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Abstract
COVID-19 may influence human fertility and sexuality in sev-
eral ways. Different cell types in gonads show a constitutive 
expression of angiotensin-converting enzyme 2 (ACE2) and 
transmembrane protease serine subtype 2 (TMPRSS2), which 
provide potential entry pathways for SARS-CoV-2. In addition 
to the biological effects of a COVID-19 infection on the gonads, 
the impact of the ongoing COVID-19 pandemic on mental 
health issues and sexual behavior may affect reproduction. This 
review summarizes the current knowledge on the influence of 
COVID-19 on the gonads and discusses possible consequences 
on human fertility. In this context, the close interaction be-
tween the hypothalamic-pituitary-adrenal axis and the hypo-
thalamic-pituitary-gonadal axis in response to COVID-19-re-
lated stress is discussed. Some women noticed changes in their 
menstrual cycle during the COVID-19 pandemic, which could 
be due to psychological stress, for example. In addition, occa-
sional cases of reduced oocyte quality and ovarian function are 
described after COVID-19 infection. In men, COVID-19 may 
cause a short-term decrease in fertility by damaging testicular 
tissue and/or impairing spermatogenesis. Moreover, decreased 
ratio testosterone/LH and FSH/LH in COVID-19 compared to 
aged-matched healthy men has been reported. Available data 
do not suggest any effect of the available SARS-CoV-2 vaccines 
on fertility. The effects of long COVID on human fertility have 
been reported and include cases with premature ovarian failure 
and oligomenorrhoea in women and erectile dysfunction in 
men. Despite the increasing knowledge about the effects of 
COVID-19 infections on human gonads and fertility, the long-
term consequences of the COVID-19 pandemic cannot yet be 
assessed in this context.
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Introduction
The first emergence of severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) in 2019 has led to the COVID-19 pandemic 
with millions of infections and deaths worldwide. Even two years 
after the onset of the pandemic, the long-term consequences for 
the population and population development are still difficult to es-
timate. The potential effects of COVID-19 on reproduction are of 
particular interest in this context.

Endocrine, genetic, physiological, and psychological factors as 
well as social and lifestyle habits, such as smoking and alcohol con-
sumption, influence human fertility. During the COVID-19 pande
mic, several additional factors may affect fertility, including: (1) the 
biological effects of a COVID-19 infection on gonads; (2) the effects 
of COVID-19 on mental health; (3) the effects of the COVID-19 pan-
demic on sexual behaviour (▶Fig. 1). The COVID-19 pandemic has 
also been associated with a decline in sexual satisfaction, reported 
by 44.5 % of participants in a study (1314 responses of health pro-
fessionals, mean age: 37 years), which included the following fac-
tors: lower libido, lack of nightlife, higher frequency of masturba-
tion, and isolation from partner [1]. Polish women (n = 1644) re-
ported a lower frequency of sexual activity and a lower libido 
during the pandemic than before [2]. However, another study 
showed that the average frequency of sexual intercourse was sig-
nificantly increased during the pandemic compared to 6–12 
months before [3]. There are also claims that the ongoing pandem-
ic might result in a “baby boom”, since couples spend more time 
with each other [4].

The hypothalamic-pituitary-gonadal (HPG) axis is mediated by 
the release of gonadotropin-releasing hormone (GnRH) from the hy-
pothalamus as response to diminished levels of circulating sex hor-
mones, oestrogens in females and testosterone in males (▶Fig. 1) 
[5]. GnRH stimulates the production of follicle-stimulating hormone 
(FSH) and luteinizing hormone (LH) in the anterior pituitary. In males, 
LH targets Leydig cells and FSH acts on the Sertoli cells in the testis 
causing the synthesis of testosterone responsible for spermatogen-
esis [6]. In females, FSH stimulates follicle development and oestro-
gen production, while LH causes ovulation and further stimulates 
progesterone and oestrogen production [7]. Impairment of the HPG 
axis thus has direct consequences for fertility in males and females 
(▶Fig. 1). The interaction between the hypothalamic-pituitary-ad-
renal (HPA) axis, which integrates internal and external stress re-
sponse, and the HPG axis may also contribute to possible effects of 
COVID-19 infections on human fertility (▶Fig. 1). In response to 
stress, the adrenal glands secrete glucocorticoids such as cortisol 
that diminish LH release in the pituitary and sex hormone produc-
tion in the gonads [8]. This is particularly important, as glucocorti-
coids such as dexamethasone are the most commonly used thera-
peutic approach to limit the progression of severe COVID-19 and in-
flammation [9, 10] and exogenous glucocorticoid administration is 
well known to cause temporary impairment of fertility [11].

