
Article title: Overview of Face Recognition Methodologies: A Literature Review
Authors: Akshay Menon[1]
Affiliations: student at presidency university, bengaluru[1]
Orcid ids: 0009-0001-2656-1960[1]
Contact e-mail: akshaymjry@gmail.com
License information: This work has been published open access under Creative Commons Attribution License
http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at
https://www.scienceopen.com/.
Preprint statement: This article is a preprint and has not been peer-reviewed, under consideration and submitted to
ScienceOpen Preprints for open peer review.
DOI: 10.14293/PR2199.000346.v1
Preprint first posted online: 08 September 2023
Keywords: Face Recognition,  Computer Vision,  Deep Learning,  Eigenfaces,  Local Binary Patterns,  Sparse
Representation,  Robust Recognition,  Evaluation Methods,  Image Processing,  Feature-based Methods



Overview of Face Recognition
Methodologies: A Literature Review

Akshay Menon
Presidency University, Bengaluru

Email: akshay.20201csd0033@presidencyuniversity.in

Abstract—Computer vision and pattern recognition
technologies have made a significant advancement in
the recent past. A key application of this is face
recognition. Its applications resonate in many fields.
Various methodologies have been developed for this,
and it is essential to compare, contrast and review
them on the basis of various factors and aspects to
find the optimal methodology. The journey of face
recognition technology has progressed rapidly from
traditional methods to deep learning applications.
Yet, it is necessary to survey all these methods and
critically and comprehensively evaluate them, as a ma-
jority of them are still limited to variation constraints
such as lighting, expressions and orientation and other
practical complexities. The objective of this paper is
to examine, evaluate and illustrate the strengths and
limitations of a range of papers by delving into various
distinct yet comparable specifics of each methodology
of implementing face recognition systems. The motive
is to also culminate the essence of these methodologies
to facilitate an insightful perspective and overview of
the methodologies in a concise manner.

I. INTRODUCTION

Face recognition is a fundamental example of
utilizing computer vision technologies with appli-
cations ranging from security, surveillance, legal,
entertainment and other diverse yet integral parts
of daily activities. The increasing dependence on
the potential of face recognition has led to a lot
of research in the field, resulting in significant
developments and advanced systems to yield this
potential to the fullest. Different methods and algo-
rithms have been developed, each having its own
unique way of extracting features from images to
obtain patterns from them and implement recogni-
tion. To broadly categorize them, face recognition
methodologies are generally of four major types.
Firstly, there are holistic methods that focus on

treating the face as a single entity and obtaining
the overall characteristics from it. Followed by
this, there are also feature-based methods that
involve the extraction and analysis of particular
facial features like the eyes, mouth, or nose. Thirdly,
template-based methods create a representation of
the face using the distinct features based on edge
patterns, etc. Lastly, hybrid methods integrate mul-
tiple methodologies to build a more robust recogni-
tion system and harness the strengths from each of
its derivatives. This paper explores methodologies
from all these categories and also discusses a variety
of methods of optimizing various aspects such as
feature representation and dimensionality reduction.

II. METHODOLOGIES

A. Local Binary Patterns

The face is a complex surface-structure with
an extremely high degree of distinctness across
different individuals. A computer cannot explicitly
identify a face as on its own. Developing a face
recognition model involves training the system with
some input set of features derived from the geomet-
rical appearance patterns of the face. This calls for
the need to maximize relevant features to build an
efficient and optimized model. Every image consists
of pixels which have different intensities, and local
binary patterns are the feature of interest in this
methodology. These patterns capture and encode the
edges on a face in an intuitive manner. The pixels of
each image in a face can be grouped into sequential
windows of 3×3 pixel-blocks. By comparing its
intensity with the central pixel of each block, the
surrounding pixels can be normalized to either 0
(if its intensity is lesser than central pixel) or 1 (if
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intensity is greater than central pixel). This converts
each pixel block into a series of binary values
with corresponding decimal values. A histogram of
these values helps visualize the “information about
the distribution of the local micro-patterns, such as
edges, spots and flat areas, over the whole image”.
[1] The transitions between binary values signify
the presence of an edge. Through this, the otherwise
high-dimensional face image is now encoded into a
low-dimensional space by utilizing relative inten-
sity values, also known as illumination invariant
descriptors. However, this doesn’t solve the problem
of facial expression detection because expressions
are an action that occurs in a span of time. Hence,
the 3×3 blocks are extended into 3×3×3 ‘cuboids’
(analogy to quantify space-time) which ensures
the third dimension of time is taken into account.
Introducing this dimension increases the number of
possible byte values from 28, to a significantly large
226 values. The solution to simplifying this is by
only considering the orthogonal plane pairs (XY,
XZ and YZ) where each plane encodes an edge.
Now, the possible byte values have been reduced to
a far more computationally efficient, 3×28 values,
while precisely encoding the facial movements and
capturing expressions.

