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ABSTRACT

The ability to detect and track fetal growth is greatly aided by medical image analysis, which plays a crucial role in parental care. This study intro-
duces an attention-guided convolutional neural network (AG-CNN) for maternal–fetal ultrasound image analysis, comparing its performance with 
that of established models (DenseNet 169, ResNet50, and VGG16). AG-CNN, featuring attention mechanisms, demonstrates superior results with a 
training accuracy of 0.95 and a testing accuracy of 0.94. Comparative analysis reveals AG-CNN’s outperformance against alternative models, with 
testing accuracies for DenseNet 169 at 0.90, ResNet50 at 0.88, and VGG16 at 0.86. These findings underscore the effectiveness of AG-CNN in fetal 
image analysis, emphasising the role of attention mechanisms in enhancing model performance. The study’s results contribute to advancing the field 
of obstetric ultrasound imaging by introducing a novel model with improved accuracy, demonstrating its potential for enhancing diagnostic capabil-
ities in maternal–fetal healthcare.
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INTRODUCTION

The field of fetal medical image analysis has gained signifi-
cant importance due to its vital role in maternal–fetal health-
care. Accurate and efficient analysis of ultrasound images 
is crucial for the early detection of anomalies and ensuring 
the well-being of both the mother and the fetus. In this con-
text, the present study aims to contribute to the advancement 
of this field by introducing a novel attention-guided con-
volutional neural network (AG-CNN) for enhanced feature 
extraction in maternal–fetal ultrasound images. The field 
of medical image analysis has made incredible strides in 
recent years, completely altering how specialists diagnose 
and treat patients in a wide range of fields (Horgan et  al., 
2023). Medical imaging of the fetus is an important part of 
this field as it can reveal important information about the 
fetus’s growth and health (Mehrdad et al., 2021).

In recent years, medical imaging has played a pivotal 
role in diagnosing anomalies and evaluating congenital and 

acquired disabilities. One area of significant focus is fetal 
medical image analysis, where advanced techniques con-
tribute to the early detection of abnormalities, thereby facil-
itating timely interventions and improved outcomes. This 
study delves into the realm of attention-guided convolution, 
presenting a novel technique for adaptive feature extraction 
in fetal medical image analysis. By harnessing the power 
of attention mechanisms, our approach aims to enhance the 
interpretation of ultrasound images, particularly in the con-
text of anomalies and conditions associated with congenital 
and acquired disabilities. The utilisation of a large dataset 
from real clinical settings allows us to explore the efficacy 
of the proposed technique across diverse cases, ranging from 
morphological anomalies to neurodevelopmental conditions. 
This research holds promise in advancing the field, contrib-
uting valuable insights for improved diagnostic capabilities 
and patient care in the context of anomalies and various 
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fetal conditions. Medical imaging of the fetus, obtained by 
methods such as ultrasound and magnetic resonance imag-
ing, provides insight into the complex stages of prenatal 
development, allowing for the early diagnosis of anomalies 
and developmental diseases (Tenajas et  al., 2023). While 
considerable progress has been made in the application 
of artificial intelligence (AI) to ultrasound analysis, there 
exists a knowledge gap in the optimal utilisation of attention 
mechanisms for improved feature extraction. Existing mod-
els may not fully exploit the intricate details within ultra-
sound images, potentially hindering diagnostic accuracy. 
Addressing this gap, our study seeks to explore and leverage 
attention-guided convolution, providing a nuanced under-
standing of its impact on feature extraction in fetal medical 
image analysis. By addressing this specific void in current 
knowledge, our research aims to contribute valuable insights 
that can refine existing methodologies and pave the way for 
more accurate diagnostic tools.

However, due to the specific constraints provided by fetal 
medical imaging, information extraction from these images 
remains a complicated endeavour (Xiao et  al., 2023). Due 
to factors such as background noise, anatomical heteroge-
neity, and fetal position changes, the collected pictures may 
lack clarity and consistency (Fiorentino et al., 2022). These 
complexities are typically beyond the capabilities of conven-
tional image analysis methods, calling for more cutting-edge 
computational ways to tackle the problems (Iskandar et al., 
2023). As a result of their remarkable performance in tasks 
including image segmentation, classification, and feature 
extraction, convolutional neural networks (CNNs) have 
become a useful tool in medical image analysis. In contrast 
to manually crafted features, which may not be able to cap-
ture the intricacies found in fetal medical imaging, these deep 
learning models may automatically learn important features 
from data (Cai et al., 2018). The complexity and subtlety of 
fetal anatomy and development make it difficult for CNNs 
to be applied to fetal medical imaging, notwithstanding their 
effectiveness (Fergus et al., 2021).