In the present review, we examine possible entry pathways of 
SARS-CoV-2 virus into human gonads and the current knowledge 
of subsequent COVID-19 infection and its short- and possible long-
term effects on human fertility.

ACE2 and TMPRSS2 expression in testis and ovaries
SARS-CoV-2 virus entry is highly dependent on the co-expression 
of angiotensin-converting enzyme 2 (ACE2) and transmembrane 
protease serine subtype 2 (TMPRSS2) on the surface of the target 
cell [12]. In addition to an age- and sex-dependent expression of 
both enzymes, the expression is dependent on the respective tis-
sue and is thus directly involved in the virus vulnerability of specif-
ic tissues [13, 14].

The testis is one of the organs with high constitutive expression 
of ACE2 due to its physiological functions in Leydig cells, including 
the regulation of testosterone production and balancing the local 
vascular regulatory system by the modulation of Angiotensin II to 
Angiotensin I conversion [15–17]. ACE2 and TMPRSS2 proteins are 
predominantly expressed in the cytoplasm and membrane of sper-
matocytes, spermatids, and Sertoli cells; increased levels of ACE2 
and TMPRSS2 have been observed in testicular tubules in elder pa-
tients with COVID-19 [18]. Testicular mRNA levels of ACE2 and TM-
PRSS2 also increase in COVID-19 patients [18]. Another study in-
cluding also younger men (32–88 years) confirmed expression of 
ACE2 in Sertoli cells, spermatogonia, fibroblasts, and Leydig cells 
[19]. Our own data showed an equally strong ACE2 expression in 
the testicular tubuli and interstitium (▶Fig. 2). Single-cell RNA se-
quencing indicates that ACE2 is predominantly enriched in sper-
matogonia and Leydig and Sertoli cells [20]. Gene Ontology (GO) 
categories associated with viral reproduction and transmission are 
highly enriched in ACE2-positive spermatogonia, while male gam-
ete generation-related terms are downregulated [20]. ACE2 ex-
pression in normal testis cells decreased with increasing age [21]. 
Male gonads constitute a potential target tissue for SARS-CoV-2.

The ovaries are the core of the female reproduction system, and 
cell damage, for example, caused by SARS-CoV-2 infection, or pathol-
ogies such as endometriosis can lead to infertility. A co-expression 
of ACE2 and TMPRSS2 was observed predominantly in oocytes and 
partially in granulosa cells [22]. Our research revealed a dominant 
ACE2 expression in ovarian hilus and minimal expression in ovarian 
cortex (▶Fig. 2). No differences in the expression of ACE2 and TM-
PRSS2 in the ovaries were found in dependence on age [22]. The 
abundant expression of ACE2 in the female reproductive system is 
associated with the generation of angiotensin (1–7) which stimu-
lates ovarian follicle growth, oocyte maturation and ovulation [23]. 
In rats, ACE2 expression and activity are increased during pregnan-
cy, in particular in the placenta and the uterus [24]. However, ACE2 
expression appears to be lower in the human ovaries than in the tes-
tis (▶Fig. 2), which may indicate a higher susceptibility of the male 
gonads for SARS-CoV-2 than the female gonads.

Dipeptidyl peptidase-4 (DPP4) expression in the 
gonads
In addition to ACE2 and TMPRSS2, there is emerging evidence that 
SARS-CoV-2 uses DPP4 (also known as cluster of differentiation 26) 
as co-receptor during host cell entry [25, 26]. Single-cell RNA se-
quencing reveals expression of DPP4 in the human testis (sper-
matogonia and spermatogonial stem cell) and ovaries (predomi-
nantly endothelial cells) [27]. Besides ACE2 and TMPRSS2, DPP4 is 
also expressed in the human placenta [28]. DPP4 expression also 
plays an important role in polycystic ovary syndrome (PCOS), which 
is a common hormonal dysfunction among women of reproductive 
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▶Fig. 1	 Potential factors that may affect fertility in females and males during the COVID-19 pandemic: a: SARS-CoV-2 virus entry is highly depend-
ent on the expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2) and a simultaneous 
expression in human gonads could cause local inflammation after virus entry leading to tissue dysfunction. b: Physiological stress during the ongoing 
pandemic may also have an impact on the libido and the menstrual cycle. c: The interaction between the hypothalamic-pituitary-gonadal (HPG) axis 
and the hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role in human fertility, and a possible imbalance caused by SARS-CoV-2 infection 
could affect fertility in the short and/or long term. ADH: Antidiuretic hormone; ACTH: Adrenocorticotropic hormone; CRH: Corticotropin-releasing 
hormone; FSH: Follicle-stimulating hormone; GnRH: Gonadotropin-releasing hormone; LH: Luteinizing hormone.

