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Abstract: The ‘omnipresence’ of adenosine in all nervous system cells (neurons and glia) together with the intensive re-
lease of adenosine following insults, makes adenosine as a sort of ‘maestro’ of synapses leading to the homeostatic coor-
dination of brain function. Besides direct actions of adenosine on the neurosecretory mechanisms, where adenosine oper-
ates to tune neurotransmitter release, receptor-receptor interactions as well as interplays between adenosine receptors and 
transporters occur as part of the adenosine’s attempt to fine tuning synaptic transmission. This review will focus on the 
different ways adenosine can use to trigger or brake the action of several neurotransmitters and neuromodulators. Adeno-
sine receptors cross talk with other G protein coupled receptors (GPCRs), with ionotropic receptors and with receptor 
kinases. Most of these interactions occur through A2A receptors, which in spite their low density in some brain areas, 
such as the hippocampus, may function as metamodulators. Tonic adenosine A2A receptor activity is a required step to al-
low synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as 
well as upon synaptic plasticity and neuronal survival. The implications of these interactions in normal brain functioning 
and in neurologic and psychiatric dysfunction will be discussed.  
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INTRODUCTION 

 The concept of neuromodulation evolved from that of 
neurotransmission, and was initially identified as mechanism 
where an endogenous substance, released either from the 
pre- or the post-synaptic component, influences the release 
(pre-synaptic modulation) or the action (post-synaptic modu-
lation) of the neurotransmitter. As our understanding of the 
structure and functioning of a synapse advanced, this concept 
has gained complexity. We now know that several modula-
tory substances are present at a given synapse, being released 
not only from neurones but also from glia. Astrocytes sense 
and respond to neuronal activity and are actively involved in 
signal transmission [133]. Variations in gliotransmission 
may add to dysfunctions of neurotransmission and contribute 
to disorders of the nervous system [77]. So, each neuro-
modulator has many different possibilities to fine tune neu-
ronal activity. Among the diversity of neuromodulators in 
the brain, adenosine and/or ATP are key fine-tuners since: 1) 
they are among the most relevant players in neuron-glia 
communication [63], 2) they can affect the release and the 
action of many neurotransmitters and neuromodulators, and 
3) they are released by almost all cells.  

 Remarkably, the discovery of the presynaptic inhibitory 
action of adenosine [69] started with two unexpected find-
ings in experiments carried out at a single synapse model, the 
neuromuscular junction. The mobile of the study was unre-
lated to adenosine research and the main aim was to evaluate 
the influence of cyclic AMP upon neurotransmitter release. 
Adenosine was merely used as a tool known to increase  
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cyclic AMP in the nervous system and, if anything, it was 
expected to increase transmitter release, but decreased it! 
Also unexpectedly, the inhibitory action of adenosine was 
prevented by theophylline, at the time well known as a phos-
phodiesterase inhibitor, therefore expected to amplify cyclic 
AMP mediated events [70]. These pioneer observations gave 
rise to a whole line of research on the neuromodulatory role 
of adenosine, and introduced the idea that adenosine could 
be a relevant molecule to make the tuning of synapses, in 
other words, to modulate neurosecretory mechanisms at 
nerve terminals. This idea was soon reinforced by the finding 
that ATP is released together with acetylcholine [145] and 
mimics the adenosine effect [125, 126]. At the synaptic cleft, 
ATP is degraded by a cascade of ectoenzymes [173], being a 
relevant source of extracellular adenosine [123].  

 It took nearly 2 decades to recognize that the same nerve 
terminal can possess both inhibitory (A1) and excitatory 
(A2A) adenosine receptors [30]. Research on neuromodula-
tory actions of A2A receptors suffered from the initial preju-
dice that these receptors were only expressed in the striato-
pallidal GABAergic neurones and olfactory bulb [4, 132]. 
First evidence that the A2A adenosine receptor could influ-
ence neuronal communication in other brain areas than the 
striatum or olfactory bulb appeared in a study using hippo-
campal slices [140]. This was followed by evidence that 
A2A mRNA and A2A receptor protein are expressed in the 
hippocampus [36]. The initial scepticism was broken [141] 
and it is now widely recognized that A2A receptors are ex-
pressed in several brain regions though in lower levels than 
the striatum.  