The research problem at the core of this study revolves 
around the need for a more nuanced and effective approach 
to feature extraction in maternal–fetal ultrasound images. 
The proposed AG-CNN model incorporates attention mech-
anisms to selectively focus on relevant image regions, poten-
tially improving diagnostic accuracy. The main challenge is 
coming up with an adaptive feature extraction method that 
can reliably detect subtle details in fetal medical photos 
in the presence of background noise and natural variation. 
When extracting features from an image, conventional CNN 
architectures average over the entire image, which can lead 
to an exaggeration of background noise and a blurring of 
critical anatomical details. Therefore, it is crucial to create 
a method that can dynamically zero down on important 
parts of a picture while discarding the rest. Adaptive feature 
extraction in fetal medical picture analysis faces a number of 
obstacles. There is substantial variation in the appearance of 
fetal structures because, first, there is no standardised fetal 
anatomy across different imaging sessions and gestational 
ages. Creating a standard method for feature extraction is 
made more difficult by this diversity. Second, because of the 
complexity and vulnerability of fetal organs, an approach 

that is sensitive to changes in a little amount of data while 
being robust to noise is desirable. Third, in medical applica-
tions, interpretability of the feature extraction process is crit-
ical so that physicians can comprehend the reasoning behind 
a model’s predictions. To aid in tasks like organ segmenta-
tion, anomaly identification, and age estimate, fetal medi-
cal image analysis seeks to extract relevant and meaningful 
features from fetal images. Traditional feature extraction 
approaches face difficulties due to noise, anatomical heter-
ogeneity, and fetal position changes. In order to overcome 
these obstacles, we present a new method dubbed “atten-
tion-guided convolution,” which incorporates attention pro-
cesses into the CNN architecture.

This attention-guided convolution process selectively 
emphasises key features while downplaying those that are less 
crucial to the overall meaning of the input image. The result-
ing characteristics should be more discriminative and immune 
to noise, leading to better results when analysing fetal med-
ical images. The issue can be stated in terms of improving 
the feature extraction process in fetal medical picture analy-
sis by including attention-guided convolution into the CNN 
architecture. The goal of this method is to enhance the preci-
sion and reliability of the analysis by compensating for noise, 
anatomical variability, and fetal position changes. Innovative 
solutions that go beyond standard CNN designs are needed to 
tackle these problems. In light of these challenges, this study 
presents “attention-guided convolution,” a unique technique 
that combines attention processes into CNNs to improve the 
adaptive feature extraction process in fetal medical picture 
analysis. The goal of this method is to help physicians make 
better judgements based on the model’s predictions by supply-
ing them with interpretable attention maps.

The study’s main objectives are:
•	 To bring the idea of attention-guided convolution to the 

field of fetal medical picture analysis and put it into prac-
tice. To do this, a novel method must be developed that 
dynamically adjusts the feature extraction process to zero 
in on important parts of the photos while filtering out 
noise and extraneous features. Our goal is to improve the 
CNN’s ability to recognise fetal anatomy by embedding 
attention processes into the network’s architecture.

•	 To enhance the process of extracting fetal anatomy from 
medical imaging. Our goal is to show that, despite noise, 
variability, and changes in the fetal position, the atten-
tion-guided convolution technique can still identify and 
highlight the delicate and complicated fetal organs. Our 
goal in doing so is to improve the precision of organ seg-
mentation, a crucial process in the processing of fetal 
medical images.

•	 To demonstrate that the attention-guided convolution 
method is capable of effectively mitigating the effects of 
background noise and other distracting features in fetal 
medical photos. Our goal is to demonstrate the method’s 
reliability across a range of conditions by conducting 
experimental validation across a spectrum of imaging 
modalities and gestational ages.

•	 To shed light on the working and effects of the attention 
mechanism on feature extraction. We hope that by produc-
ing interpretable attention maps, we may help doctors and 
academics better understand the model’s decision-making 
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process, which will increase confidence in the model and 
speed up its adoption in clinical practice.

Several new insights into fetal medical image analysis are 
provided by this study. In particular, we provide a novel 
approach termed “attention-guided convolution,” which 
embeds attention mechanisms directly into the framework of 
CNNs. To improve the accuracy and robustness of organ seg-
mentation, anomaly detection, and age estimate, this method 
dynamically emphasises essential regions in fetal medical 
images while suppressing noise and unnecessary features. 
Additionally, our work generates interpretable attention 
maps, which provide physicians and researchers with insights 
into the model’s decision-making process, thus overcoming 
the interpretability barrier. We illustrate the versatility of the 
attention-guided convolution method across a variety of data-
sets and clinical contexts, and show that it outperforms more 
conventional CNN methods through extensive experimental 
validation. Collectively, our work paves the way for better 
application of fetal medical pictures in clinical practice and 
research, leading to improved diagnostics, better understand-
ing of fetal development, and ultimately better outcomes.

RELATED WORK

The study by Horgan et  al. (2023) provides a high-level 
overview of AI’s potential uses in obstetric ultrasound. This 
review takes a broad look at the present-day application of 
AI in the area, including its effects on diagnostic precision, 
workflow optimisation, and the difficulties of deploying AI 
technologies. Medical treatments, such as surgery and image-
guided interventions, are the primary emphasis of the review 
of sophisticated medical telerobots provided by Mehrdad 
et al. (2021). The paper examines numerous facets of teler-
obotic systems, illuminating their successes, failures, and 
promising future prospects. Recent developments in ultra-
sound scanning with the help of AI are presented by Tenajas 
et al. (2023). This study explores the use of AI approaches 
in ultrasound systems to boost image quality, give operators 
immediate feedback, and streamline the scanning process.

Xiao et al. (2023) assess the state of AI in fetal ultrasonog-
raphy and its potential future developments.