▶Fig. 2	 Differential ACE2 expression in ovary and testis: a: Representative histology from the ovary of an 87-year-old patient who died from SARS-
CoV-2 infection and revealed detectable SARS-CoV-2-RNA (not shown) in post-mortem ovarian tissue at autopsy. Immunostaining for ACE2 shows a 
prominent expression in ovarian stromal cells of hilus (left side of the image) and a weak expression in some cortical stromal cells (right side of the 
image). b: Representative histology from the testis of a 56-year-old patient who died from SARS-CoV-2 infection. The background shows a conven-
tional HE-stain of the autopsy sample. Immunostaining for ACE2 demonstrates a strong expression in all cellular elements of the tubuli (Sertoli and 
spermatogonia, left side of the image) and a middle-strong expression in the Leydig cells in the testicular interstitium (right side of the image).
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age (prevalence of 5–20 % in women) characterised by abnormal 
androgen levels associated with the appearance of numerous small 
cysts formed in the ovaries [29]. PCOS is associated with infertility 
and increased risk for type 2 diabetes, venous thromboembolism, 
cerebrovascular and cardiovascular events, and endometrial can-
cer [29]. Young age and female sex are normally associated with a 
lower risk of severe or even fatal COVID-19 [30], but female pa-
tients with PCOS present a distinct subgroup of women with a po-
tentially higher risk for adverse COVID-19 outcomes [31]. A popu-
lation-based cohort study revealed an increased COVID-19 infec-
tion rate in women with PCOS compared with age and general 
practice matched control women [32]. Androgens regulate tran-
scription of TMPRSS2 and DPP4 [33], which may contribute to the 
higher SARS-CoV-2 infection rates in women with PCOS. In addi-
tion, the increased rates of comorbidities including type 2 diabetes 
and cardiovascular disease may contribute to the severity in these 
patients. DPP4 inhibitors, commonly used in people with diabetes, 
diminish levels of free androgens in patients with PCOS and affect 
innate immune response [34, 35], which may also be beneficial in 
the context of COVID-19, especially in patients with PCOS.

DPP4 expression was detected in several testicular peritubular 
cells and cells of the interstitial space indicating a potential impact 
on spermatogenesis [36]. In rats, DPP4 inhibitors vildagliptin, and 
sitagliptin showed promise in protecting against testicular torsion/
detorsion-induced injury through an anti-inflammatory effect aug-
mented by nitric oxide synthase inhibition [37]. The expression of 
DPP4 in human gonads, which may be increased by various medi-
cal conditions such as PCOS, provides further evidence that the go-
nads may be a potential target for SARS-CoV-2.

Female gonads, fertility, and COVID-19
Viral diseases such as hepatitis B and Zika virus infection have al-
ready been linked to impaired fertility in women [38]. There is also 
indirect evidence that SARS-CoV-2 might affect female fertility by 
engaging ovarian tissue and granulosa cells, thereby diminishing 
oocyte quality and ovarian function [39]. However, a cohort autop-
sy study failed to detect SARS-CoV-2 in the ovaries (n = 7) [40]. En-
dometrial epithelial cells might also be infected due to the expres-
sion of ACE2, which might affect early embryo implantation [41]. 
In an observational, single-centre study including 78 females of re-
productive age, ovarian injury, including declined ovarian reserve 
and reproductive endocrine disorder, was observed in women in-
fected with COVID-19 [42]. Another retrospective cohort study 
found no evidence that a history of SARS-CoV-2 infection in females 
may negatively affect female fertility, embryo laboratory out-
comes, or clinical outcomes in assisted reproductive technology 
treatments [43]. Long-term sequelae of COVID-19 infection affect-
ing female fertility have been described in a few isolated cases (see 
long COVID section). Not only COVID-19 infection itself can affect 
female fertility, but psychological stress during the pandemic may 
also have consequences. In a survey study (1031 females), 46 % of 
the participants reported a change in their menstrual cycle, and 
53 % reported worsening of premenstrual symptoms since the 
onset of the COVID-19 pandemic [44]. Menstrual disorders seem 
to be generally more common during the pandemic than before 
[3]. Female fertility is affected by a variety of factors, and current 
data do not provide sufficient evidence to determine whether in-

fection with SARS-CoV-2 can temporarily or even permanently im-
pair female fertility.

