathways 
related to the class O of forkhead box transcription factors (FOXO) 
signaling. Thus, these pathways present overlapping pathogenic 
processes and could serve as relevant drug targets for prevention of 
post-COVID-19 neurodegeneration. However, miRNAs found to 
be  dysregulated in COVID-19 patients belonging to the same 
enriched pathway do not always present the same direction of effect. 
Thus, and also due to the fact that multiple miRNAs are involved in 
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one pathway, it is not possible to state based on miRNA data 
whether the pathway is activated or inhibited in COVID-19.

4.2.1. Neuroinflammation promoting signaling 
pathways

Inflammation is a feature of both, neurodegeneration and 
COVID-19. It has been proposed that weak chronic activation of 
neuroinflammation signaling pathways causes neurodegeneration 
(Chu et  al., 2021; Li et  al., 2021), whereas strongly activated 
neuroinflammation often causes acute disease progression similar to 
COVID-19 (Li et al., 2021). Furthermore, external inflammation, 
such as SARS-CoV-2 infection, and consequential immune signaling 
can both activate PI3K/AKT, MAPK, nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), NLR family pyrin 
domain containing 3 (NLRP3), and mammalian target of rapamycin 
(mTOR) signaling as the core inflammation pathways (Li et al., 2021; 
Hensley et al., 2022; Khezri et al., 2022).

»PI3K/Akt signaling pathway in cancer« and “PI3K-Akt 
signaling pathway” were among the top enriched pathways in 
Reactome and KEGG top 20 lists, respectively. Under the umbrella 
of PI3K/AKT signaling we can also include »PIP3 activates AKT 
signaling« and »PI5P, PP2A and IER3 regulate PI3K/AKT signaling« 
pathways from Reactome analysis. The PI3K/AKT pathway is a key 
signaling cascade in cell biology and is highly involved in 
inflammation molecular functions. Activation of serine/threonine 
and tyrosine kinases through PI3K regulates different major cellular 
processes such as protein synthesis, apoptosis and cell proliferation 
(Franke et al., 1997; Khezri et al., 2022). Additionally, ROS response 
to SARS-CoV-2 spike in human bronchial and microvascular cells 
leads to activation of inflammation and apoptosis through PI3K/
AKT pathway inhibition (Li et  al., 2021). PI3K/Akt signaling 
specifically is over-activated in COVID-19 patients and could affect 
SARS-CoV-2 entry and replication in the host cells by regulating 
the clathrin-mediated endocytosis and glycolysis (Khezri et  al., 
2022). Thus, it also presents a potential drug target for COVID-19 
treatment (Fattahi et al., 2022). The role of PI3K/AKT signaling in 
neurogenesis has also been proposed. Beneficial effect on survival 
of newly formed neurons during exercise elucidates the role of 
PI3K/AKT in neurogenesis and synaptic plasticity in a rat model 
(Bruel-Jungerman et  al., 2009). Additionally, this pathway has 
already been associated with all five investigated neurodegenerative 
diseases (Mammana et al., 2018; Recabarren-Leiva and Alarcón, 
2018; Chu et al., 2021). In the context of neurodegeneration, more 
specifically in AD, perturbations in PI3K/AKT pathway induce 
changes in action of fibrillary Aβ, insulin signaling, autophagy, 
oxidative stress defense, and neuroinflammation (Razani et  al., 
2021). A rare familial mutation in PS1 can affect presenilin-1 
(PS-1), an upstream PI3K regulator, and promote AD pathology by 
inhibiting PI3K/AKT signaling (Baki et al., 2004). Furthermore, 
phosphatase and tensin homolog (PTEN) induced PI3K/AKT 
pathway activation decreases endoplasmic reticulum stress 
response and apoptosis shown in an AD mouse model (Cui et al., 
2017). PI3K/AKT signaling plays a crucial role in oxidative 
mechanisms in PD. Downregulation of PI3K/AKT, caused by 
SHC-transforming protein 3 (SHC3) silencing in PD rats can 
promote oxidative stress injury, leading to motor abnormalities 
(Gong et  al., 2018). AKT-controlled inhibition of NAD(P)H 
dehydrogenase quinone 1 (NQO1), an important antioxidant 

system, aggravated PD pathogenesis in a rat model (Luo et  al., 
2019). Given that PI3K/AKT is important in both COVID-19 and 
neurodegenerative diseases, modulation of this pathway in specific 
cell types could present a relevant option for treatment of 
neurodegenerative diseases (Chu et al., 2021; Razani et al., 2021) 
and could open a window of opportunity to avoid neurodegenerative 
sequelae of COVID-19.

