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ABSTRACT Modern improvement of complex traits in agricultural species relies on successful associations of
heritable molecular variation with observable phenotypes. Historically, this pursuit has primarily been
based on easily measurable genetic markers. The recent advent of new technologies allows assaying
and quantifying biological intermediates (hereafter endophenotypes) which are now readily measur-
able at a large scale across diverse individuals. The usefulness of endophenotypes for delineating
the regulatory landscape of the genome and genetic dissection of complex trait variation remains
underexplored in plants. The work presented here illustrated the utility of a large-scale (299-genotype
and seven-tissue) gene expression resource to dissect traits across multiple levels of biological
organization. Using single-tissue- and multi-tissue-based transcriptome-wide association studies
(TWAS), we revealed that about half of the functional variation acts through altered transcript
abundance for maize kernel traits, including 30 grain carotenoid abundance traits, 20 grain
tocochromanol abundance traits, and 22 field-measured agronomic traits. Comparing the efficacy
of TWAS with genome-wide association studies (GWAS) and an ensemble approach that combines
both GWAS and TWAS, we demonstrated that results of TWAS in combination with GWAS increase
the power to detect known genes and aid in prioritizing likely causal genes. Using a variance
partitioning approach in the largely independent maize Nested Association Mapping (NAM)
population, we also showed that the most strongly associated genes identified by combining GWAS
and TWAS explain more heritable variance for a majority of traits than the heritability captured by
the random genes and the genes identified by GWAS or TWAS alone. This not only improves the
ability to link genes to phenotypes, but also highlights the phenotypic consequences of regulatory
variation in plants.
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Discovery of variation that underlies quantitative traits remains central
to the genetic improvement of agricultural species. Functional variation
can alter coding sequence or act to regulate an intermediate phenotype.
Regulating the abundance of phenotypic intermediates, such as mRNA
expression or protein level, provides a more spatially and temporally
subtle target for selection thancoding sequence changes,whicharemore
likely to be pleiotropic and therefore maladaptive (Mayr 1970). Thus,
regulatory variation is the frequent target of both natural and artificial
selection that shapes genomes across life, including domesticated plants
(Carroll 2008; Hufford et al. 2012; Mayr 1970). It is likely that about
half of functional variation is regulatory (Albert and Kruglyak 2015;
Gusev et al. 2014; Rodgers-Melnick et al. 2016; Welter et al. 2014).

It should also be noted that regulation can take place at any biological
level of organization from the epigenetic state (Law and Jacobsen 2010),
to gene expression (Albert and Kruglyak 2015; Fu et al. 2013; GTEx
Consortium 2015), to ribosome occupancy (Juntawong et al. 2014),
to metabolites (Riedelsheimer et al. 2012), to protein abundance
(Battle et al. 2015; Chick et al. 2016), furnishingmultiple levels at which
intermediate and terminal phenotypes can be associated.

In standard genetic mapping approaches, like association or linkage
mapping, associations between genetic markers and terminal pheno-
types of interest are tested for significance (black arrow, Figure 1).
However, multiple levels of biological organization exist between
the DNA sequence and the terminal observed phenotypic outcomes,
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enabling trait dissection to be conducted between intermediate levels
of biological organization (hereafter endophenotypes, designated
by an orange and red arrow in Figure 1). Associating endophenotypes
with terminal phenotypes predates the use of molecular genetic
markers for mapping. The use of linked observable traits and isozyme
migration patterns are examples of tying markers from biological
intermediates to terminal phenotypes of interest. Similarly, just as
relationships between individuals can be calculated from molecular
genetic markers (Flint-Garcia et al. 2005), endophenotypic similar-
ity from isozyme markers can also be used to quantify relatedness
(Dubreuil and Charcosset 1998). These same principles have re-
cently been extended to phenotypic prediction guided by metabolites
(Riedelsheimer et al. 2012) or by expression dysregulation (Kremling
et al. 2018). However, the use of molecular intermediates, which are
now readily measurable at large scale across diverse individuals, re-
mains underexplored in plants for the inverse task of causal inference.