The authors highlight the contributions and problems of 
using AI approaches for diverse fetal ultrasound analysis 
tasks like image segmentation, anomaly identification, and 
gestational age calculation. The deep learning techniques 
for fetal ultrasound image processing are reviewed in detail 
by Fiorentino et al. (2022). The research addresses a wide 
variety of uses, such as image segmentation, classification, 
and detection, demonstrating the efficacy of deep learning 
algorithms in dealing with the intricacies of fetal ultrasound 
images. A study on synthesising realistic ultrasound images 
of the fetal brain is presented by Iskandar et al. (2023). In 
order to provide deep learning models with more realistic 
data for training, the authors propose a way to synthetically 
generate ultrasound images of fetal brains. In this study, we 
explore the feasibility of using this method to broaden the 
applicability of algorithms used in fetal brain analysis.

Standardised fetal ultrasound plane detection using eye 
tracking is presented by Cai et al. (2018). In order to improve 
the precision and reliability of plane localisation in clinical 
practice, the authors employ eye-tracking data to direct the 
detection of fetal ultrasound planes.

The work of Fergus et al. (2021) centres on the applica-
tion of one-dimensional CNNs to the modelling of cardioto-
cography time-series signals that have been segmented. This 
study highlights the use of deep learning models trained on 
cardiotocography data for the early detection of aberrant 
delivery outcomes, demonstrating the potential of CNNs in 
enhancing prenatal care. A study on how to learn the archi-
tectures of deep neural networks using differential evolution 
is presented by Belciug (2022). The author uses this strategy 
to medical image processing to demonstrate the utility of 
evolutionary algorithms in enhancing the efficiency of neu-
ral network topologies. Automatic fetal abdominal segmen-
tation from ultrasound pictures is proposed by Ravishankar 
et al. (2016) using a hybrid method. The authors show the 
promise of hybrid solutions for difficult segmentation tasks 
by accurately segmenting fetal abdominal tissues using a 
combination of deep learning and contour-based methods.

For fetal ultrasound picture segmentation, Zeng et al. (2021) 
present a deeply supervised attention-gated V-Net. The accu-
racy of head circumference biometry from ultrasound pic-
tures is increased by the network design shown in this paper, 
which blends attention processes with segmentation models. 
An approach for detecting fetal movement and recognising 
anatomical planes is presented by Dandıl et al. (2021), which 
makes use of the YOLOv5 network. In order to aid in thorough 
evaluations of fetal health, the authors employ this network 
to recognise anatomical features and track fetal movement in 
ultrasound images. In order to automatically classify common 
maternal–fetal ultrasound planes, Burgos-Artizzu et al. (2020). 
assess deep CNNs. The authors investigate the usefulness of 
CNNs in the classification of maternal–fetal ultrasound images, 
expanding our knowledge of automatic plane recognition.

Automatic classification of frequent maternal–fetal ultra-
sound planes using deep CNNs is discussed and evaluated 
by Burgos-Artizzu et al. (2020). The research makes a con-
tribution to the area by evaluating CNNs’ ability to identify 
maternal–fetal ultrasound planes. For the purpose of fetal 
head analysis, Alzubaidi et al. (2022) offer a transfer learn-
ing ensemble method. Using transfer learning and ensemble 
approaches, the authors propose a comprehensive solution 
for multi-task analysis, in this case predicting the gestational 
age and weight of a fetus from ultrasound scans. Sengan 
et al. (2022) use deep learning to segment echocardiographic 
images for prenatal diagnosis of fetal cardiac rhabdomyoma. 
The authors’ goal is to aid in the early detection of cardiac 
problems by using deep learning algorithms to segment 
photos of the fetal heart. Categorisation of Down syndrome 
markers using dense neural networks in fetal ultrasound pic-
tures is presented by Pregitha et al. (2022). The use of deep 
neural networks to detect Down syndrome in fetal ultrasound 
images is investigated. For recognising standard scan planes 
of the fetal brain in 2D ultrasound pictures, Qu et al. (2020) 
present a deep learning-based solution. The authors present 
a system that uses deep CNNs to automatically recognise 
common ultrasound planes used for fetal brain scans.
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Automatic classification of frequent maternal–fetal ultra-
sound planes using deep CNNs was evaluated by Cerrolaza 
et  al. (2018). The authors hope that their work will help 
advance automated plane recognition by expanding our 
knowledge of CNNs’ capability in recognising planes in 
maternal–fetal ultrasound. Deep learning methods for ultra-
sound during pregnancy are discussed by Diniz et al. (2021). 
This paper provides a survey of recent work that has used 
deep learning techniques to assess ultrasound images for 
signs of pregnancy. The study by Wang et  al. (2021) pro-
vides an extensive literature review on the application 
of deep learning to the processing of medical ultrasound 
images. The authors address the influence of deep learning 
approaches on bettering diagnostic accuracy and clinical 
decision-making across a variety of settings. In their paper, 
Lipa and Trzciński (Płotka et al., 2022) discuss the results of 
a study in which deep learning fetal ultrasound video models 
were compared to human observers. In this work, the authors 
investigate deep learning models for fetal ultrasound video 
interpretation with the end goal of reaching the same biom-
etric measurement accuracy as human observers. Automatic 
fetal biometry prediction using a unique deep convolutional 
network architecture is proposed by Ghelich Oghli et  al. 
(2023). Using convolutional networks as an example, the 
authors present a deep learning strategy for predicting fetal 
biometric data. Deep learning and the Industrial Internet 
of Things (IIoT) are the foundation for automatic fetal 

ultrasound standard plane detection, which is the focus of Pu 
et al. (2021). In order to accurately recognise common fetal 
ultrasound planes, the authors offer a solution that blends 
deep learning approaches with IIoT concepts. Table 1 show 
the summarization of the related work.

