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Among the currently proposed brain segmentation methods, brain tumor segmentation methods based on traditional image
processing and machine learning are not ideal enough. Therefore, deep learning-based brain segmentation methods are widely
used. In the brain tumor segmentation method based on deep learning, the convolutional network model has a good brain
segmentation effect. The deep convolutional network model has the problems of a large number of parameters and large loss of
information in the encoding and decoding process. This paper proposes a deep convolutional neural network fusion support
vector machine algorithm (DCNN-F-SVM). The proposed brain tumor segmentation model is mainly divided into three stages.
In the first stage, a deep convolutional neural network is trained to learn the mapping from image space to tumor marker space.
In the second stage, the predicted labels obtained from the deep convolutional neural network training are input into the
integrated support vector machine classifier together with the test images. In the third stage, a deep convolutional neural
network and an integrated support vector machine are connected in series to train a deep classifier. Run each model on the
BraTS dataset and the self-made dataset to segment brain tumors. The segmentation results show that the performance of the
proposed model is significantly better than the deep convolutional neural network and the integrated SVM classifier.

1. Introduction

The incidence of brain tumors increases with age [1]. This
article focuses on gliomas in brain tumors. According to
the location of the glioma, the cell type, and the severity of
the tumor, the World Health Organization classifies the
glioma into I~IV grades. Among them, Classes I and II are
low-grade gliomas, and Classes IIT and IV are high-grade gli-
omas [2]. In order to facilitate doctors to accurately remove
gliomas during surgery, Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), and Positron Emission
Computed Tomography (PET) and other imaging tech-
niques are commonly used in clinical treatment to brain
image segmentation of the glioma area which helps the doc-
tor to safely remove the tumor within the maximum range.

At the same time, MRI has the characteristics of significant
soft tissue contrast and can provide abundant physiological
tissue information. In the clinical treatment of gliomas,
MRI is usually used to diagnose gliomas preoperatively,
intraoperatively, and postoperatively.

Glioma is a tumor composed of a necrotic core, a margin
of tumor activity, and edema tissue. Multiple MRI sequences
can be used to image different tumor tissues [3], as shown in
Figure 1. At present, MRI imaging of gliomas generally has
four modal sequences: T1-weighted, post-contrast T1-
weighted, T2-weighted, and FLAIR. Different sequences
reflect different glioma tissues [4]. The general FLAIR
sequence is suitable for observing edema tissues, and the
Tlce sequence is suitable for observing the active compo-
nents of the tumor core.
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(a) (b)
FiGure 1: MRI of glioma: (a) T1-weighted, (b) postcontrast T1-weighted, (c) T2-weighted, and (d) FLAIR.

MRI-based segmentation of gliomas and their surround-
ing abnormal tissues facilitates the doctor to observe the
external morphology of each tumor tissue of the patient’s gli-
oma and also facilitates the doctor’s imaging-based analysis
and further treatment. Therefore, the segmentation of glioma
is considered to be a first step in the MRI analysis of glioma
patients. Because gliomas have different degrees of deteriora-
tion and contain multiple tumor tissue regions and brain
MRI is a multimodal and many-layer three-dimensional scan
image, manual segmentation of glioma regions requires a lot
of time and manpower. In addition, manual segmentation is
often based on the brightness of the image observed by the
human eye for area segmentation, which is easily affected
by the quality of the image generation and the personal fac-
tors of the tagger. It is prone to erroneous segmentation
and segmentation of redundant areas. Therefore, in clinical
practice, a fully automatic segmentation method with good
segmentation accuracy for gliomas is needed. However, the
problems in the study of automatic glioma segmentation
methods are summarized as follows: (1) glioma is often dis-
tinguished in the image by the change in pixel intensity
between the lesion area and surrounding normal tissues.
Due to the presence of a gray-scale offset field, the intensity
gradient between adjacent tumor tissues will be smoothed,
resulting in blurred tumor tissue boundaries. (2) The struc-
ture of gliomas differs in size, shape, and position, making
segmentation algorithms difficult to model. And because
the growth position of glioma is not fixed, it is often accom-
panied by a tumor mass effect. This will cause the surround-
ing normal brain tissue to be compressed and change its
shape, thereby generating irregular background information
and increasing the difficulty of segmentation.