Above mentioned is a simplified abstract of the
working of local binary patterns-based face recog-
nition. This methodology has been experimentally
studied extensively in the research paper by T.
Ahonen et al. [1]. In their experiment, local binary
pattern-based texture analysis was conducted on the
FERET dataset [2] by measuring intensity changes
in 3×3 pixel blocks using the LBPu2 operator
with varying window sizes to spatially represent
the face image. The dissimilarity measures used
were histogram intersection, log-likelihood and chi-
square statistic (χ2). The two key statistics pro-
duced in this study were mean recognition rate and
probabilities to compare LBP performance against
different algorithms including Principal Component
Analysis (PCA) [3], Linear Discriminant Analysis
(LDA) [4], Bayesian Intrapersonal Classifier (BIC)
[5] and Elastic Bunch Graph Matching (EBGM) [6].

The findings of this paper are significant in
proving the efficacy of local binary patterns-based

face recognition. As per the study, LBP is proved
to be robust with a recognition rate of 79% against
65%, 37% and 42% for PCA, BIC and EBGM.
Histogram intersection and χ2 dissimilarity mea-
sures are preferred for smaller window sizes, while
log-likelihood is more suitable for larger window
sizes. Local binary patterns are also an ideal method
of recognition even in cases of high degrees of
variation in parameters like lighting, expressions
and aging based on results of tests under varia-
tions on the Olivetti Research Laboratory (ORL)
face database [7]. Another key advantage of the
proposed approach highlighted in the paper is the
“simplicity of the proposed method that allows for
very fast feature extraction.”

B. Eigenfaces

Principal component analysis (PCA) is a fun-
damental technique to implement dimensionality
reduction on high-dimensional datasets. The struc-
tural complexity of the face roots from its intri-
cacies and distinctness (as previously mentioned)
also indicates the high dimensionality of facial data.
One approach to simplify this would be to reduce
the dependency on the detailed geometry of the
face. A way to achieve this is to remove redundant
appearance features and only focus on the distinct
ones. PCA can be implemented through a simple
yet intuitive manner. To begin, a set of images are
first converted into greyscale which eliminates color
information but preserves the structural information
while reducing the complexity. The pixel intensities
in a greyscale image are represented as matrices.
Every image in a dataset will have its own unique
matrix. The mean face is calculated, that produces a
single image (matrix) of the average pixel intensity
across all images in the training dataset. The mean
face is subtracted from each original face image
which produces a new set of images (difference
images) which only contains the variations. Now,
the dimensionality and complexity of each image
in the entire training set has been largely reduced
to facilitate computational efficiency. Using the new
set of difference images, the covariance matrix is
calculated. This is used to to compute eigenvalues
and eigenvectors. These eigenvectors are referred to



as eigenfaces. The most significant eigenfaces are
selected to capture important variations. Each face
image is represented as a linear combination of its
eigenfaces. Using PCA, these images are projected
into a new face-space where the original images
are reconstructed only using the selected (weighted)
eigenfaces. The face space “does not necessarily
correspond to isolated features such as eyes, ears,
and noses.” [8]. This establishes a model for face
image classification. To classify new test images,
a suitable distance metric (like euclidean distance)
between the image and its projection in the subspace
can be used.

The paper of interest is an experimental study of
the eigenfaces-based methodology by M. A. Turk et
al. [8]. The authors have mentioned that this idea
roots from a technique developed by Sirovich and
Kirby [9] “for efficiently representing pictures of
faces using principal component analysis” where “a
collection of face images can be approximately re-
constructed by storing a small collection of weights
for each face and a small set of standard pictures.”
Their study involves a set of two experiments. The
first is based on examining the effects of varying
illumination, image size, and head orientation. The
second experiment aims at measuring the effects of
varying acceptance threshold (θc) for the same pa-
rameters as the first experiment, also to measure the
trade-offs. The database used for training consists of
a set of 2,500 face images of sixteen subjects at dif-
ferent head orientations, scales, and illumination. A
six-level multiscale approach is implemented using
a Gaussian pyramid for pixel resolutions ranging
from 512×512 to 16×16.