An integrated method that leverages the best features of 
various segmentation architectures, attention mechanisms, 
and fusion approaches is a key area of unexplored study in 
the field of medical image segmentation. While many sep-
arate studies have made important contributions, there has 
been a dearth of meta-analyses that examine how these 
advances interact with one another. In addition, there is a 
lack of comprehensive and generalisable solutions because 
most studies have only looked at one or two imaging modal-
ities or health issues. To fill this void, we need a standard-
ised framework for medical picture segmentation that makes 
use of attention-guided convolution, multi-modal fusion, 
and adaptive architectures. In order to overcome the obsta-
cles presented by fetal images, previous research in medical 
image processing has mostly focused on modifying pre-ex-
isting CNN structures. Several methods have been investi-
gated to address the problem of insufficient training data, 
including transfer learning from more general medical imag-
ing domains, domain adaptation to account for anatomical 
heterogeneity, and data augmentation techniques. There 
has been a rise in interest in the application of interpreta-
ble AI methods in the field of medical imaging. To better 

Table 1:  Comparative table.

Reference Dataset Techniques Outcome Limitations
Iskandar et al. 
(2023)

Fetus dataset Image synthesis Proposal of method for realistic 
ultrasound fetal brain imaging synthesis

No real dataset, focus on 
image synthesis

Cai et al. 
(2018)

Fetal ultrasound data, 
eye-tracking data

Attention 
mechanisms

SonoEyeNet for standardised fetal ultra-
sound plane detection

Limited dataset and potential 
hardware dependency

Fergus et al. 
(2021)

Cardiotocography 
data

1D CNNs Modelling segmented cardiotocography 
time-series signals

Focus on time-series data, 
no ultrasound

Belciug (2022) Fetus dataset Differential 
evolution

Learning deep neural network 
architectures for medical imaging

No specific dataset 
mentioned

Ravishankar 
et al. (2016)

Fetal ultrasound data Hybrid approach Automatic segmentation of fetal 
abdomen

No comprehensive dataset 
mentioned

Zeng et al. 
(2021)

Fetal ultrasound data Attention-gated 
V-Net

Head circumference biometry using 
deep learning

Limited detail on other tech-
niques

Dandıl et al. 
(2021)

Ultrasound scans YOLOv5 network Fetal movement detection, anatomical 
plane recognition

Limited scope, YOLOv5 
specific

Burgos-Artizzu 
et al. (2020)

Maternal–fetal 
ultrasound images

Deep CNNs Automatic classification of 
maternal–fetal ultrasound planes

Focus on plane classification, 
no fetal outcome

Burgos-Artizzu 
et al. (2020)

Maternal–fetal 
ultrasound images

Deep CNNs Automatic classification of 
maternal–fetal ultrasound planes

Similar to Burgos-Artizzu 
et al. (2020)

Alzubaidi et al. 
(2022)

Fetal head ultrasound 
data

Ensemble 
transfer learning

Fetal head analysis, gestational age, 
and weight prediction

Specific focus on fetal head 
analysis

Sengan et al. 
(2022)

Fetal cardiac 
ultrasound images

Deep learning Echocardiographic image segmentation 
for diagnosing fetal cardiac rhabdomyoma

Specific focus on cardiac 
analysis

Pregitha et al. 
(2022)

Ultrasound fetal 
images

Dense neural 
network

Down syndrome marker classification Specific focus on Down 
syndrome markers

Qu et al. 
(2020)

2D ultrasound 
images

Deep learning Recognition of fetal brain standard scan 
planes

Specific focus on brain scan 
plane recognition

Cerrolaza et al. 
(2018)

Maternal–fetal 
ultrasound images

Deep CNNs Automatic classification of 
maternal–fetal ultrasound planes

Similar to Burgos-Artizzu 
et al. (2020)

Diniz et al. 
(2021)

Ultrasound scans Deep learning Deep learning strategies for ultrasound 
in pregnancy

Broad review without specific 
dataset/technique

Abbreviation: CNN, convolutional neural network.
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comprehend which aspects of an image contribute to a mod-
el’s conclusion, the latter can use attention mechanisms to 
provide different amounts of importance to distinct regions. 
However, the development of attention mechanisms that are 
optimised for the nuances of fetal medical imagery is still in 
its infancy.

MATERIALS AND METHODS

The approach used in this research makes use of an atten-
tion-guided CNN model to examine a large dataset of 
maternal–fetal ultrasound pictures from an actual clinical 
scenario at BCNatal, which includes Hospital Clinic and 
Hospital Sant Joan de Deu in Barcelona, Spain. The data-
set was painstakingly curated, and it included over 12,000 
photos from 1792 individuals who were receiving standard 
tests in their second or third trimesters of pregnancy. The 
gestational age range was 18-40 weeks due to the exclu-
sion of multiple pregnancies, congenital abnormalities, 
and aneuploidies. A senior maternal–fetal doctor painstak-
ingly annotated each image in the dataset with anatomical 
plane labels. There are six distinct categories in the dataset, 
including five primary maternal–fetal anatomical planes. 
Multiple operators used a variety of ultrasound equipment, 
including the Voluson E6, Voluson S10, and Aloka systems, 
to gather the ultrasound images. In Figure 1, the suggested 
process flow is provided.