At present, computer-aided diagnosis technology based
on machine learning has been widely used in medical image
analysis in recent years [5-14]. Since the algorithm based
on machine learning can train model parameters through
various features of medical images and use the trained model
to predict the extracted features, it can well solve the classifi-
cation, regression, and aggregation in medical images. At the
same time, the deep learning technology in machine learning
can directly obtain high-dimensional features directly from
the data and automatically adjust the model parameters
through forward propagation and back-regulation algo-
rithms, so that the performance of the model in related tasks

(0) (d)

can be optimized. Therefore, medical data processing of deep
learning technology has developed into a research hotspot.

Brain tumor segmentation methods can be roughly
divided into three categories: based on traditional image
algorithms [15-20], based on machine learning [21-24],
and based on deep learning [25-30]. In recent years, deep
learning has become the method of choice for complex tasks
due to its high accuracy. The convolutional neural network
(CNN) proposed in [25] has made tremendous progress in
the field of image processing. Therefore, the segmentation
method based on the convolutional neural network is widely
used in segmentation of lung nodules, retinal segmentation,
liver cancer segmentation, and glioma segmentation [26].
Many scholars have begun to apply CNN in deep learning
to segmentation of gliomas. Reference [31] proposes a brain
cancer segmentation method based on dual-path CNN.
Reference [32] trained two CNNs to segment high-grade gli-
omas and low-grade gliomas. Reference [33] proposed a two-
channel three-dimensional CNN for glioma segmentation.

This paper mainly studies the segmentation method of
glioma based on the deep learning method, aiming at auto-
matically and accurately segmenting the glioma region from
the brain MRI through the deep learning algorithm. For the
task of glioma segmentation, this paper proposes a DCNN-
F-SVM deep classifier. The main research contents of this
article are as follows:

(1) A new depth classifier is proposed. The classifier is
composed of a deep convolutional neural network
and an integrated SVM algorithm. First, CNN was
trained to learn the mapping from image space to
tumor label space. The predicted labels in CNN
together with the test images were input into an inte-
grated SVM classifier. In order to make the results
more accurate, we deepened the classification process
and iterated these two steps again to form the frame-
work of the next CNN-SVM in series

(2) The traditional segmentation method is to use the
training set to train a suitable classifier, and then test
the set for verification. The method proposed in this
study is completely different from the traditional
method. The proposed model mainly includes three
stages: one is preprocessing, feature extraction, and
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F1GURE 2: Flow chart of glioma segmentation algorithm based on deep learning.

training CNN and SVM. The second is to test and
generate the final segmentation results. The third is
to deepen the order of our CNN-SVM cascade classi-
fier through an iterative step

(3) Apply the proposed model to public datasets and self-
made datasets for evaluation. Compared with the seg-
mentation performance of CNN and SVM alone, the
superiority of the proposed model can be reflected in
various evaluation indexes

2. Related Works

2.1. Process of Brain Tumor Segmentation Algorithm Based
on Deep Learning. In the currently proposed glioma segmen-
tation method, the segmentation results of traditional image
processing algorithms rely heavily on manual intervention,
and a priori constraints are required to ensure the segmenta-
tion effect, resulting in poor robustness and low efficiency of
the method. The glioma segmentation method based on

machine learning needs to manually select the features of
the image, so that the segmentation effect of this type of
method depends on the artificial features, and the generaliza-
tion ability of the segmentation algorithm itself is weak.