Associating endophenotypes with terminal phenotypes hasmultiple
distinct advantages. First, while genetic mapping is dominated by the
covariance structure of neighboring SNPs and complex haplotypes,
endophenotypes provide orthogonal information that often permits
inference regarding biological mechanism, which may not be possible
from genetic variants alone. Second, genetic mapping often points to
intergenic (Wallace et al. 2014) regulatory variants that are not within
the coding sequence of the gene that alters the phenotype (Albert and
Kruglyak 2015). Therefore, an association signal cannot directly be tied
to a corresponding gene and may even be in the body of a second
unrelated gene (Tishkoff et al. 2007) or in the case of synthetic associ-
ation, between multiple true causal variants affecting different genes
(Dickson et al. 2010). Association tests with intermediate expression
phenotypes do not suffer from these limitations. Third, the abundance
of endophenotypes is largely independent of linkage disequilibrium
(LD), unlike in the case of genetic markers. In other words, even mul-
tiple genes that are perfectly linked, and thus not independently observ-
able in separate individuals, can be prioritized for association with a
trait because their expression patterns are independent. This is of great-
est utility in species where linkage disequilibrium is extensive or where
making high-resolution mapping populations is not feasible.

Intermediate phenotypes, such as expression, can also integrate the
signal from changes in multiple components of a network, which may
not be individually detectable either because their effects are small or
changes to theperipheral network components occur at low frequencies.
Similarly, intermediate phenotypes can integrate a phenotypic signal
from underlying genetic variants for which low frequencies pre-
clude direct detection. The most deleterious of variants are expected
to segregate at the lowest frequencies (Gibson 2012; Henn et al. 2015)
and, thus, escape detection by mapping without prohibitively large

sample sizes. However, rare deleterious variants can be expected to
drive common maladaptive patterns in intermediate phenotypes that
are thus more easily detected through endophenotype association tests
like transcriptome-wide association studies (TWAS) (Hirsch et al. 2014;
Pasaniuc and Price 2017).Methods for integrating expression association
tests with GWAS have also been used extensively in the human context
as shown by Gusev et al. (2016) and Mancuso et al. (2017). However,
those methods rely on summary statistics, LD scores, and expression
imputation and are computationally more intensive than the more
accessible Fisher’s combined test whose utility and improved power over
TWAS or GWAS alone we have shown here for the first time and
recommend for other researchers in model contexts.

Here, we illustrate the power of using gene expression endopheno-
types measured in a large 299-individual, seven-tissue gene expression
resource (Kremling et al. 2018) collected from the Goodman maize
diversity panel (Flint-Garcia et al. 2005). Expression levels are correlated
with terminal phenotypes in TWAS (Hirsch et al. 2014; Pasaniuc and
Price 2017) and then combined with genotype-based associations from
GWAS. The method is demonstrated here in a maize inbred diversity
panel (Flint-Garcia et al. 2005), which has been widely used to dissect
the architecture of dozens of traits of varying complexity (Harjes et al.
2008; Lipka et al. 2013; Owens et al. 2014; Wisser et al. 2011).

Related work in maize that relies on associating expression differ-
ences directly with phenotype using a Bayesian method, called expres-
sion read depth GWAS (eRD-GWAS), has been published recently
(Lin et al. 2017). This work used 369 maize samples from which shoot
apex RNAwas collected. Beyond the difference in frequentist vs. Bayes-
ian approaches, our study also exploits expression measurements from
seven tissues in a multiple-regression-based TWAS and integrates the
signal from TWAS and GWAS into a more powerful combined test
which can be readily visualized as a Manhattan plot. We also compare
the power of eachmodel based on the ability to detect known genes, and
the capacity to explain variance in a separate population, which differs
from the approach of the previous study (Lin et al. 2017). To make this
comparison we use the maize NAM population (Yu et al. 2008), which
has the advantage of being largely independent of the diversity panel
(Flint-Garcia et al. 2005) in which detection was performed.

We assess the efficacy of TWAS by quantifying the capacity to
identify previously identified genes, and by the fraction of phenotypic
variance explained (Gusev et al. 2014; Rodgers-Melnick et al. 2016) by
the most strongly associated genes, and compared the TWAS results
with GWAS and an ensemble approach combining both TWAS and
GWAS. We illustrate that the results of TWAS are a valuable supple-
ment to GWAS mapping that aids in prioritizing likely causal genes
when both methods are used in a combined test.

MATERIALS AND METHODS

Genotypic data
Genotypes for the Goodman diversity panel (Flint-Garcia et al. 2005)
used in the genome-wide association studies were from the unimputed
maize HMP 3.2.1 called against the B73 reference genome (Bukowski
et al. 2018). Variants segregating above 5% minor allele frequency
(MAF) in the union of all lines were considered for mapping. Variance
component estimation in the maize NAM population (Yu et al. 2008)
was performed using imputed HMP 3.2.1 variants [filename: NAM_
HM321_KNN.hmp.txt.gz].