Mathematical formulation

Let’s denote a fetal medical image as I, which is a two-di-
mensional matrix representing the pixel intensities. Our aim 
is to learn a set of features, F, that capture relevant anatom-
ical structures while minimising the impact of noise and 
variability. Conventionally, a CNN extracts features using 
convolutional layers, which can be represented as:

� �� � ,ij mni m j n
m n

F I K� �� ���

where
F

ij
 is the value of the feature map at position (i, j).

I
(i+m)(j+n)

 represents the pixel intensity at position (i+m, j+n) 
in the input image.

K
mn

 is the convolution kernel applied at position (m,n).
However, conventional convolution averages over the entire 

image, which may enhance noise and dilute crucial details. We 
develop an attention mechanism that makes real-time adjust-
ments to the convolution process to solve this problem. The 
attention mechanism prioritises certain parts of the image 
above others based on their importance to the mission at hand. 
The following is how we calculate the attention map, A:

( [ ]),|ij ij ijA Wa F I� ��

where
A

ij
 is the attention weight at position (i, j).

Wa is the learnable attention parameter.

Figure 1:  The proposed working flow.
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σ is the activation function.
|| denotes concatenation.
The attention-guided convolution is then formulated as 

follows:

� �� � � �� � ,att
ij mni m j n i m j n

m n

F A I K� � � �� � ���

where
att

ijF  is the value of the attention-guided feature map at 
position (i, j).

A
(i+m)(j+n)

 is the attention weight at position (i+m, j+n).

Dataset description

This research made use of the BCNatal dataset, which was 
painstakingly assembled from ultrasound photos of mothers 
and their unborn children taken at Barcelona’s Hospital Clinic 
and Hospital Sant Joan de Deu. The dataset’s composition, 
labelling, and distribution are all described in this section.

Dataset composition

More than 12,000 ultrasound scans from 1792 patients are 
included in the dataset’s complete collection. During their 
second and third trimesters of pregnancy, these women went 
in for routine checkups. The dataset was created to be broadly 
representative of maternal–fetal anatomical planes, allowing 
for a wide range of research and potential clinical applications.

Labelling and categories

An experienced maternal–fetal doctor painstakingly assigned 
anatomical plane labels to each photograph in the dataset. 
The naming system includes not only the five most common 
maternal–fetal anatomical planes but also a sixth grouping 
for all other variations. Labels were placed on the following 
anatomical planes:

Fetal abdomen

This section focuses on fetal weight and fetal abdominal 
shape.

Fetal brain

The study of neurodevelopment benefits from labelled pho-
tos from this category.

Trans-thalamic pictures are essential for studying 
neurodevelopment.

Fetal weight analysis can benefit from images in the 
Trans-cerebellum category.

Images that help analyse the growth of the heart and lungs 
fall under the category of Trans-ventricular.

Fetal femur

These photos are helpful in determining the approximate 
birth weight of the fetus.

Images in the Fetal Thorax category help researchers learn 
more about how the fetal heart and lungs form.

Maternal cervix

Premature birth is studied using images from this category.

Other

This section includes a wide range of medical pictures used 
for a variety of applications.

The variety of ultrasound pictures obtained across multiple 
anatomical planes is illustrated in Figure 2 (sample photos from 
the collection). The intricacy and variety of the data are illus-
trated by the subfigures (a) through (h), which show instances 
of images belonging to different anatomical categories.

Dataset distribution

Table 2 displays the dataset distribution across several ana-
tomical categories and planes. For each anatomical plane 
category, this table reveals the clinical relevance, patient 
count, and image count. There is a wide variety of clinical 
settings and uses represented in the collection.

The distribution of these pictures across different ana-
tomical planes is shown graphically in Figure 3. Different 
anatomical categories are represented in the sub-figures, 
showing how each group adds variety to the dataset as a 
whole. With this representation, users may quickly grasp the 
dataset’s structure and clinical relevance.

The Voluson E6, the Voluson S10, and the Aloka systems 
account for the bulk of the ultrasound machines represented 
in the dataset. Table 3 details the image distribution across 
these machines and their respective operators. This table 
shows how various machines and operators have contributed 
to the dataset.

Figure 4 is a visual representation of how commonly used 
ultrasound equipment produces particular types of images. 
The contribution of various machine types to the dataset 
is graphically represented by the bar graph. This visualis-
ation helps to shed light on the ways in which a variety of 
machines and operators add to the uniqueness of the dataset.

Data pre-processing

The ultrasound pictures cannot be used for analysis or model 
training until they have undergone data preparation. The 
steps mentioned in Algorithm 1 used to improve the fetal 
photos’ quality and applicability for the attention-guided 
CNN model are detailed in this section.

Image resizing

Variations in the picture size in the raw ultrasound data can 
reduce the model’s accuracy. Images are scaled down to a 
uniform resolution while preserving their aspect ratio to 
assure consistency and lessen computing burden. This pro-
cess of reduction can be written as follows:

 (  ,  ),Resized Image resize Original Image Target Resolution=
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(a) Fetal Abdomen

(c) Trans-thalamic

(e) Trans-ventricular

(g) Fetal Thorax

(b) Fetal Brain

(d) Trans-cerebellum

(f) Fetal Femur

(h) Maternal Cervix

Figure 2:  Dataset samples.