 We now know that adenosine possesses different ways to 
trigger or brake the action of several neuromodulators. The 
role of A2A receptors in the brain might be less related to a 
direct modulation of neuronal activity, but instead, to their 
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ability to interact with receptors for other neuromodulators 
or neurotransmitters, there is to say, to fine tune neuronal 
activity. In this review we will discuss particularly this new 
established concept [135], which is becoming more and more 
extensive to the multiplicity of neurotransmitter receptors 
with which adenosine interacts. 

1. INTERACTIONS WITH G-PROTEIN COUPLED 
RECEPTORS 

 Adenosine receptors are G-protein coupled receptors 
(GPCRs) and it is not difficult to envisage the different pos-
sibilities they may use to interact with other GPCRs, if co-
expressed at the same cell. Dimerization of GPCRs, either 
homo- or heteromerization has been accepted since the 
strong evidence that GABAB receptors are dimers of two 
GABAB receptor molecules [158]. First hints of A2A/D2 
heterodimers in the striatum were, however, several years a 
head [60] and their functional relevance is now firmly estab-
lished [57]. Futhermore, GPCRs most frequently share α 
subunits, not to speak of the βγ subunits, which are common 
to different G–proteins and may change activation equilib-
rium of other GPCRs with its own G-protein. Last, but not 
least, there are many possibilities of cross-talk with related 
transduction pathways, which have several kinases and other 
key molecules in common. 

 The ubiquitous nature of adenosine, that is to say, its 
presence and release from almost all cells, together with a 
broad distribution of adenosine receptors throughout the 
brain [124] puts it into a privileged position to behave as 
modulator of neuromodulators, as compared with other 
GPCR ligands with more restrict brain location.  

1.1. Dopamine Receptors 

  A first indication that A2A receptors could interact 
with dopamine D2 receptors came from binding studies 
showing that activation of A2A receptors decreases the affin-
ity of dopamine D2 receptors in rat striatal membranes [60]. 
This A2A/D2 interaction seems to be essential for the behav-
ioural effects of adenosine agonists and antagonists, like 
caffeine [56]. The interest on the A2A/D2 interaction, 
quickly expanded to psychiatry and neurology fields such as, 
schizophrenia and Parkinson’s disease, and has been matter 
of many reviews by groups that have been implicated in the 
subject since its origin [57, 67]. Very briefly, implications 
for Parkinson’s disease mostly reside on the fact that A2A 
receptors counteract D2 receptor activation. A2A receptor 
antagonists entered clinical trials and although the benefit 
was not as much as expected, a decrease in dyskinesia and a 
slight decrease in the dose of L-DOPA required to attain 
therapeutic benefit has bee found in patients under A2A an-
tagonism co-therapy [see 104]. For schizophrenia, the thera-
peutic potential is for the A2A receptor agonists, rather than 
antagonists, exploring the benefit of the negative interaction 
between A2A receptors and D2 receptors [57, 67].  

 A1 and D1 adenosine receptors also interact in the basal 
ganglia [59] an interaction that probably occurs at the func-
tional level and has implications for the control of GABA 
release at the substancia nigra [64] and dopamine release in 
the striatum [111]. Furthermore, A1 receptor activation has 
been shown to facilitate D1 receptor desensitization [93]. 

1.2. Neuropeptides 

 By activating A2A receptors, adenosine tonically poten-
tiates a facilitatory action of the neuropeptide calcitonin 
gene-related peptide (CGRP) on neurotransmitter release 
from motor nerve terminals [26]. The ability of CGRP to 
facilitate synaptic transmission in the CA1 area of the hippo-
campus is also under tight control by adenosine; thus, tonic 
A1 receptor activation by endogenous adenosine 'brakes' the 
action of CGRP, while the A2A receptors trigger it [138]. If 
it also applies to other areas of the nervous system, this A1 
receptor mediated inhibition of the action of CGRP, together 
with the A1-induced inhibition of CGRP release [16] can be 
related to pain inhibition by adenosine. Indeed, CGRP, is a 
potent vasodilator released from the activated trigeminal 
sensory nerves, dilates intracranial blood vessels and trans-
mits vascular nociception, being implicated in the genesis of 
vascular pain such as migraine. Hence, inhibition of trigemi-
nal CGRP release or CGRP receptor blockade have been 
proposed as promising anti-migraine strategies [71].  