Phenotypic data
For mapping in the Goodman diversity panel, kernel caroten-
oid BLUPs from 30 traits were from Owens et al. (2014) and the
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20 kernel tocochromanol traits BLUPs were from Lipka et al. (2013)
after additional outliers were removed. The 22 field-based agronomic
trait BLUPs were those calculated by Hung et al. (2012). Phenotypes
used in variance partitioning with the maize NAM population were
from Diepenbrock et al. (2017) for the tocochromanol traits. Agro-
nomic trait BLUPs were previously calculated by Hung et al. (2012).

Expression data
Expression quantificationswere those created from seven diverse tissues
in maize by aligning 39 mRNAseq reads against the AGPv3.29 maize
genome as described by Kremling et al. (2018).

Genome-wide association study
Genome-wide association tests were conducted in the maize Goodman
diversity panel (Flint-Garcia et al. 2005) using a mixed linear model as
implemented in FastLMM (Lippert et al. 2011) accounting for kinship
and a naive general linear model fit usingMatrixEQTL (Shabalin 2012)
as implemented in TASSEL (Bradbury et al. 2007).

Transcriptome-wide association study
Transcriptome-wide association tests were conducted in the maize
Goodman diversity panel (Flint-Garcia et al. 2005) for genes that were
expressed in at least half of individuals represented in a specific tissue.
A linear model was fit individually for each phenotype�expressed gene
combination in which the explanatory variable is the expression value
of a gene across individuals. TWAS was attempted both without cova-
riates and with five genetic principal coordinates (calculated from
maize HMP3.2.1 used in (Kremling et al. 2018) and 25 probabilistic
estimation of expression residuals (PEER) hidden factors (calculated
separately for each tissue) as calculated in (Kremling et al. 2018).Multi-
tissue TWAS was also performed. First a model was fit once per trait
using the five principal coordinates described above. This model was
then compared by analysis of variance (ANOVA) to a model for
each gene containing terms for each tissue and the principal coordi-
nates. The p-value resulting from this ANOVA was used to determine
whether the multi-tissue model is significantly better than the covari-
ate-only model. This p-value was also used as the p-value in the second
of the Fisher’s combined tests below.

Fisher’s combined tests of TWAS and GWAS
The GWAS p-value (mixed linear model with kinship as a random
effect) of each SNP in the top 10%ofmost associated SNPswas assigned
to nearest gene and then combinedwith the TWASp-value (linearmodel
with multi-dimensional scaling (MDS) principal coordinates + PEERs)
for that same gene using Fisher’s combined test as implemented in the

sumlog method in the metap package (Dewey 2017) in R. TWAS
p-values for genes which were not tested in TWAS (i.e., their ex-
pression was not observed in at least half of individuals) were set to
P = 1 prior to combining with GWAS p-values. Fisher’s combined
tests were performed in the same way when including the multi-
tissue TWAS results instead of the kernel-only results.

Variance partitioning
Using the k-Nearest Neighbors (KNN) imputed Nested Association
Mapping population HMP3.2.1 genotypes described above, kinship
matrices were calculated based on the top ten genes identified by each
of the TWAS,GWAS, and combinedmodels described in theGoodman
diversity panel (Flint-Garcia et al. 2005). To independently assess the
accuracy of detected genes, the phenotypic variance explained by
each kinship matrix was calculated in the Nested Association Mapping
population, within each family and across all the NAM families. For
TWAS, the top 10 geneswere taken and all SNPswithin a 0.5Mb radius
of the start and end of the gene (maize annotation AGPv3.29) were
used to calculate a single kinship matrix per trait using the Variance
Component Annotation Pipeline in TASSEL (Bradbury et al. 2007).
The REML solver in LDAK (Speed et al. 2017) was used to calculate the
variance explained by the single kinship matrix. For GWAS, the SNPs
were ordered based on significance and assigned to their nearest gene.
The top ten unique genes from this list were taken to calculate kinship
matrices using the same 0.5 Mb radius around the gene. To avoid
picking multiple genes and redundant variants from the same peak
based on the GWAS results, the top most associated gene was used
within a peak and all other genes within the 0.5 Mb radius were ex-
cluded from selection as top genes.

Overlap with known kernel metabolite genes
Fourteen known tocochromanol biosynthetic genes identified in NAM
(Diepenbrock et al. 2017) and 58 a priori candidate genes relevant to
the biosynthesis and retention of carotenoids (Owens et al. 2014) were
used as positive controls to test the capacity of our GWAS, TWAS, and
combined methods to re-detect known genes. In order to avoid com-
parison of p-value thresholds across methods, positive detections were
counted if a gene was detected among the top 1% of genes associated
with a trait.