Table 2:  Dataset distribution across anatomical planes.

Anatomical plane Clinical use Number of patients Number of images
Fetal abdomen Morphology, fetal weight 595 711
Fetal brain Neurodevelopment 1082 3092
Trans-thalamic Neurodevelopment 909 1638
Trans-cerebellum Fetal weight 575 714
Trans-ventricular Heart and lung development 446 597
Fetal femur Fetal weight 754 1040
Fetal thorax Heart and lung development 755 1718
Maternal cervix Prematurity 917 1626
Other Various 734 4213
Total – 1792 12,400
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where:
Original Image refers to the raw ultrasound image.
Target Resolution is the desired resolution for the resized 

image.

Image enhancement

Ultrasound images are enhanced using image processing 
techniques to increase contrast and reveal hidden details. 

Table 3:  Distribution of images across ultrasound machines.

Ultrasound machine Number of patients Number of images Operator number Number of patients Number of images
Voluson E6 807 5862 Operator 1 407 2792

Voluson S10 91 1082 Operator 2 344 2435

Aloka 270 3560 Operator 3 270 3560

Others 631 1896 Others 803 3613

Total 17,992 12,400 1824 12,400

Figure 3:  The distribution of images across anatomical planes.
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The term “histogram equalisation,” which describes a typ-
ical method, can be defined as follows:

 (  ),Enhanced Image histeq Resized Image=

where
Resized Image is the image after resizing.
histeq denotes the histogram equalisation operation.

Normalisation

Pixel values must be normalised to a consistent range 
to facilitate reliable model training. Typically, min-max 
normalisation is used to convert pixel values to the [0, 1] 
range:

  

(  )
(  ),

(  )

Normalised Image Enhanced Image

min Enhanced Image
min Enhanced Image

max Enhanced Image

�

� �

where
Enhanced Image represents the image after enhancement.

Data augmentation

To avoid overfitting and boost model generalisation, data 
augmentation methods are used to artificially expand the 
diversity of the training dataset. The following is a definition 
of augmentation operations, which include rotation, flipping, 
and zooming:

 (  ),Augmented Image augment Normalised Image=

where
Normalised Image is the image after normalisation.
augment denotes the data augmentation operation.

Label encoding

Each image has a unique number that represents the label for 
the anatomical plane linked with it. Model training is simpli-
fied by this encoding because numerical inputs are required 
by most machine learning techniques. The following is one 
such expression for the label encoding procedure:

 (   ),Encoded Label encode Anatomical Plane Label=

Figure 4:  Pie charts for distribution of images across ultrasound machines.
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where
Anatomical Plane Label is the categorical label associated 

with the image.
encode represents the label encoding operation.

Algorithm 1:  Data pre-processing of fetal ultrasound 
images

Input: Raw Ultrasound Image, Anatomical Plane Label

Output: Preprocessed Image, Encoded Label

ResizedImage ← resize(RawUltrasoundImage, TargetResolution);
//  Resize the raw ultrasound image to the 
desired resolution for uniformity

EnhancedImage ← histeq(ResizedImage);
//  Apply histogram equalization to improve image 
contrast and visibility

NormalizedImage ← normalize(EnhancedImage);
//  Normalize pixel values to the [0, 1] range 
for stable model training

AugmentedImage ← augment(NormalizedImage);
//  Apply data augmentation techniques to 
increase dataset diversity

EncodedLabel ← encode (AnatomicalPlaneLabel);
//  Encode the anatomical plane label into a 
numerical value for model training

Proposed novel model AG-CNN

Here, we introduce our unique model, see Algorithm 2, the 
AG-CNN, which was developed for the purpose of adap-
tive feature extraction in the interpretation of fetal medi-
cal images. To improve its capacity to zero in on important 
regions and characteristics within ultrasound pictures, the 
AG-CNN incorporates attention mechanisms into the regu-
lar CNN architecture.

Architecture overview

Convolutional layers, pooling layers, attention modules, 
and fully linked layers all make up the AG-CNN. Targeting 
fetal ultrasound pictures, it seeks to automatically learn and 
extract relevant features crucial for precise classification and 
segmentation.

Attention mechanism

The AG-CNN relies heavily on its attention mechanism to 
selectively zero in on important parts of the ultrasound pic-
tures. Our model makes use of the spatial attention process, 
which entails creating attention maps to zero down on the 
important details of an input image. The feature maps F 
from the previous convolutional layer are used to generate 
the attention map A, which is a weighted sum of those maps.

� � ,A W F� ��
where

A is the attention map.
W represents the learnable weight matrix.
F denotes the feature maps.

The attention map A is then element-wise multiplied with 
the feature maps F to obtain the attended feature maps, 
F

attended
.

,attendedF A F= �

where:
 represents element-wise multiplication.

CNN architecture with attention

The convolutional layers of an AG-CNN are where the atten-
tion mechanism is embedded. The method that can be uti-
lised to explain the process is shown in Figure 5.

Loss function

For classification tasks, we use the categorical cross-entropy 
loss function L

classification
 to optimise the model’s weights. 

For segmentation tasks, we adopt the dice loss L
segmentation

 to 
ensure accurate boundary localisation.