The findings of the study helps to understand the
relative robustness and stability of this approach.
For infinite θc, lighting variation results in 96%
accuracy, orientation variation results in 85% accu-
racy, and size variation results in 64% accuracy (on
average). Reducing θc to achieve 100% recognition
accuracy resulted in unknown rates of 19% while
varying lighting, 39% for orientation, and 60%
for size. Higher θc resulted in higher degree of
error. Eigenfaces prove high accuracy at arbitrary
unknown rates with 100%, 94%, and 74%. This
reflects that lighting changes result in few errors,

but size changes significantly affect performance
(hence needs multiscale comparison). This shows
that the eigenface approach performs exceptionally
well in handling variations. On the other hand, the
paper highlights some potential weaknesses of this
methodology too. The study indicates that noisy
images proved to negatively affect performance as
the ‘auto-associative’ memory of the system gets
diluted. Another drawback is the fact that the system
inherently tends to store the patterns of images that
are classified as ‘unknown’ in the pattern space as
well, which may seem counterproductive.

C. Relaxed Local Ternary Patterns

As previously seen, local binary patterns are only
based on the distribution of magnitude of differ-
ences in intensity. The local ternary patterns-based
methodology (LTP) is similar, but the pixel intensity
variations are stored in a separate threshold state
that takes both sign and magnitude into account and
results in a positive and a negative LBP histogram.
As mentioned in the paper by J. Ren et al. [10], LTP
is “less sensitive to noise” and “the dimensionality
of LTP histogram is very large” resulting in “a
histogram of 38= 6561 bins”. The key drawback
of LBP and LTP is redundancy in Relaxed local
ternary patterns are a modification and an extension
of the ternary pattern methodology through the
introduction of a third parameter known as the
uncertain state. This uncertain state is used to hold
off small pixel intensity differences to counter the
drastic bit-value changes reflected in local binary
and ternary patterns. Hence, the ‘relaxed’ approach
provides a stronger grip against noise by ensuring
a smoother distribution of pixel intensities. The
uncertain state holds a value of either -1, 0, or 1.
This results in higher dimensionality which raises
the question of how it can be optimized for com-
putational efficiency. To solve this, the paper of
interest proposes the idea of converting the trinary
value back to binary by “encoding State X equally
into two strong states, i.e. State 0 and 1 with equal
probability.” Note that Here, “State X” refers to the
trinary uncertain state.

In the paper by J. Ren et al. [10], the relaxed
local ternary pattern approach (RLTP) has been



experimentally studied over three datasets, CMU-
PIE (Pose and Illumination) dataset [11], extended
Yale B dataset [12] [13] and the O2FN mobile face
dataset [14]. The images are preprocessed through
gamma correction, difference of Gaussians filter-
ing, and contrast equalization. The study has been
conducted under varying noise (p) settings. The
measurements are based on comparing recognition
rates against optimal threshold using Chi-square
distances and comparison RLTP results against LBP
and LTP.

The findings of this paper indicate RLTP pro-
duces a recognition rate of 98.40% against 96.60%
for LBP and 97.40% for LTP. This proves its
higher accuracy, tolerance to noise, and overall
improvement in performance over its counterparts.
They have mentioned that the optimal threshold for
LTP ranges from 6 to 10 for different databases,
but suggest that the optimal threshold be selected
as 2. Hence, the result of this study reinforces the
robustness of this improved technique to noise.

D. Deep Learning (Convolutional Neural Net-
works)

Deep learning is a significant subsidiary of ma-
chine learning under the umbrella of artificial in-
telligence. By harnessing the power of neural net-
works, extensible and dynamic learning models can
be developed to perform tasks like face recognition.
The focus in this section will be on the implementa-
tion of face recognition using a convolutional neural
networks (CNN) based approach. Before delving
into CNN, it’s important to revisit the fundamental
principles of deep learning and neural networks and
their applications in computer vision technology.
Generally in traditional learning, we focus on com-
binations of independent variables (features) that
contribute to a certain outcome parameter that we
want to predict or obtain (using methods like regres-
sion). This means utilizing more relevant features
ideally helps develop a more accurate model, but its
output generation is limited to the features that have
been explicitly defined during training. On the other
hand, the objective of deep learning is to develop
a model that can ’learn’ from the inherent corre-
lations between explicitly defined features, which

may seem ’hidden’ to us, but impact the outcomes
as an intermediate. This means there would be a
greater number of ’nodes’ that form a deep neural
network of related parameters. The arrangements of
these nodes form layers that lead to more abstract
and complex feature representations.

The concept of convolution can be understood
through its applications in computer vision. Kernel
convolution is a technique used to apply filters
and blurs on images, where the filter is just small
‘grid’ of different combinations of numbers based
on the effect we intend to make on an image. The
filter is passed through an image, which transforms
it accordingly. To better understand, consider a
3×3 grid kernel. This kernel window slides along
corresponding 3×3 regions of the image. In each
instance, the corresponding kernel and image pixel
values are multiplied. This demonstrates convolu-
tion, which by definition involves a mathematical
operation (generally multiplication) that is done
between values of the filter and the corresponding
values of the input grid.