The MAPK signaling within two identified Reactome pathways 
(»MAPK family signaling cascades« and »MAPK1/MAPK3 
signaling«) and one KEGG pathway (“MAPK signaling pathway”) 
may act either as a positive or negative regulator of viral replication. 
MAPK signaling integrates diverse stimuli signals and elicits 
multiple cellular responses, including cellular proliferation, 
differentiation, development, inflammatory responses and apoptosis 
(Zhang and Liu, 2002). The viral secretory proteins can trigger the 
extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation, 
which is one of the MAP kinases (Mohanta et al., 2020). MAPK has 
been associated with viral entry mechanisms as well, since SARS-
CoV-2 spike protein activates MAPK signaling through angiotensin 
II receptor type 1 (AT1) or transmembrane protease, serine 2 
(TMPRSS2) upregulation (Patra et al., 2020; Cioccarelli et al., 2021). 
Furthermore, activation of the MAPK pathways due to SARS-
CoV-2 infection contributes to higher cytokine levels and hyper-
inflammatory responses (Peter et al., 2020). On proteomic level, 
MAPK was enriched in SARS-CoV-2 associated myocarditis as well 
(Weckbach et  al., 2022). Similarly, MAP kinases, such as c-Jun 
N-terminal kinase (JNK), ERK1/2 and p38 are involved in creating 
the pro-inflammatory environment in age-related 
neurodegenerative diseases, which means that they support the 
cytokine release in neurodegenerative diseases as well. This 
uncontrolled release of cytokines may produce a self-perpetuating 
feedback loop enhancing inflammation and contributing to 
neuronal damage and death (Ahmed et al., 2020). There have been 
reports published stating the abnormal activation of MAP kinases 
in all five investigated neurodegenerative pathologies and MAPK 
has been linked to pathophysiological hallmarks of 
neurodegeneration (Albert-Gascó et  al., 2020; Ten Bosch et  al., 
2021; Yadav et al., 2021). Important role of MAPK signaling in Aβ 
generation (Du et al., 2019) and cognitive decline independent of 
amyloid pathology has been proposed in AD (Johnson et al., 2022). 
Multiple levels of evidence support the TREM2-induced MAPK 
signaling in PD pathogenesis (Huang et al., 2021; Ruganzu et al., 
2022). Microglial MAPK over-activity has been extensively studied 
in MS (Ten Bosch et al., 2021), while the therapeutic potential of 
MAPK pathway inhibition in demyelination recovery has also been 
proposed (Suo et al., 2019). Similarly, a therapeutic strategy for 
ALS, targeting MAPK-mediated axonal retrograde transport, has 
been studied (Gibbs et al., 2018). Based on these reports, we can 
conclude that dysregulation of the MAPK signaling due to SARS-
CoV-2 infection could foster neurodegeneration in COVID-19 
patients. In addition, MAPK signaling pathway also presents a 
potential druggable target to prevent or alleviate inflammation after 
COVID-19 and neurodegeneration.