 The pain control by adenosine involves, however multi-
ple mechanisms, and its discussion is clearly outside the 
scope of the present review. The reader may refer to recent 
reviews covering this subject [130, 136]. Just briefly, adeno-
sine has anti-nociceptive actions through A1 receptors, but 
A2A receptors also contribute to reduce inflammatory pain 
by operating anti-inflammatory mechanisms. This led to an 
increasing interest in the development of drugs that, by in-
fluencing extracellular adenosine levels, could have analge-
sic actions. Promising examples are the inhibitors of adeno-
sine kinase, which enhance extracellular adenosine levels by 
reducing its intracellular phosphorylation into AMP. As 
noted more than a decade ago, adenosine kinase inhibitors 
have anti-nociceptive properties [86]. Devices that promote 
local delivery of adenosine would overcome toxicity of 
adenosine kinase inhibitors, as well as systemic side effects 
of adenosine A1 receptor agonists, and may prove useful for 
idiopatic pain control in a way similar to that proposed for 
epilepsy control [11]. 

 The facilitatory action of the vasoactive intestinal peptide 
(VIP) upon ACh release from motor nerve endings is trig-
gered by adenosine, which accumulates extracellularly dur-
ing high frequency stimulation and activates A2A receptors 
[29]. VIP also enhances synaptic transmission at the CA1 
area of the hippocampus, and this is due to an enhancement 
of inhibition of inhibitory interneurones, therefore reducing 
inhibitory input to pyramidal glutamatergic neurones [38, 
40]. This action of VIP is dependent on both A1 and A2A 
receptor activation by endogenous adenosine [37, 39] since it 
is blocked or markedly attenuated by antagonists of A1 as 
well as of A2A adenosine receptors. Interestingly, the find-
ing that VIP-induced modulation of GABA release from 
hippocampal nerve terminals is under control of adenosine 
A1 receptors constitutes one of the first evidences for a role 
of A1 receptors in mature hippocampal GABAergic termi-
nals. A1 receptors can directly inhibit GABA release in im-
mature hippocampal neurons [82] but this action is lost in 
mature GABAergic neurons [91, 169].  

 Neuropeptide Y (NPY) agonists inhibit presynaptic cal-
cium influx through N and P/Q type calcium channels and 
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inhibit glutamate release at the CA3-CA1 synapse of rat hip-
pocampus, an action that is fully occluded by co-activation 
of adenosine A1 receptors [119]. Interestingly, the inhibitory 
action of the GABAB agonist, baclofen was not occluded by 
adenosine receptor activation, indicating that the cross talk 
between A1 receptors and NPY receptors is not extensive to 
other GPCRs such as the GABAB receptor. Adenosine/NPY 
interaction can in some cases occur behind receptor interac-
tion, namely at the release level. Thus, exocytosis of NPY 
containing vesicles is facilitated by A2A receptor activation 
in PC12 cells [105], but this does not occur in nerve endings 
from the rat mesenteric artery, where adenosine receptors 
affect noradrenaline but not NPY release [51]. 

 In cultured primary hippocampal neurones δ-opioid and 
cannabinoid CB1 agonists act synergistically to activate 
PKA signalling through Gi-β/γ dimmers, and this synergy 
requires A2A receptor activation [167]. CB1 agonists also 
act synergistically with µ-opiate receptors in primary nucleus 
accumbens/striatal neurones and again this synergy requires 
adenosine A2A receptors [168]. Moreover, modifications in 
the expression of several types of opioid receptors was re-
cently detected in mice lacking the A2A AR gene [6], sug-
gestive of a functional interplay between adenosine A2A 
receptors and opioid receptors. An increase in adenosine 
levels in the cerebrospinal fluid has been detected in humans 
following intrathecal administration of morphine [54], show-
ing that interactions between opioids and adenosine also oc-
cur beyond the receptor cross-talk level.  