From the perspective of applying neural networks
in computer vision, a common presumption would
be that each pixel of an image can be assigned to
an input node in the neural network. But knowing
images generally comprise millions of pixels, it is
not computationally feasible to execute this. This
means that an alternative way of feature represen-
tation must be used. This is where convolution plays
its role. Convolutional neural networks essentially
involve replacing each node with a kernel convo-
lution process. Practically, we start with an image,
and slide along the image with a fixed window size
like 3×3 pixels, capturing patterns and generating a
feature map that comprises edge/corner patterns and
other textural information. Each iteration involves
a kernel convolution process that generates a new
feature map, and this is how the convolutional
neural network gets more complex and accurate in
identifying textural patterns. There are three types
of layers in CNN. Firstly, the convolutional layer
that detects patterns. Then, the pooling layer that
simplifies the patterns detected by the convolutional
layers. Lastly, the fully connected layer that makes
sense out of these simplified patterns and interprets



the learned representation, hence, producing the
output of face recognition.

The paper of interest in this context is a com-
prehensive and detailed experimental study by P.
S. Prasad et al. [15] This study proposes two
approaches. First is the VGG-16 Face Network [16]
(deep convolutional network) trained on 2.6 mil-
lion face images, 2522 people with 16 convolution
layers, 3 fully connected layers, 5 pooling layers
and a final Softmax activation layer to compute
class probabilities. The paper also cites that VGG
is a ‘computationally costly design’. [17] The other
approach is the lightened CNN design with lower-
computational complexity, utilizing Max-Feature
Map (MFM) activation and also Softmax linear
activation layer at the output. It has been imple-
mented through two models: the AlexNet model
(3962 K parameters, 4 convolutional layers, 4 max-
pooling layers, and 2 fully-connected layers) and
the Network in Network-inspired model (3245 K
parameters, 4 convolutional layers, 5 max-pooling
layers, 2 fully-connected layers). The evaluation
involves testing the robustness of lightened CNN
and VGG-16 recognition on the AR face database
[18] under varying conditions of occlusion (wearing
scarf, sunglasses) in different sessions. Note that
lightened CNN classification has been evaluated on
two classification layers, FC6 and FC7.

The classification results obtained from this study
(from ‘Table 1’ [15]) have been abridged to their
mean values for simpler presentation in this review.
Firstly, the average rates of recognition for lightened
CNN were found to be 85.88% for FC7 Scarf ses-
sions, 28.68% for FC7 sunglasses sessions, 88.79%
for FC6 Scarf, 32.27% for FC6 sunglasses. Hence,
FC6-lightened CNN produced better results. On the
other hand, the average rates of recognition for
VGG were: 11.31% for Scarf sessions and 6.25%
for sunglasses. This shows that lightened CNN
provides far superior recognition rates over VGG
in cases of the presence of occlusion. Another key
takeaway from the conclusions of this study is the
fact that this deep learning approach also provides
“more robustness to misalignment of facial images.”

E. Fisherfaces

We previously saw the application of eigenfaces
implemented with principal component analysis
(PCA) for dimensionality reduction. Other dimen-
sionality techniques are also commonly used, cou-
pled with other methodologies. One such example
is fisherfaces implemented by combining linear dis-
criminant analysis (LDA) and PCA, introduced by
Belheumeur [19]. LDA is a dimensionality reduc-
tion technique to reduce and capture only essential
features from a dataset. Like in the case of PCA,
even LDA maximizes separation between different
classes after projection into a feature space. This
feature space is then projected onto a smaller sub-
space while maintaining class-discriminating infor-
mation, which is not a property of a PCA. PCA is
not as efficient in the separation between classes.
[19] [3], hence reinforcing the advantage that LDA
exhibits over PCA. The computation of fisherfaces
involves a series of steps. First, the within-class
scatter matrix (S) is computed. This matrix captures
how well the data is scattered within its class,
represented as the mean of each category. This is
calculated through the summation of covariance ma-
trices (Si) of n classes represented by Sw =

∑i
0 Sn.