4.2.2. Pathways related to mediators of 
neuroinflammation

At least three further pathways indicate a strong overlap between 
neurodegeneration, COVID-19 and inflammation, such as 
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»Interleukin-4 and interleukin-13 signaling«, »Cytokine signaling in 
immune system«, and »Signaling by interleukins«. The latter 
pathways greatly overlap with the enriched pathways described 
above. Recent findings suggest that COVID-19 could inflict 
structural and metabolic damage in the CNS by upregulating 
inflammatory cytokines. This phenomenon is known as the cytokine 
storm syndrome (Nagu et  al., 2021), within which the glial cells 
induce neuroinflammation by the release of various pro-inflammatory 
cytokines, such as IL-6, TNFα, interleukin 5 (IL-5) and interleukin 2 
(IL-2; Bohmwald et al., 2018). Among other inflammatory mediators, 
interleukin 10 (IL-10) has also been shown to be  increased in 
COVID-19 (Savarraj et al., 2021). Recovered COVID-19 patients 
with long-term symptoms, mostly neurological complaints, have 
higher plasma levels of interleukin 4 (IL-4; Sun et al., 2021). This is 
an anti-inflammatory cytokine released as a response to 
neuroinflammation, trying to re-establish the neuronal homeostasis. 
However, the same study showed that plasma IL-6 levels present a 
more specific biomarker of neurological deficits after COVID-19 
since elevation of IL-6 was observed specifically in neuro-long 
COVID-19 as compared to long COVID-19 without neurological 
symptoms (Sun et al., 2021). In general, SARS-CoV-2 infection leads 
to maladaptive innate immunity and overall inflammation with 
activated microglia and astrocytes contributing to neurodegenerative 
processes, including demyelination, blood brain barrier disruption, 
and aberrant activation of CNS (Gupta and Weaver, 2021). In 
chronically present neuroinflammatory environment glial cells are in 
charge of cytokine release and release of other pro-inflammatory 
mediators. Their secretome activates neighboring cells including 
other microglia and astrocytes, regardless of their encounter with 
pathogens or damage. Consequently, the neuroinflammation 
exacerbates and supports neurodegeneration (Ghosh et al., 2021). 
The role of interleukins and other cytokines in neurodegenerative 
diseases has been extensively studied. In meta-analyses, dysregulation 
of several cytokines was observed in blood or CSF samples. In 
particular, TNFα, IL-6 and IL-1β were consistently increased in AD, 
PD and ALS patients (Qin et al., 2016; Hu et al., 2017; Lai et al., 2017; 
Shen et  al., 2019). Targeting specific interleukin release could 
potentially slow down the process of neurodegeneration in 
COVID-19 patients, especially later after their recovery.

4.2.3. Neuroprotective pathways
A highly significant pathway according to our Reactome analysis 

is the »FOXO-mediated transcription« pathway. Interestingly, one of 
the prime regulators of FOXO activity is the PI3K/AKT pathway that 
was found to be enriched in our analysis as well. Generally, FOXO 
proteins promote neuronal health and viability (McLaughlin and 
Broihier, 2018). They regulate neuronal apoptosis in response to ROS 
accumulation and are important in regulating neural cell fate and 
function and essential for preventing age-dependent axonal 
degeneration (Santo and Paik, 2018). Aβ exposure in AD brain leads 
to FOXO3A dephosphorylation and mitochondrial dysfunction 
(Santo and Paik, 2018). Furthermore, moderate FOXO3 
overexpression is protective in α-synuclein overexpressing 
dopaminergic neurons and drives α-synuclein into insoluble 
aggregates, suggesting that FOXO3 induces autophagy (McLaughlin 
and Broihier, 2018). The latter suggests that FOXO3A as a member 
of the FOXO family protects the brain against neurodegenerative 
assaults. FOXOs play an important role in response to viral infections 

as well. They upregulate various pro-inflammatory cytokines such as 
IL-1β and interleukin 9, Toll-like receptor (TLR) 1 and TLR4, etc., 
which not only regulate the host inflammatory response but also alter 
the innate immune response (Cheema et al., 2021). FOXO mediators 
regulate the expression of many different genes, among them also 
Kelch-like ECH-associated protein 1 (Keap1) and haem oxygenase 1 
(HO-1), which both aim to ameliorate inflammation (Cheema et al., 
2021). It has been proposed that repurposing FOXO activators for 
COVID-19 treatment (Cheema et al., 2021) could perhaps prevent or 
decrease neurodegenerative sequelae.