Male gonads, spermatogenesis, fertility, and 
COVID-19
Various viruses including Ebola virus, Zika virus and cytomegalovi-
rus have been reported in human semen, among these some can 
affect male fertility [45, 46]. Moreover, viruses such as HIV, mumps, 
hepatitis B and C, papilloma-family (HPV) and Epstein–Barr (EBV) 
as well as SARS-CoV (2002) are described to cause viral orchitis 
[47]. The testis is among the few organs with immune privilege, 
which allows them to remain intact and unaffected by host re-
sponse to antigen introduction [48]. This may explain why pro-
teome analysis in testes of COVID-19 patients revealed only a small 
number of differentially expressed proteins compared with non-in-
fected samples, whereas other organ types showed much more 
changes when infected with SARS-CoV-2 [49]. All of the identified 
proteins were downregulated compared with the non-COVID-19 
infected controls (ACLY, FASN, SQLE, FDFT1, INSL3, FAM83F, RNF216, 
DRC7, TM7SF2, SARAF) [49].

Theoretically, SARS-CoV-2 may affect the male reproductive 
system in a number of ways by altering: (a) testicular architecture; 
(b) reproductive hormone profile; (c) spermatogenesis (ejaculate 
quality); (d) sperm function; (e) sexual/erectile function; (f) a com-
bination of the former [50]. A prospective cohort study indicates 
that COVID-19 infection may be accompanied by a short-term de-
cline in fertility in men [51]. Histopathological examinations on 
testicular and epididymal specimens of COVID-19 patients revealed 
the presence of interstitial edema, congestion, red blood cell exu-
dation in testes, and epididymides [52]. The number of apoptotic 
cells within seminiferous tubules was significantly increased and 
the concentration of CD3 + or CD68 + interstitial cells of the testicu-
lar tissue was enhanced in sections of COVID-19 patients compared 
to control cases [52]. Nevertheless, CD3 + and CD68 + positive cells 
are also present in epididymides under physiological conditions 
and play there a role in phagocytosis [53]. An autopsy-based study 
on COVID-19 positive patients demonstrated the presence of SARS-
CoV-2 RNA in 47 % of examined testicles [54]. In another study, in-
fection with SARS-CoV-2 has been detected post-mortem in 3 of 
12 testicular specimens [40]. Hematoxylin and eosin staining re-
vealed a normal spermatogenesis in three COVID-19 positive men, 
whereas spermatogenesis was impaired in three COVID-19 posi-
tive men with elevated ACE2 levels [55].

These data suggest an impairment of spermatogenesis in 
COVID-19 patients, which might be explained in part by an en-
hanced immune response in the testes. A prospective cohort study 
including 120 Belgian men who had recovered from COVID-19 
showed that semen were not infectious with SARS-CoV-2 one week 
or more (mean 53 days) after infection, but the sperm quality was 
partly suboptimal [56]. This is in contrast to another group that de-
tected SARS-CoV-2 in semen of COVID-19 patients (6 out of 38), 
including recovered patients (2 out of 23) [57]. In another study, 
eight out of 12 patients infected with COVID-19 had normal semen 
quality [58]. A study comparing 81 reproductive-aged men with 
SARS-CoV-2 infection found that serum LH was significantly in-
creased, but the ratio of testosterone to LH and the ratio of FSH to 
LH were dramatically decreased compared to age-matched healthy 
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men (n = 100) [59]. The authors also confirmed these findings in a 
larger cohort [58], which may also have implications for the fertil-
ity of men infected with SARS-CoV-2. Fever, a symptom observed 
in many patients infected with COVID-19, can induce oligozoo-
spermia and apoptosis, which may also alter sperm parameters 
even in absence of an enhanced immune response in the testes 
[60, 61]. Potential confounding factors, such as the age of the male 
infected with SARS-CoV-2, could have an additional effect on sperm 
quality [62], which were only partially considered in the present 
studies. The ability to detect SARS-CoV-2 in seminal fluid is further 
of great importance for reproductive medicine, particularly for re-
productive technology and sperm cryopreservation [63], since vi-
ruses stored in liquid nitrogen could retain their pathogenic poten-
tial [64]. The exact mechanism and full extent of how SARS-CoV-2 
may affect male fertility remain unclear and extensive prospective 
studies are needed to fully address these questions.