The next step involves computing the between-class
scatter matrix that captures scattering across classes
(Sb) based on differences in class means, given by
Sb =

∑C
i=1 Ni(µi − µ)(µi − µ)T ,

where
Ni is the number of samples in the ith class,
µi is the mean of ith class projected onto a

feature subspace defined by S−1
W SB , and

µ is the overall mean.
This feature subspace comprises projection vec-

tors obtained by finding eigenvectors that maximize
the ratio of between-class and within-class scatter
to maximize class discrimination. From this, the
projection vectors that best represent the maximized
class separation are identified. These vectors carry
relevant features that represent the dataset. Test data
is projected onto the feature subspace and classified
using a suitable distance metric and classification
technique.

The paper that discusses the study by M. Anggo
et al. [20] delves into the experimental analysis



of the application of Fisher’s Linear Discriminant
(based on Linear Discriminant Analysis) applied
with PCA-based dimensionality reduction on im-
ages of people from the Papuan population [21].
The recognition algorithm has been developed us-
ing MATLAB 7.10, and Adobe Photoshop CS4
is used for image preprocessing. The evaluation
method used in this study is Euclidean distances
between feature vectors of test and train images
for classification, and the percentage of correct
recognitions over total test images to measure the
model’s accuracy.

The results of this study show that the model
shows a 100% recognition rate when the testing
image is the same as the training image and 93%
accuracy was obtained when using images with
varying expressions and positions. This method-
ology is robust against noise and blurring. It is
mentioned that errors mainly arose due to variations
in scaling and poses which can be improved using
better image scaling and expanding the training set
respectively.

F. Histogram of Oriented Gradients

Any image can be represented in its image func-
tion form f(x, y). For this function, let’s represent
each image pixel’s gradient as (fx, fy). The gra-
dients essentially capture the changes in intensity
across the entire image, hence they can be used to
capture and visualize the edge patterns and its tex-
tural information. When visualizing this edge map,
positive gradients (lower to higher intensity) are
generally represented as a white edge and negative
gradients form a black edge. The direction of the
gradient vector at any pixel in an image is given by
arctan(fy/fx)

and its magnitude is given by√
(fx)2 + (fy)2.

The significance of gradients to identify textural
information, yet it is important to understand how it
is practically applied. For example, we first take an
image and consider a single pixel that is to be exam-
ined. The first objective is to calculate the horizontal
(x) and vertical (y) gradients. This can be done by
finding the change in intensity values around that

central pixel and their respective directions. Given
below is an example of this calculation:

Figure 1. Gradient Calculation Example

The diagram above shows all neighboring pixel
intensities around a central pixel P . The horizontal
and vertical gradients of the central pixel can be
calculated by simply finding the respective inten-
sity differences of the pixels around it. Here, the
horizontal gradient (fx) is 140 − 50 = 90. The
vertical gradient (fy) would be 80 − 40 = 40.
Hence, the gradient feature vector for the central
pixel P is [90 40]. The approximate magnitude for
this feature vector is 98.5 units and its direction
is 24◦. This gradient vector itself is the oriented
gradient, which lays the basis for the concept of
histogram of oriented gradients (HOG). An image
is divided into smaller n×n cells. For example, if
8×8 pixel cells are used, 64 gradient vectors are
computed from each cell using which a histogram of
frequency of gradient vectors into a smaller number
of bins (that represent both magnitude and direc-
tion). Let’s say the number of bins are 8, then the
64 values have been essentially ‘condensed’ to just
8 values through its histogram representation. This
reduces the computational cost to train a machine
learning model by using a low-dimensional feature
representation of the image.

The paper of interest in this review is by O.
Déniz et al. [22], where the use of histogram
of gradients based descriptors has been studied
extensively through experiments on the FERET
[2], CMU Multi-PIE 2 [11], AR [18] and Yale
[23] facial databases. The study involves two key
experiments. The first experiment aims to evaluate
the effect of face landmark localization error on
recognition accuracy by comparing HOG features



located from landmarks (distinct facial features)
localized using Active Appearance Models (AAM)
[24], which is bound to a degree of error), against
HOG features from a regular grid. This experiment
helps understand robustness to facial feature loca-
tion by comparing performances of holistic verses
HOG-based representation. The second experiment
examines effect of regular grid HOG feature ex-
traction at multiple scales using PCA and LDA
for dimensionality reduction. Various occlusions
and their impact on recognition performance have
also been examined such as variations in lighting,
aging, expression, illumination and the presence of
accessories such as scarves, glasses.

The results obtained in this study reflect that the
best recognition rates were measured on the FERET
database with HOB-EBGM [25] approach with an
accuracy of 95.5%, which reinforces the robustness
of the HOG approach. The computational cost to
extract HOG features was ideal when using larger
patch sizes (>12×12) from the regular grid, but
the best recognition performance was by using
combinations of different patch sizes rather than a
single ideal size.