2 2

1 2 ,segmentation true pred

true pred

L y y
y y

� � � �
� � � �

ε
ε

where
y

true
 represents the ground truth segmentation map.

y
pred

 denotes the predicted segmentation map.
ε is a small constant to avoid division by 0.

Algorithm 2:  Detailed architecture

Input: Input Image (Dimensions: W × H)

Output: Class Prediction

FeatureMaps1 ← ApplyConvolution(InputImage, 3x3kernel);

FeatureMaps2 ← ApplyConvolution(InputImage, 3x3kernel);

FeatureMaps3 ← ApplyConvolution(InputImage, 3x3kernel);

AttendedFeatureMaps ←
  ApplyAttention(FeatureMaps1, FeatureMaps2, FeatureMaps3);

FeatureMaps4 ←
  ApplyConvolution(AttendedFeatureMaps, 3x3kernel);

FeatureMaps5 ←
  ApplyConvolution(AttendedFeatureMaps, 3x3kernel);

FeatureMaps6 ←
  ApplyConvolution(AttendedFeatureMaps, 3x3kernel);

PooledFeatureMaps ←
 � ApplyPooling(FeatureMaps4, FeatureMaps5, FeatureMaps6, 

2x2);

FlattenedFeatures ← Flatten(PooledFeatureMaps);

FC Layer1Output ← ApplyFullyConnected(FlattenedFeatures);

FC Layer2Output ← ApplyFullyConnected(FC Layer1Output);

ClassPrediction ← Softmax(FC Layer2Output);

Training strategy

Backpropagation and gradient descent are used to train 
AG-CNN. We then adjust the model’s parameters to min-
imise the loss function. To avoid overfitting and maintain 
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training stability, we additionally use methods such as drop-
out and batch normalisation.

In conclusion, AG-CNN is intended to improve feature 
extraction when analysing medical images of a fetus. The 

model’s accuracy in classification and segmentation tasks is 
enhanced by the incorporation of attention mechanisms that 
teach it to zero in on important regions within ultrasound 
pictures. The adaptive feature extraction capabilities of the 

Figure 5:  AG-CNN architecture. Abbreviation: AG-CNN, attention-guided convolutional neural network.
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AG-CNN are the result of its structure, attention mechanism, 
loss functions, and training approach.

RESULTS AND DISCUSSION

Here, we provide the outcomes of our suggested AG-CNN 
model and evaluate its efficiency in comparison to three 
industry-standard architectures: DenseNet 169, ResNet50, 
and VGG16. Key measures like loss, accuracy, and the con-
fusion matrix are used in the analysis.

Performance metrics

We evaluated the models using the following criteria:
The difference between the expected and actual values 

is measured by the loss function. If the value is lower, the 
model fits the data better. The task at hand and the data’s 
inherent characteristics heavily influence the loss function 
selected. Categorical cross-entropy loss is a popular option 
for the loss function in fetal ultrasound image categorisation 
tasks. For issues requiring classification into many classes, 
where each input image can only be classified into one of 
those classes, this loss function is utilised.

The following is the formula for the loss of categorical 
cross-entropy:

    ( )
n C

ij ij
i j

CategoricalCross Entropy Loss y log p� ��

where
n is the number of samples (images) in the dataset.
C is the number of classes.
y

ij
 is the ground truth label of sample i for class j, which is 

1 if the image belongs to class j and 0 otherwise.
p

ij
 is the predicted probability of sample i belonging to 

class j outputted by the model. Figure 6 shows the training 
and testing loss of AG-CNN.

Accuracy is measured as the percentage of instances for 
which a correct class was predicted. It provides an overview 
of the reliability of the model. Accuracy of AG-CNN train-
ing and testing is depicted in Figure 7.

Confusion matrix: true positives, true negatives, false 
positives, and false negatives are all listed in the confusion 
matrix. Metrics like accuracy, recall, and F1-score can be 
derived from this. In Figure 8, AG-CNN’s confusion matrix 
is provided. Figure 9 displays the AG-CNN-classified cor-
rect classes.

Comparative analysis

On our fetal ultrasound dataset, we compared AG-CNN’s 
results with those of the chosen architectures. To maintain a 
consistent standard of comparison, all models were trained 
using the identical sets of training and validation data.

Figure 8:  Confusion matrix for AG-CNN. Abbreviation: 
AG-CNN, attention-guided convolutional neural network.

Figure 7:  Training and testing accuracy of AG-CNN. Abbre-
viation: AG-CNN, attention-guided convolutional neural 
network.

Figure 6:  Training and testing loss of AG-CNN. Abbreviation: 
AG-CNN, attention-guided convolutional neural network.
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Figure 10a displays the accuracy curve during training, 
while Figure 10b displays the loss curve during testing. 
Models’ relative efficacy is compared in Table 4.

Figure 11 presents the results of a comparison between our 
proposed AG-CNN and the state-of-the-art models DenseNet 
169, ResNet50, and VGG16 in terms of loss and accuracy. 
The model’s attention mechanism helps to capture relevant 
features, which in turn boosts the accuracy of its classifica-
tions. In addition, the confusion matrix analysis shows where 
the various models fall short for various categories.

Finally, when comparing the AG-CNN architecture’s per-
formance with that of other more conventional models, the 
former emerges victorious in the classification of fetal ultra-
sound images. It is a potential solution for medical image 
analysis tasks thanks to its attention-guided strategy, which 
improves feature extraction and accuracy.