»ESR-mediated signaling« was identified as an overlapping 
pathway between neurodegeneration and COVID-19 as well. 
Estrogens can exert different neuroprotective roles by acting as 
antioxidants, promoting DNA repair, inducing expression of growth 
factors, supporting synaptic plasticity, and modulating brain blood 
flow (Bustamante-Barrientos et  al., 2021). In support of this 
statements, a meta-analysis showed that a hormone replacement 
therapy in post-menopausal women protected against AD and PD 
(Song et al., 2020). Furthermore, epidemiological studies showed that 
PD for example is more prevalent in men than in women, which 
could be explained by the protective effect of estrogens in the brain 
(Bourque et al., 2019). Even before the COVID-19 pandemics it was 
already reported that ovariectomised or antioestrogen-treated female 
mice had more severe coronavirus infections than control mice 
(Channappanavar et  al., 2017). Similarly, women taking oral 
contraceptives had reduced COVID-19 risk (Costeira et al., 2021). 
Furthermore, women with high levels of estradiol had a lower risk of 
developing severe symptoms and an even lower incidence of death 
due to COVID-19 (Ramírez-de-Arellano et al., 2021). Based on these 
findings repurposing the estrogen receptor modulator raloxifene was 
suggested as an option to treat COVID-19 (Allegretti et al., 2022). All 
things considered, aberrant estrogen signaling could contribute to 
neurodegeneration in COVID-19 patients.

“HIF-1 signaling pathway” was identified in the KEGG 
enrichment analysis. Hypoxia-inducible factor 1 (HIF-1) is a 
transcription factor functioning as a master regulator of oxygen 
homeostasis and plays a pivotal role in hypoxic environment. 
Multiple levels of evidence highlight the importance of HIF-1  in 
COVID-19 pathophysiology. Metabolic shift in immune cells of 
COVID-19 infected lungs is triggered by HIF-1α, which was observed 
on both transcriptomic and proteomic levels. This shift allows cells 
to survive in the hypoxic environment (Codo et al., 2020). Severe 
COVID-19 cases had higher expression of HIF-1 target genes 
(Appelberg et al., 2020). HIF-1α is constitutively expressed, but its 
expression can be increased upon PI3K/AKT and ERK activation as 
well (McGettrick and O'Neill, 2020). Another expression study 
correlated induced HIF-1α expression after COVID-19 infection with 
elevated inflammatory parameters, such as IL-6, interleukin 10, and 
TNFα (Tian et al., 2021). The role of HIF-1α in COVID-19 infection 
can be further elucidated with hypoxic induction of HIF-1α or with 
its pharmacological inhibition, showing that activation of oxygen-
sensing pathways can hamper SARS-CoV-2 cell entry and viral 
replication (Wing et al., 2021). In neurodegenerative diseases, HIF-1 
is well studied in AD, PD and ALS. HIF-1 induction in AD mouse 
reduces clustering of amyloid associated microglia and correlates 
with amyloid neuropathology in human hippocampus (March-Diaz 
et al., 2021). Although hypoxia has not been directly linked to PD, 
multiple shared genetic and metabolic features can be observed in 
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HIF-1 signaling pathway and PD (Lestón Pinilla et al., 2021). In ALS 
mice, hypoxia has been associated with neuronal death, muscular and 
cognitive dysfunction (Kim et al., 2013). All of the above indicates 
that HIF-1 could present a shared pathway between COVID-19 and 
neurodegeneration and should be further explored.

“Neurotrophin signaling pathway” was identified in the KEGG 
pathway analysis as well. Neurotrophins are a family of proteins, 
involved in control of survival, development and function of neurons 
in both the peripheral and the CNS (Reichardt, 2006). Disrupted 
blood levels of β-nerve growth factor (β-NGF), an initial metabolite 
in neurotrophin signaling pathway, have been observed in mild 
SARS-CoV-2 patients (Usai et al., 2021). Besides NGF, brain-derived 
neurotrophic factor (BDNF) is the most studied neurotrophin in 
neurodegeneration. BDNF has been linked to microglial activation 
in mice (Wu et al., 2020). A causative BDNF rs6265 polymorphism is 
associated with cognitive decline and increased AD risk (Belbin et al., 
2019; Lim et al., 2022). The same BDNF polymorphism was associated 
with PD and its symptoms (Cagni et al., 2017; Mercado et al., 2021), 
while precision medicine application was also suggested to 
personalize treatment of PD patients (Fischer et  al., 2020). 
Furthermore, serum BDNF was increased in MS patients (Islas-
Hernandez et al., 2018).