G. Local Directional Patterns

Local directional patterns (LDP) are a variation
of local binary patterns. The key difference is that
LDP uses edge response values while LBP focuses
on pixel intensities. LDP can be used as a local
feature descriptor that encodes edge response values
based on intensity differences and their directional
information. By definition, edge response values
are a measure of change in pixel intensity in a
particular direction. For example, a high response
value indicates the presence of a corner or edge.
These are implemented by applying ‘masks’ to
quantify variation in pixel intensities in particular
different directions (typically eight) which can be
used to encode the local textural information of an
image.

To understand the application of local directional
patterns in face recognition, we will analyze the
paper by T. Jabid et al. [26] that is based on a study
involving the use of a novel local feature descriptor
to obtain LDP features through computation of

edge response values. In this study, the evaluation
has been conducted on the FERET image database
[2] using the CSU Face Identification Evaluation
System. Each image is normalized to 100x100
pixels, then processed in 10x10 blocks. The images
are divided into four probe sets fb (expression
variation), fc (illumination variation), dupI (age
variation) and dupII (age variation). The study also
focuses on comparing the performance of LDP with
its counterparts (LBP and PCA). Kirsch masks in
eight different directions have been used to calculate
the edge response values in each block. The goal is
to identify the ‘k most prominent directions’ and
use them to form the LDP.

The results of the study have been abridged to
their mean values for simpler presentation in this
review. LDP texture description (80% accuracy)
was found to be insensitive to illumination varia-
tions and noise. This reinforces robustness of the
methodology to occlusion, and also reflects the
superior performance of local directional patterns
over local binary patterns (76%) and principal com-
ponent analysis (54%) based methodologies. The
paper also mentions that LDP produces more stable
patterns even in presence of noise.

H. Local Binary Patterns combined with Local
Phase Quantization

Local phase quantization (LPQ) is another de-
scriptor for feature representation. So far, we saw
methods that involve representing an image in the
spatial domain, or pixel-by-pixel. In LPQ, the fo-
cus is on representing an image in the frequency
domain, which captures the frequencies of phases.
Phases essentially relate different positions of an
image using their spatial frequencies which helps in
the representation of textural information as phase
information in the frequency domain. Local phase
patterns from the phase information are quantized
into a fixed set of bins to ‘condense’ it for compu-
tational feasibility. It is ‘local’ because the phase
information is quantized in local neighborhoods.
LPQ is a better descriptor compared to local binary
patterns because it provides a ‘richer’ representation
of features.



In the paper by B. Yuan et al. [27], a study
was conducted that evaluates the combination of
LBP and LPQ. Local binary patterns were used to
extract local spatial domain features while Fourier-
transform based local phase quantization was im-
plemented to extract local frequency domain fea-
tures and produce enhanced feature vectors. The
study involved evaluation on the Yale face dataset
[23] (images normalized to 100x80 pixels) and the
AR dataset [18] (images normalized to 50x40 pix-
els). Concatenated LBP/LPQ histogram was used
to represent the feature vectors. Nearest neighbor
classifier and histogram intersection along with Chi-
square distance was used for recognition using a
window size of 10x8.

The results of the paper have been abridged for
simpler presentation purposes. The findings from
the study reflect that a broader range of features
were captured by coupling LBP and LPQ (rather
than implementing them in isolation), resulting in
a more robust and complementary methodology for
face recognition. The combination showed a higher
recognition rate of 95.3%, considerably higher than
using LBP (92%) and LPQ (88.4%) independently
(all percentages mentioned here are averages of
YALE and AR evaluation results from Table 1 [27]).

I. Scale-Invariant Feature Transform (SIFT)

SIFT is essentially a way of describing a local
neighborhood in an image through a feature vector.
The objective is to reduce an image into features as
locally distinct points within it along with their de-
scription. Hence, recognition is done through com-
parison by trying to find the same points in other
(test) images. The general idea of implementing
the SIFT methodology for face recognition involves
choosing a keypoint. generating a descriptor that
describes local neighborhood of the keypoint and
forming associations if are multiple images with the
same corresponding keypoints.

It is important to understand how the SIFT
descriptors are generated before delving into its
application. First, the keypoints are found using
difference of Gaussians approach (DoG). This in-
volves blurring the same image using Gaussian
blur at different magnitudes, and then subtracting

these differently blurred images from each other
which produces ‘difference images’. The difference
images are ‘stacked’ which highlights the distinct
points that stand out, which are nothing but the
keypoints. SIFT is scale-invariant because the DoG
is applied on different scales of the same image
too (in addition to applying multiple blurs for each
scale) and aggregated through the Gaussian pyramid
after which keypoints are identified at different
levels of the pyramid. Now that the keypoints are
identified, the descriptor vector is computed by
looking at the local neighborhood of the keypoints,
by breaking the neighborhood down into smaller
areas and computing the gradients in each of these
areas. Gradients are used due to their robustness
to variations. These local gradients are then repre-
sented using a histogram of frequencies of different
magnitudes at different positions on the image.
Hence, the SIFT descriptors are generated.