 Relevant consequences of the interactions between adeno-
sine and opioids are pain control and drug addiction. Re-
markably, in neuropatic rats the morphine-induced adenosine 
release is reduced [129]. Since morphine-induced adenosine 
release may contribute to pain control, due to the antinoci-
ceptive actions of A1 receptor activation, a decrease in 
adenosine release in neuropatic rats may explain the de-
creased efficacy and potency of opioids in the treatment of 
neuropatic pain. This, again, points towards the interest of 
adenosine augmentation strategies for the control of idiopatic 
pain. As regards heroin addiction, A2A receptor blockade 
eliminates heroin-seeking behaviour in addicted rats, sug-
gesting that A2A receptor antagonists may be effective 
therapeutic agents in the management of abstinent heroin 
addicts [168]. The mechanisms wherein A2A receptor an-
tagonists attenuate drug addicted behaviours most likely in-
volve a complex network of receptors and neuronal circuits, 
that includes not only opiate receptors but also other GPCRs, 
such as cannabinoid CB1 receptors and dopamine D2 recep-
tors (see below). 

 In summary (Fig. 1), A2A receptor activation facilitates 
the action of neuropeptides, such as CGRP, VIP and opioid 
receptors. The pattern is less constant for A1 receptors, 
which in some cases inhibit neuropeptide actions, as it has 
been shown for CGRP and NPY, and in other cases are re-
quired to allow neuropeptide action, such as for VIP. Recip-
rocal interactions at the release level, with peptides inducing 
release of adenosine and adenosine, through A2A receptor 
activation, facilitating peptide release, also occur, but these 
are typical neuromoulatory actions and occur behind the re-
ceptor cross-talk level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic representation of the reported cross-talk 
between adenosine receptors and receptors for neuropeptides. 
The putative therapeutic value of those interactions is also indi-
cated. (+) denotes facilitation and (-) denotes inhibition. See text 
and references (indicated in brackets) for details. 

1.3. Metabotropic Glutamate Receptors 

 Metabotropic glutamate receptors (mGluRs) encompass a 
family of receptors which negatively couple to adenylate 
cyclase (Group II: mGluR2, mGluR3; Group III: mGluR4, 
mGluR6, mGluR7, mGluR8) or positively couple to phos-
pholipase C (PLC) signalling (Group I: mGluR1 and 
mGluR5) Furthermore, activation of metabotropic glutamate 
receptors may potentiate cAMP responses mediated by sev-
eral receptors positively coupled to adenylate cyclase, 
namely, A2 adenosine receptors, VIP receptors, and β -
adrenergic receptors [3, 162].  

 mGluRs, most probably through PLC/PKC signalling, 
influence and A1 adenosine receptor functioning in neurones 
[see 136]. Agonists of Group I mGluRs also attenuate 
GABAB mediated inhibition on synaptic transmission, a 
process that involves PKC activity [143]. In addition, activa-
tion of PKC by phorbol esters or activation of PKC-coupled 
metabotropic glutamate receptors suppress the inhibitory 
action of A1 receptor agonists on glutamate release from 
cerebrocortical synaptosomes [14].  

 The inhibitory effects of an adenosine A1 receptor ago-
nist and of agonists of Group II mGluRs are less than addi-
tive [45] most probably due to sharing of common (Gi/o) G 
proteins [172].  

 Activation of A3 receptors leads, through a PKC-depen-
dent process, to a marked attenuation of the presynaptic in-
hibitory functions of cAMP-coupled metabotropic glutamate 
receptors at the CA1 area of the hippocampus [101]. The 
action of PKC and probably also that of A3 receptors on 
metabotropic glutamate receptors might result from an inhi-
bition of the coupling of metabotropic glutamate receptors  
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with Gi/o proteins [101]. Thus, the actions of adenosine A1 
or A3 receptors and those of metabotropic glutamate recep-
tors in neurones are mutually occlusive, through a process 
probably involving the cross-talk of transducing systems, 
namely PKC-induced changes in G-protein signalling, or the 
sharing of G-proteins, as proposed several years ago to ex-
plain the mutual occlusion between presynaptic adenosine 
A1 and α2-adenergic receptors [98].  