The enrichment of different neuroprotective pathways 
emphasizes the important role of mechanisms, involved in neuronal 
damage reduction. The interplay between neuroprotection and 
COVID-19 could also be  further investigated in search for 
therapeutic applications.

4.2.4. Viral infection pathways
The pathway of “Hepatitis B” has been enriched in the KEGG 

pathway analysis. The impaired liver function, although poorly 
understood, is an important clinically significant outcome after 
COVID-19 infection (da Mata et al., 2021; Yu et al., 2021). COVID-19 
can also trigger hepatitis B reactivation, but no direct 
pathophysiological overlap between both diseases has been reported 
to date (Aldhaleei et al., 2020; Wu et al., 2021). Hepatitis B was also 
proposed as one of COVID-19 risk factors for severe disease outcome 
(Wang J. et al., 2021). Interestingly, a hepatitis B derived protein has 
been proposed as a promising therapeutic inhibitor of COVID-19 
induced inflammation in lungs (Choi et  al., 2021). Similarly, 
pathophysiological link between hepatitis B and neurodegenerative 
diseases remains unclear. Hepatitis B was proposed as increased risk 
factor for PD (Pakpoor et al., 2017), while increased risk was not 
observed in AD (Choi et al., 2021).

Another virus related pathway enriched in the KEGG analysis 
was the “HTLV-I infection” pathway. The human T-cell leukemia 
virus type I (HTLV-1) can cause several fatal diseases such as adult 
T-cell leukemia or HTLV-1 associated myelopathy/tropical spastic 
paraparesis. Although the majority of HTLV-1 carriers remain 
asymptomatic throughout their lives, they are at higher risk of 
acquiring different opportunistic infections (Olière et al., 2011). A 
case report of COVID-19 infected HTLV-1 carrier raises attention to 
potential long-term steroid use for secondary infection prevention 
(Enomoto et  al., 2022). Although myelopathy can be  a shared 
condition between HPTV-1 and MS, to date no solid evidence linking 
the diseases can be found.

Both viral infection pathways show significant enrichments in 
the pathway analysis. However, this could be due to the fact that 

similar pathways are activated upon viral infection and further 
studies will have to be conducted to establish their role in COVID-19 
or neurodegeneration.

4.2.5. Cellular senescence pathway
Cellular senescence was a significantly enriched pathway in the 

generated list of miRNA targets as well. Senescence is a phenomenon 
featuring discontinuation of cell divisions. Senescence is in its core a 
beneficial process, with the aim to get rid of the damaged cells by 
triggering the immune system and then replacing them. However, when 
this cell turnover system is inefficient, the senescent cells start 
accumulating, which contributes to the aging phenotype (López-Otín 
et al., 2013). Cells in senescent state accumulate in the aged tissue and 
particularly senescent astrocytes and microglia contribute to 
neurodegeneration. Some senescent cells can secrete cytokines and 
chemokines, which stimulate the neighboring cells to release 
ROS. Accumulation of such senescent cells increases the risk for 
developing a more severe COVID-19 and also a longer course of the 
disease with symptoms of neurodegeneration (Wissler Gerdes et al., 
2022). A specific mechanism of cell senescence in COVID-19 has been 
described. As viruses replicate more efficiently in iron-rich senescent 
cells, they act towards changing the cell’s phenotype to make a more 
favourable environment for their replication. This predisposes the CNS 
to immune dysfunction and neurodegeneration (Sfera et al., 2021). All 
of the above indicates that cellular senescence is an important pathway 
that could contribute to neurodegenerative consequences of COVID-19.