Human fertility and SARS-CoV-2 vaccines
COVID-19 vaccines are the most effective tool to protect against se-
vere COVID-19 infections and to combat the current pandemic, but 
some individuals of reproductive age remain unvaccinated against 
SARS-CoV-2 due to concerns about potential adverse effects on fer-
tility. Clinical trials for COVID-19 vaccines approved in the UK (Pfiz-
er/BioNTech, Moderna, AstraZeneca) revealed no difference in the 
rate of unintended pregnancies in the vaccinated groups compared 
with the non-vaccinated groups, which indicates that the vaccines 
do not prevent pregnancies [65]. A small study showed that neither 
SARS-CoV-2 infections nor BNT162b2 mRNA vaccine (Pfizer/BioN-
Tech) altered ovarian follicular function compared with uninfected 
and unvaccinated women [66]. Moreover, mRNA based SARS-CoV-2 
vaccines do not appear to induce differences in ovarian stimulation 
and embryological variables between in vitro fertilisation cycle [39]. 
Some studies report menstrual cycle changes, including small chang-
es in cycle length in some individuals after COVID-19 vaccinations 
[67–69], but these changes normalised rapidly after vaccination. 
Moreover, a study in rats found no adverse effects of BNT162b2 on 
female fertility or reproduction [70].

Two studies investigated the effects of BNT162b2 and mRNA-
1273 (Moderna) vaccination on sperm parameters and found no 
differences in the sperm concentration, semen volume, sperm mo-
tility, and total number of motile sperm [71, 72]. A prospective co-
hort study suggests that SRAS-CoV-2 infection may be associated 
with a short-term decline in fertility in men, whereas no differenc-
es were observed in women or after COVID-19 vaccination in either 
sex [51]. Available data do not indicate adverse effect of currently 
available vaccines on female and male fertility, thus providing a safe 
route out of the current COVID-19 pandemic.

Long COVID and reproduction
A substantial proportion of patients who have recovered from 
COVID-19 continue to suffer from various complications known as 
long COVID or post-COVID-19 syndrome. Nonspecific, persistent 
symptoms that were associated with long COVID include chronic 
fatigue, muscle weakness, weakness, sleep disturbances, anxiety, 
and depression [73, 74], but only little is known about potential 
long-term effects on reproduction after overcoming a SARS-CoV-2 
infection. A case report described a 34-year-old woman who had 

already given birth to one child and now presented with infertility 
12 months after her COVID-19 infection as a long COVID conse-
quence [75]. In another case, a 34-year-old woman suffered from 
premature ovarian insufficiency with high gonadotropin levels and 
a very low progesterone level of 0.3 nmol/l after COVID-19 infec-
tion [76]. After her SARS-CoV-2 infection, she was referred to a 
long-COVID clinic due to persistent fatigue and continuing myal-
gia. Moreover, her menstrual cycle became irregular with oligom-
enorrhea and she began to have regular hot flashes and night 
sweats [76]. In males, an immunohistochemical study demonstrat-
ed the presence of COVID-19 virus particles in in the penis long 
after the infection [77]. Moreover, expression of endothelial nitric 
oxide synthase, a marker of endothelial function was decreased in 
men previously infected with COVID-19 compared to non-infect-
ed control men [77]. As a consequence erectile dysfunction may 
occur and is further favoured by other factors that may be associ-
ated with long COVID, such as endocrine and cardiovascular com-
plications, stress and potential side effects of treatments [78]. Even 
six months after recovery from an acute COVID-19 infection, mal-
formed sperms were still detected in one patient [79]. A prospec-
tive longitudinal cohort study including 84 males with confirmed 
COVID-19 and 105 healthy controls found significant impairment 
in sperm morphology, sperm concentration, semen volume and 
the number of spermatozoa in COVID-19 patients up to 60 days 
post-infection [80]. As a further long-term consequence after 
COVID-19 anorgasmia was described in two male patients [81]. In 
terms of long COVID, not only organ-dependent influences on re-
production should be considered, but also psychological factors, 
such as depression and sleep disturbance [82, 83], which may have 
adverse effects on sexuality.

Conclusion
Despite an increasing number of studies addressing the impact of 
COVID-19 infections on human gonads and reproduction, the long-
term consequences of the COVID-19 pandemic cannot be com-
pletely assessed at this point. Prospective long-term and mecha-
nistic studies are needed to understand possible effects of COVID-
19 on human reproduction and to use these findings for potential 
new therapeutic approaches. At this stage, the available data sug-
gest that if there are any changes in fertility due to COVID-19, they 
appear to be temporary, except in very rare cases.
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