The glioma segmentation method based on deep learning
can automatically extract image features through the neural
network model and segment the glioma region. Therefore,
the shortcomings of strong prior constraints and manual
intervention in the above method are overcame. The automa-
tion and robustness of the segmentation algorithm are
improved, and good segmentation results can be achieved in
large-scale complex glioma segmentation scenarios. Figure 2
is the flow of glioma segmentation algorithm based on deep
learning. The process can be described as follows: first, obtain
the MRI of the patient’s brain and use it as the input data of
the algorithm; then, divide the input data into the training
set, verify the set, and test the set. At the same time, due to
factors such as noise and uneven intensity in the original
brain MRI, the divided data needs to be preprocessed. Com-
monly used glioma image preprocessing methods include
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F1GURE 3: LeNet convolutional neural network structure.

image registration, skull removal, intensity standardization,
and offset correction. Next, use the preprocessed input data
to train the deep learning model. During the training process,
the deep model will automatically perform feature extraction,
and add the extracted features to the designed model struc-
ture for forward propagation. At the same time, the multire-
gion mask of glioma is used as a label to calculate the loss
value, so that the model parameters are reversely adjusted
in multiple iterations to achieve the purpose of optimal
model performance. Then, at the end of each iteration, differ-
ent evaluation indicators are used to evaluate the perfor-
mance of the model, and the models that meet the
conditions of the indicators are saved. Finally, the highly
evaluated model is used to segment the test set data to obtain
the final glioma segmentation results.

2.2. A Deep Brain Tumor Feature Generation Method. CNNs
are well-known practical models in the field of deep learning,
and their innovative ideas stem from the processing of
human brain nerves. The perceptron model proposed in
1980 is considered to be the original model of convolutional
neural networks. The perceptron model is a classic model in
the field of machine learning, but this model also has great
shortcomings and cannot solve XOR problems well. On this
basis, reference [34] proposed the LeNet model, which has
multiple convolutional layers, and each layer is a fully con-
nected model trained using the back propagation algorithm
[35]. Reference [36] proposed an artificial neural network
called displacement invariance and studied the parallel struc-
ture of the convolutional neural network. However, these
models are limited by experimental data and hardware con-
ditions. Therefore, it is not suitable for complex tasks such
as object detection and scene classification. In order to solve
some problems in the training process of convolutional neu-
ral networks, Krizhevsky et al. proposed the AlexNet model
[37]. In order to solve the overfitting problem of convolu-

tional neural networks, the model proposes local convolution
and Relu technologies, and the overfitting problem is well
solved.

CNN is essentially a multilayer perceptron and a multi-
layer neural network, and there is an obvious sequence
between these layers, which is composed of an input layer,
a hidden layer, and an output layer. There can be multiple
hidden layers, and each layer is composed of multiple two-
dimensional planes. Each plane contains multiple neurons,
and the hidden layer consists of a convolution layer, a down-
sampling layer, and a fully connected layer. The convolution
layer and the downsampling layer appear alternately and can
have multiple layers, and the fully connected layer can also
have multiple layers. The network structure of the tradi-
tional convolutional neural network LeNet is shown in
Figure 3.

In the convolution layer, the feature maps output by
the previous layer are convolved by the learned convolu-
tion kernel, and the corresponding partial derivatives are
input into the activation function together to form an out-
put feature maps. The downsampling layer is used for fea-
ture selection to select representative features. The fully
connected layer is a neural network layer whose role is
to map two-dimensional distributed features into feature
vectors for better classification. The output layer is a sim-
ple classification layer, usually using logistic regression for
classification. Here, we use the Softmax classifier for
classification.

The activation function usually selects a nonlinear func-
tion to better fit the nonlinear model. Selecting the activation
function needs to consider its monotonicity and derivability.
Common activation functions are shown as follows:

(1) Relu function: f(x) = max (0, x)
(2) Softplus function: f(x) =log (1 + &)
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The CNN model structure is simpler and easier to expand
than the neurocognitive machine. In the neurocognitive
machine, the downsampling layer and the convolutional
layer alternate to form the function of feature extraction
and abstraction, while in the convolutional neural network,
the convolutional layer and the downsampling layer alter-
nate, and their functions are similar. The convolution opera-
tion simplifies feature extraction, the excitation function
replaces multiple nonlinear functions of the neurocognitive
machine, and the pooling operation is also simpler. The
CNN algorithm flow is shown in Figure 4.