5. Future perspectives

Since a significant amount of COVID-19 patients develop 
neurological symptoms, especially symptoms of neurodegenerative 
nature, it would be  highly relevant to find biomarkers of 
neurodegenerative processes in COVID-19. The latter would enable 
identification of COVID-19 patients at increased risk of 
neurodegenerative diseases as a late COVID-19 consequence. 
Furthermore, elucidation of shared pathways between COVID-19 and 
neurodegeneration would open a window of opportunity for 
identification of novel drug targets within these pathways or drug 
repurposing to prevent or alleviate progression of COVID-19 
to neurodegeneration.

Presented systematic search adopted a strategy of deploying 
miRNA molecules for identification of shared pathways between both 
pathologies and for identification of predictive biomarkers of 
neurodegeneration as a COVID-19 sequela. The procedure to obtain 
miRNAs and assess their expression in patient’s plasma or serum 
would be  rather non-invasive, fast, and cost-effective. The three 
identified miRNAs (hsa-miR-34a, hsa-miR-132, and hsa-miR-155) 
could also present novel drug targets or novel drug compounds to 
alleviate neurodegeneration with acting on signaling cascades within 
shared pathways. In this study we  only focused on the five most 
prevalent neurodegenerative diseases, although neurodegeneration 
due to COVID-19 could presumably also be presented in other forms, 
such as HIV encephalitis, which is a type of a virus-induced 
neurocognitive impairment.

Similar to our results, it has already been suggested that serum 
and plasma biomarkers could support detection of persistent 
neuroinflammation and neurodegeneration in COVID-19 patients 
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(Sun et al., 2021; Chandra and Johri, 2022).Elevated cytokines are 
general markers of inflammatory process, which is driven by SARS-
CoV-2, and they have been associated with higher chance of 
neurological sequelae development (Haidar et al., 2021; Sun et al., 
2021). The exact mechanism on how SARS-CoV-2 induces changes in 
the brain, leading to potential neurodegeneration, is not fully 
elucidated. However, the three identified miRNAs shared between 
COVID-19 and neurodegeneration could be  used as screening 
biomarkers to identify COVID-19 patients with increased risk for 
neurodegeneration. If the risk for neurodegeneration would 
be elevated based on the screening test, then more specific tests to 
decipher between different neurodegenerative pathologies could 
be  applied afterwards. Specific markers of neurodegeneration in 
plasma could be measured, such as total tau (t-tau), phosphorylated 
tau-181 (p-tau181), glial fibrillary acidic protein (GFAP), neurofilament 
light chain (NfL), ubiquitin carboxyterminal hydrolase L1 (UCHL1), 
and Aβ (Aβ40, Aβ42) for dementia-related disorders (Frontera 
et al., 2022).

Together with dysregulated expression of individual miRNAs, 
the identification of neuroinflammation-related enriched 
pathways based on the shared miRNA targets between both 
pathologies further imply the importance of neuroinflammation 
in COVID-19. For more precise evaluation of their effect, future 
studies should also focus on distinct disease stages as well, since 
specific miRNAs can be  regulated differently during disease 
progression. In the outline of our study, we  focused on 
dysregulated miRNAs in neurodegenerative diseases in general. 
Stratification of pathologies to different stages of the disease could 
lead to more precise and targeted studies in the future. 
Additionally, miRNAs that remain dysregulated even after the 
recovery from COVID-19 infection could be  of interest in 
potential follow-up studies in the same patient cohorts. Certain 
studies have already followed the miRNA expression 
longitudinally. Two studies did not report any miRNAs that 
remained differentially expressed even after the recovery (Zheng 
et al., 2020; Farr et al., 2021), while among others hsa-miR-155-5p 
remained upregulated in the post-acute phase of the disease in 
comparison to controls in one study (Donyavi et al., 2021).