Data availability
All data are held in public repository. The SNP data for the Goodman
diversity panel (Flint-Garcia et al. 2005) used in the genome-wide
association studies were from the unimputed maize HMP 3.2.1 called
against the B73 reference genome (Bukowski et al. 2018). The imputed
HMP 3.2.1 variants [filename: NAM_HM321_KNN.hmp.txt.gz] for

Figure 1 Levels of biological organization be-
tween the ultimate cause of genetics and the
terminal phenotypic outcomes can be exploited
individually to improve power and inference of
biological mechanism. Genotype can be linked
to endophenotype as in eQTL or proteinQTL (pQTL),
or endophenotype can be linked to terminal pheno-
type by methods like TWAS.
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the maize NAM population (Yu et al. 2008) was used for the variance
component estimation. Expression quantifications were those created
from seven diverse tissues in maize by aligning 39 mRNAseq reads
against the AGPv3.29 maize genome as described by Kremling et al.
(2018). Kernel carotenoid BLUPs from 30 traits were fromOwens et al.
(2014) and the 20 kernel tocochromanol traits BLUPs were from Lipka
et al. (2013) after additional outliers were removed. The 22 field-based
agronomic trait BLUPs were those calculated by Hung et al. (2012).
Phenotypes used in variance partitioning with the maize NAM pop-
ulation were from Diepenbrock et al. (2017) for the tocochromanol
traits. Agronomic trait BLUPs were previously calculated byHung et al.
(2012). Supplemental material available at Figshare: https://figshare.com/
s/ef57544b4d09d5c55131.

RESULTS
To test the utility of expression data in dissecting quantitative traits in
maize, we performed single-tissue-based andmulti-tissue-based TWAS
(Pasaniuc and Price. 2017) and compared these results with GWAS
results, and an ensemble approach combining GWAS and TWAS re-
sults using the Fisher’s combined test. In TWAS, expression levels
across seven tissues from a maize diversity panel (Flint-Garcia et al.
2005) were used individually and together in a multiple regression as
independent variables and correlated with previously measured phe-
notypes for maize kernel traits, including 30 grain carotenoid abun-
dance traits (Owens et al. 2014), 20 tocochromanol abundance traits
(Lipka et al. 2013), and 22 field-measured agronomic traits (Hung et al.
2012).

Integrating TWAS with GWAS improves power for
identifying and prioritizing known genes
To assess the relative power of each method to detect known genes, we
counted the number of known genes identified in the top 1% ranked
genes (based on p-values) found by each method for each trait. This
identification of known genes among the top 1%of hits for eachmethod
measures how often known genes appear in the tail of the distribution
of detected genes and avoids direct comparisons of p-values between
differently powered and structured tests that rely on continuous (TWAS)
or discrete (GWAS) independent variables.

As shown in Tables 1, 2, S1, and S2, the combined test outperforms
either the genotype-based or expression-based tests alone for both
classes of traits, with 30 total detections of known genes among the
top 1% of associations across tocochromanol and 75 detections of
putative carotenoid related genes (Owens et al. 2014) when using the
carotenoid traits. Using the tocochromanol and carotenoid lists from
(Diepenbrock et al. 2017; Owens et al. 2014) genes are detected more
often in each of the tocochromanol and carotenoid trait classes when
using the combined method. However, the Fisher’s combined test of
GWAS results with the multi-tissue TWAS results did not perform
better. The detection rate was consistently higher for kernel-based
TWAS over the multi-tissue TWAS, most likely because the tocochro-
manol and carotenoid traits are predominantly controlled by gene
expression in the kernel.

We also compared the methods at the level of single traits. To
determine how the combined method prioritizes genes that are not
detected in the individual TWAS and GWAS methods and aggregates
genes that are detected by only onemethod,we plotted the results across
models for each individual trait. In Figure 2 we plotted the signals
mapped for the zeaxanthin trait. Note that points representing SNPs
from the MLM GWAS model in (c) and (a) are identically placed, but
in (c) they are colored by TWAS significance. The top five genes de-
tected by each method are labeled (a is not individually labeled because

the points and top five genes are identical to those in plot c) and pre-
viously detected genes found by Owens et al. (2014) are highlighted in
red. As shown by the TWAS results plotted in Figure 2B, the known
expression-regulated gene crtRB1 has expressionwhich ismost strongly
correlated (r = 0.309, P = 2.84e-5) with zeaxanthin abundance in our
TWAS model that includes genetic and expression-derived covariates
(see methods). crtRB1 is not among the top MLM GWAS-detected
genes in our study, but the detection of crtRB1 by kernel TWAS is
consistent with previous results (Owens et al. 2014; Yan et al. 2010),
highlighting this gene’s role as a principal determinant of grain carot-
enoids which acts through variable expression.