2.3. Introduction of Brain Tumor Dataset. The BraTS$
Challenge held in 2012 provided a brain MRI dataset with
both low-grade gliomas and high-grade gliomas. The dataset
provides MRI of multiple patients and provides a multiregion
glioma segmentation ground truth for each patient. Among
them, ground truth is the result of fusion of 20 segmentation
algorithms and then manually labeled by multiple human
experts. Every BraTS competition will provide a public data-
set of gliomas. However, the glioma dataset provided since
BraTS17 has been significantly different from the dataset
provided before 2016. The dataset used between BraTS14
and BraTS16 contains images of gliomas before and after sur-
gery, which leads to confusing glioma segmentation criteria
in the dataset and does not have the conditions to be true seg-
mentation criteria. Therefore, the datasets between BraTS14
and BraTS16 are no longer used in the games after BraTS17.
The BraTS18 dataset is based on the BraTS17 dataset with the
addition of the TCIA glioma dataset. The TCIA glioma data-

5
TaBLE 1: Introduction of BraTS dataset over the years.
Total number of samples
Dataset  Date Training set Validation set Test set Total
BraTS12 2012 30 10 25 65
BraTS13 2013 30 10 25 65
BraTS14 2014 40 10 25 65
BraTS15 2015 274 — 110 384
BraTS16 2016 274 — 191 465
BraTS17 2017 210 46 146 412
BraTS18 2018 285 67 191 543
ET
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FIGURE 5: Tumor area division of glioma.

set includes 262 high-grade glioma patient images and 199
low-grade glioma patient images. This dataset contains the
MRI and ground truth of 543 glioma patients and is currently
the most standard glioma segmentation dataset. The details
of the datasets in the BraTS competition datasets over the
years are shown in Table 1.

As shown in Figure 5, gliomas are generally divided into
four tumor regions, namely, edema around the tumor (ED),
nonenhanced tumor core (NET), enhanced tumor core
(ET), and necrotic core (NCR). Among them, ED, NET,
and NCR are real glioma tumor tissues. The enhancement
of the tumor core is to facilitate the observation of the tumor
core.

2.4. Evaluation Method of Segmentation Result. The common
evaluation methods for evaluating the performance of each
model in the field of image segmentation are shown in
Table 2.

In addition to the above evaluation indicators, there are
indicators such as Hausdorft Li and positive predictive value.
The most commonly used are DSC and sensitivity.

3. Introduction of DCNN-F-SVM Model

This study proposes a brain tumor segmentation model based
on convolutional neural network fusion SVM. Figure 6 is
the model flow chart.
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TaBLE 2: The description of the adopted indices.
Index Expression/description

True Positive (TP)

False Positive (FP)
True Negative (TN)
True Negative (TN)

Dice Similarity Coeflicient
(DSC)

Sensitivity

Specificity

TP indicates that the model predicts a glioma region, and the doctor marks pixels that are also glioma

regions

FP means pixels predicted by the model as the glioma area are actually the background area
TN indicates that the model predicted as the background area is actually the pixel of the background area
FN means pixels predicted by the model as the background area are actually as the tumor area

DSC=2TP/FP + 2TP + FN

Sens = TP/TP + EN
Spec = TN/TN + FP
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FIGURE 6: The proposed model flow chart.

The proposed model segmentation of brain tumor
images can be divided into two parts: one is preprocessing,
feature extraction, and training CNN and SVM; the other is
testing and generating the final segmentation results. It can
be divided into 3 stages. In the first stage, CNN and inte-
grated SVM are trained to obtain the mapping from the
gray image domain to the tumor label domain. In the sec-
ond stage, the labeled output of CNN and the test image
are input into the integrated SVM classifier. In the third
stage, an iterative step is used to connect the CNN and

the integrated SVM classifier, which increases the number
of layers. In order to select the optimal feature, an interme-
diate processing step is added to the model, as shown in
Figure 7.