Additionally, expression of several target genes of identified 
miRNAs has been shown to be dysregulated in COVID-19 patients on 
both mRNA and protein levels, which further supports our findings. 
The top identified miRNAs and pathways could thus serve as a basis 
to search for novel drug targets for prevention of neurodegeneration 
in COVID-19 or to screen for existing compounds targeting these 
pathways (Panda et al., 2022). The most promising enriched pathways, 
identified with our approach, could be the PI3K/AKT and MAPK 
signaling as neuroinflammation promoting pathways, and FOXO 
signaling as a neuroprotective pathway. Since host-derived miRNAs 
play essential role in limiting viral replication, they could potentially 
be utilized as drug compounds to normalize perturbations in signaling 
pathways due to the underlying pathology. Furthermore, compounds 
targeting the identified miRNAs and pathways could be studied as 
potential very specific anti-neuroinflammatory drugs, which 
consequently affect the development of neurodegeneration (Arghiani 
et  al., 2021; Bautista-Becerril et  al., 2021; Panda et  al., 2022). 
Presumably, these drugs would be administered after recovery from 
COVID-19, in case the identified neurodegeneration-related 
biomarkers would still be elevated.

6. Conclusion

Deciphering the shared landscapes between COVID-19 and 
neurodegeneration could foster identification of COVID-19 
patients with increased risk for AD, PD, ALS, MS, and HD 
development. It could also enable drug discovery or drug 
repurposing for prevention or delay of consequential 
neurodegeneration in COVID-19. Studying shared miRNA 
landscapes presents a promising approach to tackle this challenge 
as it serves us with potential specific neuronflammation-related 
markers of neurodegeneration. Further studies are needed to 
confirm these findings in a clinical setting of COVID-19 patients.
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Glossary

Aβ Amyloid-β

ACHE Acetylcholinesterase

AD Alzheimer’s disease

ADAM10 ADAM metallopeptidase domain 10

AKT Protein kinase B

ALS Amyotrophic lateral sclerosis

AQP1 Aquaporin 1

AP-1 Activator protein 1

APP Amyloid precursor protein

AT1 Angiotensin II receptor type 1

BACE1 Beta-secretase 1

BCL2 BCL2 apoptosis regulator

BDNF Brain-derived neurotrophic factor

β-NGF β-Nerve growth factor

CNS Central nervous system

DAVID Database for Annotation, Visualization and Integrated Discovery

ERK1/2 Extracellular signal-regulated kinase 1 and 2

FDR False discovery rate

FOXO Class O of forkhead box transcription factors

GFAP Glial fibrillary acidic protein

HD Huntington’s disease

HIF-1 Hypoxia-inducible factor 1

HMDD Human microRNA Disease Database

HO-1 Haem oxygenase 1

HTLV-1 Human T-cell leukemia virus type I

IL-1β Interleukin 1β

IL-2 Interleukin 2

IL-4 Interleukin 4

IL-5 Interleukin 5

IL-6 Interleukin 6

IL6ST IL-6 Signal transducer

IL-10 Interleukin 10

IL13RA1 Interleukin 13 receptor subunit alpha 1

IRF1 Interferon regulatory factor 1

JNK c-Jun N-terminal kinase

KEAP1 Kelch-like ECH-associated protein 1

KEGG Kyoto Encyclopedia of Genes and Genomes

MAPK1 Mitogen-activated protein kinase

MMP9 Matrix metallopeptidase 9

mRNA Messenger RNA

MS Multiple sclerosis

mTOR Mammalian target of rapamycin

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NfL Neurofilament light chain

NLRP3 NLR family pyrin domain containing 3
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NOS1 Nitric oxide synthase 1

NRF2 Nuclear factor erythroid 2-related factor 2

PD Parkinson’s disease

PS-1 Presenilin-1

PI3K Phosphatidyl-inositol-3-kinase

PICALM phosphatidylinositol binding clathrin assembly protein

p-tau181 Phosphorylated tau-181

PTEN Phosphatase and tensin homolog

ROS Reactive oxygen species

SIRT1 Sirtuin 1

SHC3 SHC-transforming protein 3

SHIP1 Inositol polyphosphate-5-phosphatase D

SOCS1 Suppressor of cytokine signaling 1

SORL1 Sortilin related receptor 1

TDP-43 TAR DNA-binding protein 43

TMPRSS2 Transmembrane protease, serine 2

TLR Toll-like receptor

TNFα Tumor necrosis factor

TREM2 Triggering receptor expressed on myeloid cells 2

t-tau Total tau

UCHL1 Ubiquitin carboxyterminal hydrolase L1
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