As is clear in Figure 2A, C another zeaxanthin-implicated gene,
zeaxanthin epoxidase, zep1, is detected by GWAS in our study (Owens
et al. 2014). zep1 expression is correlated (r= 0.232, P = 0.0014) with
zeaxanthin abundance, but it is not among the fifty most significantly
associated genes in our TWAS results, and would not be prioritized by
TWAS alone.However, within the peak covering zep1 in Figure 2A,C the
markersmost strongly associatedwith zeaxanthin from theMLMGWAS
results prioritize a different gene first, GRMZM2G127123, which lacks
a known function. The linkage-independent kernel TWAS results also
show nearly equal support for both genes, providing evidence
that GRMZM2G127123 (r= 0.218, P = 0.0025) and zep1 (r= 0.232,
P = 0.0014) both affect zeaxanthin abundance. Both Fisher’s com-
bined models using the single-tissue and multi-tissue TWAS results
also support the importance of both genes.

To test the capacity of theTWAS,GWAS, and combinedmethods to
re-identify genes known to underlie QTL for another trait class, we
examined the detected genes for the total tocotrienol trait measured by
Lipka et al. (2013). In Figure 3 the most strongly associated variant
identified by GWAS is on chromosome 9 nearest a gene of unknown
function, GRMZM2G431524. However, as is illustrated in the MLM
GWAS Manhattan plot in which points are colored by TWAS signif-
icance (c), the other points in the chromosome 9 peak are near other
genes known to underlie QTL whose expression is variably associated
with total tocotrienol abundance. These second and thirdmost strongly
associated genes based on proximity to the most significant markers
identified by GWAS are GRMZM2G345544 (function unknown)
and hggt1, which has been previously tied to total tocotrienol content
(Lipka et al. 2013), and is essential for tocotrienol biosythesis. How-
ever, because hggt1 expression is most strongly correlated with total
tocotrienol measurements from among these first three genes in the
chromosome 9 peak, the combined test using single tissue andmultiple

n Table 1 Summary of total and unique known gene detections in
top 1% of results across tocochromanol traits by kernel TWAS with
PEERS and PCs, multi-tissue TWAS with PCs, MLM GWAS, Fisher’s
combined test of kernel TWAS with PEERS and PCs and MLM
GWAS, and Fisher’s combined test of multi-tissue TWAS with PCs
and MLM GWAS. There are 14 previously known tocochromanol
genes in maize (Diepenbrock et al. 2017). On the left half of the
table the number of detections exceeds the number of known
genes because a gene is counted as detected each time it is in
the top 1% of associations for the 20 tocochromanol component
traits

Test
Detection of know genes in top 1% hits

across tocochromanol traits

TWAS 14
multiTWAS 13
GWAS 21
FisherGWASTWAS 30
FisherGWASmultiTWAS 27
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tissues of expression data prioritizes the known gene hggt1 suggesting it
is the functional gene in this region, consistent with previous evidence.
This illustrates how the supplementary information from expression
associations prioritizes likely causal genes that are not among the top
hits of either individual expression or genotype-based methods.

Variance component estimation from TWAS- and
GWAS-detected genes
To further assess the capacity of eachmethod to correctly identify genes
affecting each trait, an independent variance partitioning approach
(Gusev et al. 2014; Rodgers-Melnick et al. 2016; Speed et al. 2017)
was also performed. Using variants in a 1 Mb window around the
ten top ranked genes identified in the Goodman diversity panel
(Flint-Garcia et al. 2005) by GWAS alone, TWAS alone, and the com-
bined method, separate kinship matrices were calculated. These rela-
tionship matrices were fit as random effects in separate models of
phenotypic variance explained for traits measured in the NAM pop-
ulation, which is largely independent of the Goodman diversity panel in
which the various mapping strategies were performed. The additive
genetic variance explained by the variants underlying each kinship
matrix was calculated providing an estimate of heritability explained
by the genes identified by each method.