The paper of interest that demonstrates the appli-
cation of using SIFT features for face recognition
is a study by M. Aly et al. [28] that focuses on
comparing the results of using SIFT-features over
Eigenfaces and Fisherfaces. The evaluation methods
in this study involved euclidean, city-block and
cosine distances used for eigenfaces and fisherfaces,
while cosine and angle distances were used to match
SIFT features. Evaluation was done on the AT&T
[29] and Yale [23] databases in a series of 10 exper-
iments. Two additional experiments were also car-
ried out with varying training (80%) and test (20%)
set sizes. The number of relevant SIFT features
required for reliable recognition were measured on
a 50-50 train-test set. The effect of downsampling
the image resolutions (25%, 50%, 75% of original
resolutions) was also studied.

The findings of paper indicate that SIFT pro-
duced remarkably better average accuracy (94%)
over Eigenfaces (82.5%) and Fisherfaces (90.4%)
over the AT&T and Yale datasets. Even on varying
training set size, SIFT consistently performed better
(90.1%) than its counterparts. The key conclusion
obtained from the study was that only 30% of SIFT
features were needed for higher reliable recognition
rates than Eigenfaces and Fisherfaces (in 91% less
time). Similar trends followed in variations of res-



olution as well. Overall, SIFT outperforms other
methodologies in most evaluation conditions and
variations and also proves to be more computation-
ally efficient.

J. FaceNet: A Unified Embedding for Face Recog-
nition and Clustering

The research paper by F. Schroff et al. [30]
introduces a methodology called FaceNet, which is
based on the fundamental concept of embedding in-
put images into Euclidean space which can capture
properties of face similarity. The idea is to map the
test images into an embedding space, and perform-
ing face verification and clustering. According to
the paper, the training methodology involves triplet
mining, which involves using an original image
of a person (anchor image), another image of the
same person (positive image) and a third image of
a different person (negative image). For evaluation,
L2 distance (a Euclidean distance) is used. Between
a pair of points, we compare the L2 distance and
recognize the faces. Proposal of this new technique
eliminates role of number of classes. Learns general
representation which maps any input faces to the
dimensionalities while holding the properties (large-
scale inputs).

In this approach, the triplet loss function is used
to minimize L2 distance between anchor profile and
positive profile and maximize it between anchor
and negative profile. The general idea is to use an
embedding function f(x) (based on deep convolu-
tion model) which takes image and projects it to
an embedding space such that its vector has a unit
norm. Once the triplet loss function is applied, the
goal is to sum all points in the embedding space
such that the distance between anchor and positive
profiles are minimized while keeping them as far
as possible from the negative profiles. Semi-hard
triplet mining is a common method used to mine
negative profiles. This involves two key steps. For
a given anchor profile A, positive profiles P lying
around its space are identified. Then, a super space
containing negative profiles N is drawn around the
initial space, which are informative for the model
even as the negative profiles are away from the
inner partition but their squared distance is close

enough to the anchor positive distance. Here is a
visualization of this description:

Figure 2. Illustration of Semi-hard Triplet Mining

In this paper [30], semi-hard triplet mining has
been implemented in mini-batches of 1,800 input
examples with anchor and positive profiles. The pa-
per highlights that similar techniques have been pre-
viously developed but based on engineered / hand-
made features. However, this study uses a fully end-
to-end deep learning methodology. In retrospect,
the idea is to assume a case where the anchor
profile has negative profiles close to it and train the
learning algorithm to modify this configuration to
bring anchor and positive profiles close while keep
negative profile far. The model has been trained
with two convolational neural networks - Zeiler
& Fargus (NN1) and GoogleNet-style Inception
network (NN2, NN3, NN4, NNS1, NNS2). The
CNNs have been trained using Stochastic Gradient
Descent (SGD) [31] with standard backprop [32]
[33] and AdaGrad [34]. The evaluation parameters
of this study are True Accept Rate (TAR), Vali-
dation Rate (VAL) and False Accept Rate (FAR).
TAR compares L2 distances between profiles for a
given threshold d. VAL is the True Accept ratio and
FAR is False Accept ratio, computed using K-fold
cross validation on 200k images (in 100k × 100k
image pairs). Tests were also conducted on personal
photos to evaluate robustness, including the use
of different image resolutions and dimensions to
measure change in validation rates.