Grayscale, mean, and median are used to represent each
pixel. These features are used to train CNN to obtain a non-
linear mapping between input features and labels. In the test-
ing stage, an aggregated SVM classifier is independently
trained using the aggregated CNN label map and the same
features as before.
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TaBLE 3: Experimental environment description.

Hardware configuration

Configuration item Configuration parameter

Software configuration
Configuration item Configuration parameter

Operating system Ubuntu 14.04
CPU AMD A8-5600K
RAM 16.0GB
Video memory 479 MB

Development environment PyCharm
Programming language Python
Image algorithm library OpenCV

Deep learning algorithm library TensorFlow

An iterative classification process is applied to the pre-
processed input image. First, CNN classifies the pixels in
the key area, thus generating a kind of presegmentation,
which will be sent to the integrated SVM classifier. Then, a
Region Of Interest (ROI) on presegmentation will be gener-
ated. In addition to presegmentation, classification based on
integrated SVM will be performed on this ROI. After that,
the integrated SVM explores the neighborhood of the CNN
output. Use CNN to classify the marked ROI again. Repeat
the above steps to further refine the segmentation results.

4. Simulation Experiment

4.1. Experiment-Related Instructions. The experimental
dataset used in this study includes the public dataset and
the self-made dataset. The comparison models are SVM,
CNN, and DCNN-F-SVM. In the setting of experimental
parameters, set the window size to 5, 0=0.1, and C = 1000.
The public dataset used is the BraTS18 dataset. The self-
made dataset is the clinical MRI images of 26 patients. The
evaluation index used in the experiment is DSC, sensitivity,
and specificity. The description of the experimental software
and hardware environment is shown in Table 3.

4.2. Public Dataset Experiment. After the model training is
completed, the test set can be predicted by the model to
obtain the glioma segmentation result obtained by the model
segmentation. In the test set divided by three-fold cross-
validation, the evaluation index pair of each model on
the BraTS18 dataset is shown in Table 4. The data in the table
fully shows that the proposed model has better tumor

TaBLE 4: Evaluation index of each model.

Model DSC Sensitivity Specificity
SVM 0.8268 0.8306 0.9845
CNN 0.8556 0.8876 0.9962
DCNN-F-SVM 0.8958 0.9110 0.9982

segmentation performance than SVM and CNN. Compared
with SVM, the proposed algorithm has improved by 8.3%,
9.7%, and 1.4% on the three indicators: DSC, sensitivity,
and specificity; compared with CNN, the proposed algorithm
has three indicators: DSC, sensitivity, and specificity,
increased by 4.7%, 2.6% and 0.2%, respectively.

4.3. Self-Made Data Experiment. In this section, clinical MRI
images of 26 patients were collected, and brain tumors were
trained and segmented using three models, and the experi-
mental results were given. Tables 5 and 6 show the segmen-
tation results of CNN and DCNN-F-SVM for 26 patients,
respectively.

Among the index values shown in Table 5, the DSC
values are generally distributed around 0.86 and have an up
and down floating error of about 0.18. The sensitivity values
are generally distributed around 0.89 and have a floating
error of about 0.14. The specificity values are generally dis-
tributed around 0.95 and have an up and down floating error
of about 0.11.