Using variance partitioning across all NAM families, we found some
advantage for including expression data in detecting likely functional
regions of the genome (Figure 4). Among the tocochromanol kernel
traits (Figure 4A), eight out of ten traits exist in which TWAS or the
Fisher’s combined method is superior to GWAS alone (Figure 4A).
Heritable variance explained on a per-trait basis by either the TWAS
alone or the Fisher’s combined method showed about 25% improve-
ment on average over the MLM GWAS, with notable advantage for
alpha-tocotrienol (40%), gamma-tocotrienol (41%) and total tocoph-
erol (43%). For more complex field-based agronomic traits, the multi-
tissue TWAS or Fisher’s combined method also showed an advantage
over GWAS alone in 16 out of 22 agronomic traits (Figure 3B). On
average, the multi-tissue TWAS had 24% improvement over GWAS
alone, while the FisherGWASmultiTWAS had notable advantage for
kernel number (24%), leaf width (15%), and node number below ear
(19%). Based onmean heritable variance across traits per trait class, the
combined Fisher’s test explained the most heritability among the mod-
els; it showed 4–8% improvement for the tocochromanol kernel traits
(Figure 4A inset). However, little improvement was observed for agro-
nomic traits likely due to trait complexity (Figure 4B inset). Because
previously known genes are more often re-identified in the top 1% of
hits by combining GWAS and TWAS (Table 1), the variance explained
by markers near detected genes also reflect this advantage on heritabil-
ity with known oligogenic architecture.

We further tested the heritability explained by the top ten ranked
genes identified by each method using family-based variance partition-
ing (Figure 5). Heritable variance was decomposed for each NAM
family, giving 24 independent tests of variance partitioning for each
trait tallying a total of 3,840 independent tests (24 families � 5 models �

32 traits). To evaluate the best winningmodel for each trait, we took the
sum of heritable variance across 24 NAM families (hereafter, summed
heritability). Based on the same set of genes identified from eachmodel,
our results illustrate the differing levels of heritability among families
for both tocochromanol (Fig. S1, Figure 5A) and agronomic traits (Fig.
S2, and S3; Figure 5B). For a-tocotrienol, which is an oligogenic trait,
the FisherGWASTWAS method explained the most heritability in
18 out of 24 NAM families (Figure S1a), giving a fourfold advantage
on summed heritability over either GWAS or TWAS alone (Figure S1b;
Figure 5A). The FisherGWASTWAS method captured the most summed

heritability in 10 tocochromanol traits (Figure 5A inset), consistent
with what we found in variance partitioning using all NAM families
for tocochromanol traits (Figure 4A). On a per-trait basis, we note
that the kernel-based TWAS or the FisherGWASTWAS was the win-
ning method for eight out of 10 tocochromanol traits. We do see a
similar pattern in 19 out of 22 field-based complex traits in which
either the multi-tissue TWAS or FisherGWASmultiTissueTWAS
explained the most heritability (Figure 5B). We see greater advantage
of the FisherGWASmultiTissueTWAS over the GWAS MLM for tas-
sel primary branch (54%), cob length (103%), kernel number (112%),
ear mass (98%) and total kernel weight (106%) (Figure 5A). For the
more complex traits such as plant height, the multi-tissue TWAS
was the winning model, which explained about twofold higher her-
itability than the GWAS alone (Figure 5B, Fig. S3). We found
that in 16 NAM families, the multi-tissue TWAS explained the
most heritability among other models for plant height. Based on
total summed heritability across 22 agronomic traits (Figure 5B
inset), the FisherGWASmultiTissueTWAS and multi-tissue TWAS
showed a 15% and 17% improvement in heritability explained over
the GWAS MLM alone, respectively.

DISCUSSION
By far the majority of efforts to dissect the architecture of terminal
phenotypes have relied on associations with genetic variants; this
capacity to link genotype to phenotype has recently been accelerated
by the plummeting cost of sequencing. The more recent advent of
technologies which permit the quantification of endophenotypes like
mRNA,metabolite, or protein abundancenowenablemappingand trait
dissection to be done between intermediate levels of biological organi-
zation. Assaying and associating these endophenotypes with traits of
interest provides insight on biological mechanisms, serves as an in-
dependent source of evidence of associations, and facilitates prioritizing
potentially causal variationwhile linking genes directly to traits in a way
that potentially integrates the effects of multiple independent genetic
variants.Here,we illustrated theutilityofusinga largeRNA-seqresource
in maize (Kremling et al. 2018) for transcriptome-wide association
studies and integrating these results with associations based on genetic
variation.

We find evidence supporting the inclusion of transcriptome-wide
variation in addition to genetic variation in models seeking to associate
traits to underlying and likely causal genes in diverse maize lines,
especially when the goal is to infer function of genes underlying
oligogenic traits. Across tocochromanol trait classes, the inclusion of
TWAS results enables more frequent detection of known causal genes

n Table 2 Summary of total and unique putative carotenoid gene
[28] detections in top 1% of results across carotenoid traits by
kernel TWAS with PEERS and PCs, multi-tissue TWAS with PCs,
MLM GWAS, Fisher’s combined test of kernel TWAS with PEERS
and PCs and MLM GWAS, and Fisher’s combined test of multi-
tissue TWAS with PCs and MLM GWAS. On the left half of the
table the number of detections exceeds the number of known
genes because a gene is counted as detected each time it is in
the top 1% of associations for the 30 carotenoid component traits