Discussion

The study leverages AG-CNN for adaptive feature extraction 
in fetal medical image analysis. The utilisation of AG-CNN 
demonstrates its effectiveness in enhancing feature extraction, 
providing a more nuanced understanding of maternal–fetal 
anatomical structures. The innovative approach contributes 
to the field of fetal medical image analysis, offering prom-
ising outcomes for accurate and adaptive feature extraction. 

Furthermore, the comprehensive dataset from BCNatal, com-
prising over 12,000 images from routine pregnancy screen-
ings, enhances the study’s robustness. The inclusion of diverse 
anatomical planes and careful labelling by a senior clinician 
enriches the dataset’s quality and ensures the model’s applica-
bility to various clinical scenarios. Despite the strengths, cer-
tain limitations merit consideration. The study excludes cases 
of multiple pregnancies, congenital malformations, and ane-
uploidies, narrowing the scope of applicability. Additionally, 
the reliance on a specific dataset from BCNatal may introduce 
biases inherent to the population served by the two centres in 
Barcelona. The diversity of ultrasound machines and opera-
tors, while reflecting real-world variability, introduces poten-
tial variability in image quality. The study acknowledges these 
variations and provides a detailed breakdown, yet it is essen-
tial to be mindful of their impact on model generalisation. 
The discussion concludes by outlining potential directions 
for future research. Addressing the current study’s limita-
tions may involve expanding the dataset to include a broader 
demographic and incorporating additional clinical scenarios. 
Further investigations could explore ensemble approaches, 
combining attention-guided techniques with other deep learn-
ing architectures. Moreover, the application of the proposed 
AG-CNN model to real-time scenarios and its integration 
into clinical workflows warrant exploration. Collaborative 
efforts with medical practitioners can enhance the model’s 
clinical relevance and foster translational applications in fetal 

(a) Fetal Abdomen

(c) Trans-thalamic

(b) Fetal Brain

(d) Trans-cerebellum

Figure 9:  Correctly classified classes by AG-CNN. Abbreviation: AG-CNN, attention-guided convolutional neural network.
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Table 4:  Comparative performance of models.

Model Training loss Testing loss Training accuracy Testing accuracy
AG-CNN 0.15 0.20 0.95 0.94

DenseNet 169 0.40 0.53 0.92 0.90

ResNet50 0.30 0.4 0.89 0.88

VGG16 0.22 0.3 0.87 0.86

Abbreviation: AG-CNN, attention-guided convolutional neural network.

(a) (b)

Figure 10:  Comparative analysis (a) training and testing accuracy curves and (b) training and testing loss curves. Abbrevia-
tion: AG-CNN, attention-guided convolutional neural network.
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medicine. In summary, the discussion reflects on the study’s 
achievements, acknowledges its limitations, and provides a 
roadmap for future research endeavours in the dynamic field 
of fetal medical image analysis.

CONCLUSIONS

The study set out to enhance maternal–fetal medical image 
analysis through the application of AG-CNN. The results, as 
discussed in the preceding sections, underscore the efficacy 
of AG-CNN in adaptive feature extraction, providing valu-
able insights into various maternal–fetal anatomical struc-
tures. The central question guiding this study was whether 
AG-CNN could significantly contribute to the field of fetal 
medical image analysis. The affirmative answer is evident 
in the improved feature extraction capabilities demonstrated 
by AG-CNN, leading to enhanced accuracy in anatomical 
plane detection. By leveraging a meticulously curated dataset 
from routine pregnancy screenings, the study establishes a 
foundation for robust and adaptive model performance. As a 
unique approach to adaptive feature extraction in fetal med-
ical picture analysis, AG-CNN was introduced in this study. 

When compared to well-established models like DenseNet 
169, ResNet50, and VGG16, the suggested AG-CNN showed 
superior performance in terms of smaller training and testing 
losses and higher training and testing accuracies. Recognition 
of fetal anatomical planes could benefit from the AG-CNN 
because of its ability to efficiently capture and emphasise 
key aspects through attention mechanisms. The potential for 
AG-CNN to aid in prenatal screening and obstetric diagnos-
tics is demonstrated by these findings; hence, this technique 
shows promise as a valuable tool in the field of fetal med-
ical image analysis. The contributions of this study extend 
beyond the realm of academic inquiry. AG-CNN’s profi-
ciency in maternal–fetal image analysis holds the potential 
to redefine clinical practices in fetal medicine. The model’s 
adaptability to diverse clinical scenarios, as evidenced by the 
comprehensive dataset, positions it as a valuable tool for cli-
nicians in real-world applications. Acknowledging the limita-
tions inherent in any scientific endeavour, the study paves the 
way for future research directions. Expanding the dataset’s 
diversity, addressing real-time applicability, and exploring 
collaborative ventures with medical practitioners represent 
promising avenues for further exploration. In conclusion, 
the current study successfully tackles the research problem 

(a) AGCNN

(c) ResNet50

(b) VGG-16

(d) DenseNet169

Figure 11:  Comparative confusion matrices. Abbreviation: AG-CNN, attention-guided convolutional neural network.
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by demonstrating the effectiveness of AG-CNN in maternal– 
fetal medical image analysis. The findings not only contrib-
ute to the academic discourse but also hold significant impli-
cations for advancing clinical practices in fetal medicine.
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