The results of the paper indicate FaceNet’s ex-
ceptional accuracy rates of 99.63% on the Labelled



Faces in the Wild (LFW) dataset [35] and 95.3%
on the YouTube Faces DB [36]. The model was
also found to be invariant to pose and illumina-
tion. Among the five models (NN1, NN2, NN3,
NNS1, NNS2) tested, the Inception-based NN2
model achieved the best results. The paper also
mentions a future proposal of introducing harmonic
embeddings that could potentially enable higher
compatibility between existing models and improve
predictions.

K. Sparse Representation for Classification

Consider a high-dimensional vector, such as the
millions of pixels of an image rearranged vertically
into a tall million-by-one column vector. This vector
can be transformed into a natural measurement
space through a learned dictionary to represent the
original data in terms of sparse coefficients. Let
these coefficients be represented by matrix S with
the same dimensions as the million-by-one matrix.
S is referred to as the sparse coefficient matrix,
which mostly has zero entries. Only a small number
of S terms are non-zero, allowing for efficient
storage and sparse representation of the data. This
can be represented as: X = D · S, where X is the
original high-dimensional vector, and D is a learned
dictionary that provides flexibility in representing
any image as a sparse vector.

Sparse representation is used in classification
(SRC) by leveraging robust statistics and patterns
that exist in data through sparsity relative to a
library of face images for cross-referencing. It in-
volves some general steps. First, a person’s image
may be downsampled to reduce its dimensional-
ity while maintaining essential features. It is then
represented as a tall, high-dimensional vector. This
process is repeated for every image in a large
dataset. Either SVD or PCA can be used to reduce
the dimensionality to a smaller discrete value. The
objective is to obtain a sparse coefficient vector that
represents a test image as a linear combination of
dictionary elements. The final prediction is made
by comparing the sparse coefficient vector of the
test image with the coefficient vectors of known
individuals to identify the closest match.

The paper of interest is the study conducted by
J. Wright et al. [37]. It focuses on utilizing sparse
representation of test images as a linear combination
of training samples with L1-norm minimization to
obtain sparse coefficient vector and then apply it for
face recognition. The evaluation was done on the
Extended Yale B database [12](dictionary size ≈
1,200). The study compares the proposed method-
ology against Nearest Neighbor, Nearest Subspace,
and Linear Support Vector Machines (SVM) ap-
proaches. L1-norm minimization was used to op-
timize sparse coefficient vectors. The Sparsity Con-
centration Index (SCI) metric determined accuracy
of representing a test image using coefficients of
an individual test subject (under multiple block
occlusion sizes: 0%, 10%, 30%, 50%) to enhance
rejection accuracy.

The results of the study indicate that SRC pro-
vides a robust recognition system with favorable ac-
curacy (92.1%) over other feature extraction meth-
ods (like Eigenfaces, Fisherfaces) while providing
comparable performance with Support Vector Ma-
chines (SVM). Harnessing sparsity and redundancy
reinforces the discriminative nature for highly ac-
curate recognition. The proposed approach is robust
to most types of occlusion (lighting and expression)
but not orientation, which is a key drawback.

III. CONCLUSION

The papers that have been reviewed reflect the
ongoing development in enhancing face recognition
technology. We’ve explored various face recog-
nition methodologies and their evaluation crite-
ria. While it is evident that no single methodol-
ogy excels under all conditions, the right choice
of methodology under necessary requirements and
constraints will determine the quality of results
yielded in a real-time application. For example,
SIFT demonstrated exceptional accuracy and ef-
ficiency, particularly when feature dimensionality
was reduced, making it a suitable option for real-
time applications. Meanwhile, FaceNet proved to
be invariant to occlusions such as pose and illu-
mination, making it suitable for highly constrained
environments. We also discussed the drawbacks
of every approach, like the sensitivity of Eigen-



faces to variations in image scaling, FaceNet poten-
tially requiring high computational resources, and
Sparse Representation-based Classification facing
challenges under pose and orientation variations.
Nonetheless, all methodologies reflect substantially
high accuracies, produced favorable results, and
their strengths always outweighed the weaknesses.
We also delved into various standard datasets
(FERET, AT&T, Yale, etc) used to train and test the
proposed methodologies, which helped us quantify
and validate the adaptability and versatility of the
discussed approaches. It is important to highlight
that the diversity in the discussed methodologies
indicates the level of advancement that has currently
been made in the field of face recognition, which
continues to evolve with increasing potential for re-
search and development as real-world requirements
are becoming increasingly sophisticated.
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