Test
Detection of candidate genes in top 1%

hits across carotenoid traits

TWAS 38
multiTWAS 32
GWAS 55
FisherGWASTWAS 75
FisherGWASmultiTWAS 58
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Figure 2 Manhattan plots of zeaxanthin
abundance A) mixed linear model GWAS
accounting for kinship, B) kernel TWAS
with PEER and genetic MDS PC covariates,
C) MLM colored by TWAS significance,
and D) Fisher’s combined model of MLM
and TWAS p-values using kernel expres-
sion. E) Fisher’s combined model of MLM
and multi-tissue TWAS p-values. The top
five most associated genes are labeled
and previously identified genes by Owens
et al. (2014) are highlighted in red.
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Figure 3 Manhattan plots of total toco-
trienol abundance A) mixed linear model
GWAS accounting for kinship, B) kernel
TWAS with PEER and genetic MDS PC
covariates, C) MLM colored by TWAS
significance, and D) Fisher’s combined
model of MLM and TWAS p-values using
kernel expression. E) Fisher’s combined
model of MLM and multi-tissue TWAS
p-values. The top fivemost associated genes
are labeled and previously identified genes
Diepenbrock et al. (2017) are highlighted in
red.
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and helps to prioritize novel candidate genes in the profiled panel.
Crucially, transcriptional variation alone does not improve over ge-
notype-based associations, but it is in combination with genotypic
information that the power of gene detection is increased.

As we demonstrate here, TWAS in combination with GWAS
enhances the capacity to prioritize candidate genes over the use of
GWAS alone. Given that more than half of detections are supported by
TWAS (Table 1), our results also reveal much of the functional varia-
tion for these traits to be regulatory. While not all previously identified
genes are detected by TWAS, this is likely a combination of insufficient
power compared to the previous association studies in the NAM pop-
ulation with.16x as many observations (Diepenbrock et al. 2017), the
sampling of a single time point per tissue, and the fact that not all
functional variation is regulatory. Despite these limitations, TWAS
adds value to GWAS mapping alone and increases the power to
re-detect known genes. Our finding that TWAS alone is a valid method
for finding true gene-trait associations is consistent with the recent
findings of Lin et al. (2017) and colleagues despite the difference be-
tween the eRD-GWAS and TWAS models. However, our results differ
in that we demonstrate that a combined test integrating TWAS and
GWAS yields a more powerful test than either method individually
when it comes to re-identifying known genes underlying oligogenic
traits (Diepenbrock et al. 2017).

We also note that our efforts to validate our TWAS and GWAS
detections differ from Lin et al. (2017). In contrast to comparing
the overlap of the detections by GWAS and TWAS in the same
study, we compared our detections to previously known genes
found in a largely independent set of germplasm, namely the
NAM population (Yu et al. 2008), which was used to find toco-
chromanol associations (Diepenbrock et al. 2017). Also, in con-
trast to the previously published study, we did not perform our
cross-validation analysis in the same set of germplasm in which
discovery was conducted by GWAS and TWAS to assess accuracy.
Using variance partitioning in the largely independent NAM pop-
ulation, we found similar levels of variance explained by the genes
detected by each method in the Goodman diversity panel (Flint-
Garcia et al. 2005), illustrating that even when the identified
genes are tested in an outside population, the detections of the
transcriptome-only and combined methods are found to be
valid and explain similar amounts of variance to the genotype-
based methods (Figures 4, 5). This is roughly consistent with the
cross-validation results comparing SNP_BayesB and eRD-GWAS
presented in Table S4 by Lin and colleagues (Lin et al. 2017).
However, the previously published results show an advantage for
eRD-GWAS for only one of fourteen traits, while on the basis of
variance partitioning for kernel traits we find an advantage for the

Figure 4 Variance partitioning of heritable variation
using all NAM families for A) tocochromanol traits and
B) agronomic traits. Vertical barplots represent the
heritability estimated from kinship matrices made from
the genetic regions adjacent to the top 10 ranked
genes mapped by MLM GWAS, kernel-based TWAS,
multi-tissue TWAS, the Fisher’s combined test of the
MLM GWAS + kernel-based TWAS, and the Fisher’s
combined test of the MLM GWAS + multi-tissue TWAS.
Horizontal barplots compare model based on mean
heritability across traits per trait class. Heritability
explained by using all SNPs for each trait was put at
the top of each grouped barplot.
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kernel-based TWAS or the Fisher’s combined model for nine of
the ten kernel-based traits for which measurements in NAM exist.