Among the index values shown in Table 6, the DSC value
is generally distributed around 0.89, and there is an upward
and downward floating error of about 0.15. The sensitivity
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TaBLE 5: Evaluation data of 26 patients with brain tumor segmentation using the SVM model.
Number DSC Sensitivity Specificity Number DSC Sensitivity Specificity
1 0.8801 0.9020 0.9563 14 0.8695 0.8896 0.9411
2 0.8768 0.8963 0.9368 15 0.8753 0.8976 0.9520
3 0.8893 0.9158 0.9605 16 0.8536 0.8729 0.9264
4 0.8682 0.8910 0.9482 17 0.8463 0.8667 0.9118
5 0.8926 0.9089 0.9795 18 0.8831 0.9053 0.9786
6 0.8796 0.8998 0.9385 19 0.8920 9107 0.9632
7 0.8859 0.9096 0.9543 20 0.8697 0.8896 0.9408
8 0.8633 0.8859 0.9386 21 0.8787 0.9006 0.9602
9 0.8828 0.9010 0.9715 22 0.8811 0.9120 0.9632
10 0.8989 0.9157 0.9634 23 0.8980 0.9234 0.9728
11 0.9003 0.9236 0.9726 24 0.8479 0.8752 0.9388
12 0.8429 0.8695 0.9367 25 0.8256 0.8610 0.9286
13 0.8396 0.8600 0.9302 26 0.8694 0.8887 0.9385
TaBLE 6: Evaluation data of 26 patients with brain tumor segmentation using the DCNN-F-SVM model.
Number DSC Sensitivity Specificity Number DSC Sensitivity Specificity
1 0.8923 0.9220 0.9663 14 0.8956 0.9222 0.9785
2 0.8867 0.9063 0.9368 15 0.8896 0.9185 0.9669
3 0.9091 0.9193 0.9702 16 0.8876 0.9104 0.9678
4 0.8782 0.9014 0.9588 17 0.8782 0.9086 0.9585
5 0.9026 0.9289 0.9795 18 0.9020 0.9103 0.9786
6 0.8998 0.9098 0.9405 19 0.9023 0.9123 0.9752
7 0.9056 0.9196 0.9743 20 0.8885 09116 0.9600
8 0.9030 0.9229 0.9696 21 0.8963 0.9205 0.9696
9 0.8927 0.9110 0.9711 22 0.9004 0.9287 0.9745
10 0.9126 0.9289 0.9806 23 0.9102 0.9258 0.9798
11 0.9185 0.9298 0.9885 24 0.8763 0.9115 0.9598
12 0.8789 0.9110 0.9605 25 0.8689 0.9088 0.9469
13 0.8825 0.9168 0.9693 26 0.8996 0.9305 0.9797

TaBLE 7: Evaluation indexes of the segmentation results of the three
models.

Method DSC Sensitivity Specificity
SVM 0.8705 0.9001 0.9586
CNN 0.8869 0.9152 0.9657
DCNN-E-SVM 0.9010 0.9236 0.9889

values are generally distributed around 0.91, and there is
about 0.12 up and down floating error. The specificity value
is generally distributed around 0.96, and there is about 0.09
up and down floating error.

Table 7 shows the DSC, specificity, and sensitivity values
of the three methods. The proposed DCNN-F-SVM has
increased in comparison with CNN and SVM used indepen-
dently, in which the three indicators in the table (DSC, sensi-
tivity, and specificity) are 3.5%, 2.6%, and 3.2% higher
compared to those of SVM and 1.6%, 0.9%, and 2.4% higher
compared to those of CNN. The proposed model can indeed
improve the segmentation performance.

5. Conclusion

The diagnosis of brain diseases requires accurate diagnosis
without deviation. Any misdiagnosis will cause irreparable
losses. The incidence of brain tumors in brain diseases has
been high, and the number of patients has increased year
by year. This has also increased the workload of medical
personnel in this field to a certain extent. An accurate and
efficient method of brain tumor image segmentation needs
to be urgently proposed, which has solved the increasing
demand. Based on this background, this paper proposes a
depth classifier to improve the segmentation accuracy and
achieve automatic segmentation without manual interven-
tion. The classifier is mainly composed of DCNN and inte-
grated SVM connected in series. The implementation of the
model is divided into three stages. In the first stage, a deep
convolutional neural network is trained to learn the mapping
from the image space to the tumor marker space. In the
second stage, the predicted labels obtained from the deep
convolutional neural network training are input into the
integrated support vector machine classifier together with
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the test images. In the third stage, a deep convolutional
neural network and an integrated support vector machine
are connected in series to train a deep classifier. The simu-
lation implementation verified the superiority and effective-
ness of the proposed model. However, the proposed model
still has shortcomings such as long calculation time. How to
optimize the algorithm and shorten the running time will
be the next research content.
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