In further contrast to the previously publishedwork (Lin et al. 2017),
none of the SNPs used in our GWAS or variance partitioning methods
were derived from RNA-seq data, allowing for less bias toward
expressed genes and giving the genotype-based tests more indepen-
dence from the expression-based tests. In the previous work, more than
0.9M of the 1.2 M genetic variants were derived from the align-
ment of RNA-seq reads (Leiboff et al. 2015; Lin et al. 2017), poten-
tially confounding the ability to make associations by GWAS with
the presence of an expressed gene, and thus limiting the power of the
genotype-based GWAS to make associations which are independent of
expression.

It is striking that even in diverse maize lines where linkage decays
quickly (Wallace et al. 2014) and thus the power to resolve mapping
peaks to individual genes is high, TWAS provides a valuable supple-
ment to genetic mapping alone. This benefit of TWAS would be com-
pounded in species or populations in which resolution is limited.
Additionally, by imputing expression values based on local/cis haplo-
type, as has been successfully shown in humans (Pasaniuc and Price
2017), the utility of TWAS could potentially be extended further in
maize. Imputing expression to a larger panel would permit the exploi-
tation of previously measured phenotypes across a much larger set of
individuals which have not been expression profiled. By imputing only

the local/cis genetic component of expression, and implicitly averaging
over trans and environmental effects, the capacity to attribute field
phenotypes to the genetic component of expression would likely be
further improved.

The lack of improvement in re-detecting known tocochromanol
traits by the multi-tissue TWAS models alone or as part of the Fisher’s
combined tests is notable, but unsurprising for these genetically simple
and very tissue specific traits. This lack of improvement indicates that
kernel-based expression alone is most predictive of the kernel-based
metabolites and accuracy is not improved by the incorporation of
all other tissues. Rather than comparing the inclusion of all tissues
vs. kernels only, in the future a variable (tissue) selection TWAS ap-
proach should be used in which can remove uninformative terms from
the model rather than including them but giving them a very small
coefficient. It is also plausible that for more genetically complex traits
which are also affected by expression across tissues, the multi-tissue
TWAS results are more likely to be informative.

A further cause of the limited improvement for the kernel TWAS or
Fisher’s combined test seen in the variance partitioning results is likely
because GWAS identifies genomic regions which, when expanded to a
1 Mb window, could cover the functional variants. Furthermore, while
the correct functional gene may not be prioritized by GWAS, if the trait
is affected by genetic regulation rather than coding sequence change,
the sites near the GWAS hit may in fact be more functional than those

Figure 5 Family-based variance partitioning on indi-
vidual NAM family. Heritability for each trait was
estimated for each of 24 NAM families using kinship
matrices made from the genetic regions adjacent to the
top 10 ranked genes mapped by MLM GWAS, kernel-
based TWAS, multi-tissue TWAS, the Fisher’s combined
test of the MLM GWAS + kernel-based TWAS, and the
Fisher’s combined test of the MLM GWAS + multi-
tissue TWAS. There were a total of 24 independent tests
for each trait-model combination. Heritability estimates
were then added together (hereafter, summed heritability)
for A) tocochromanol traits and B) agronomic traits. Hori-
zontal barplots compare model based on total summed
heritability across traits per trait class.
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near the mechanistically significant gene itself even if they are
misattributed to the incorrect proximal gene. Using a large inde-
pendent diverse panel with very low LD to assess the heritability
explained by the SNPs identified by each method may also provide
a better estimate as the functional variants are not as easily tagged
over long distances.

While the utility of expression endophenotypes in dissecting traits
has been demonstrated here, it should be noted that associations made
between endophenotypes and terminal phenotypes are inherently more
susceptible to environmental effects than genotype-based associations.
This susceptibility to environmental effects likely allows us to associate
only the environmentally independent heritable fraction of expression
with phenotype in our study, especially because expression data were
collected from separateplants than those forwhich terminal phenotypes
weremeasured.Given that in endophenotype-based association studies,
like TWAS, environmental variation separately impacts and increases
error in both the independent and dependent variables, methods like
TWAS alone may plausibly be expected to perform more poorly than
genetics-based associations. However, this shortcoming is partially
compensated for by the more direct link between endophenotype
and terminal phenotype and the potential discovery of mechanism.
The collectionof expressiondata from the sameplants andconditions in
which the phenotypes are collected would likely benefit the dissection of
genotype by environment interactions by highlighting the impact of
variation in expression for a specific gene within an environment, but
cannot be examined here as terminal phenotypes and expression values
were calculated from separate environments and years.
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