 In contrast, in cultured astrocytes, activation of A1 recep-
tors enhances the intracellular calcium responses induced by 
mGluR5 activation [25, 109], a process that involves a per-
tussis toxin sensitive G protein, therefore Gi or Go [25, 155]. 
Interestingly, besides the synergy with mGluRs, adenosine-
induced calcium responses in astrocytes also require A1/A2 
receptor cooperation and enhancement of cAMP levels 
[108].  

 As regards A2A receptor agonists, they act synergisti-
cally with agonists of Group I mGluRs to modulate dopa-
mine D2 receptors in the rat striatum, decreasing the affinity 
state of these receptors [58]. Furthermore, A2A receptors act 
synergistically with mGlu5 receptors to increase DARPP-32 
phosphorylation, so that blockade of one of the receptors is 
enough to prevent phosphorylation induced by activation of 
the other receptor [107]. A2A and mGlu5 receptors are co-
localized postsynapticaly with D2 receptors in medium spiny 
neurons at the striatum, inhibiting D2 receptor functioning in 
a synergistic way [104]. They also co-localize presynapti-
cally at striatal glutamatergic terminals where they facilitate 
glutamate release in a synergistic manner [116, 127]. Preven-
tion of mGlu5 and A2A synergy eventually at the pre- and 
the post-synaptic level will therefore lead to decreased glu-
tamate release, with consequent reduced excitotoxicity, to-

gether with a facilitation of D2 dopaminergic receptor func-
tioning, and this is the rational for the use of antagonists of 
these receptors as anti-Parkinsonian drugs. Indeed simulta-
neous blockade of A2A and mGlu5 receptors had high effi-
cacy to reverse Parkinsonian deficits in rodents [24, 84]. 
Combined antagonism of glutamate mGlu5 and adenosine 
A2A receptors also efficiently reduced alcohol self-adminis-
tration and alcohol-seeking in rats [2], further reinforcing the 
importance of the mGlu5 and A2A receptor interaction in the 
mesolimbic and basal ganglia areas.  

 In summary (Fig. 2), one of the most promising interac-
tions between adenosine receptors and mGluRs is the syn-
ergy between A2A receptors and mGluR5, which reflects 
into an attenuation of D2 receptor mediated actions. Block-
ade of A2A receptors as well as of mGluR5 may therefore 
allow enhanced dopaminergic function in the basal ganglia, 
with implications for Parkinson’s disease and drug addiction 
therapies. The synergy between adenosine receptors and 
mGluRs to enhance calcium signalling in astrocytes may 
enhance neuron/glia interactions but its consequences in dis-
ease states are yet to be evaluated.  

1.4. Cannabinoid Receptors 

 The high density of adenosine A2A receptors in the basal 
ganglia, together with the profound motor depressant effects 
of cannabinoids, prompted the interest of investigating a 
putative cross talk between A2A and CB1 receptors in this 
brain area. CB1 receptor signalling in a human neuroblas-
toma cell line is dependent on A2A receptor activation [15]; 
furthermore, blockade of A2A receptors counteract the mo-
tor depressant effects produced by CB1 receptor activation in 
vivo [15], suggesting that A2A receptor activation facilitates 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic representation of the reported cross-talk between adenosine receptors and metabotropic glutamate receptors. The 
coupling of each receptor to G proteins (αβγ subunits) is also indicated. (+) denotes facilitation and (-) denotes inhibition. Whenever the 
mechanisms involved in the interaction have been evaluated, they are indicated close to the arrow. PKC: protein kinase C. See text and refer-
ences (indicated in brackets) for details. 
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CB1 receptor function in the basal ganglia. Interestingly, the 
motor depressant effect produced CB1 receptor activation is 
attenuated by genetic inactivation of DARPP-32 [5], which 
is abundantly expressed in the medium spiny neurons of the 
striatum and is crucially involved in the striatal actions of 
cyclic AMP coupled receptors [76], as it is the case of A2A 
receptors. It thus appears that A2A receptors, through cAMP 
production and DARPP-32 activation are key molecules to 
enhance CB1 receptor activity in basal ganglia. Striatal A2A 
and CB1 receptors may also directly interact at the molecular 
level since CB1 and adenosine A2A receptors form hetero-
meric complexes once transfected to HEK-293T cells [15].  

 A2A receptor activation is required for the synergistic 
actions between CB1 receptors and µ-opioid receptors in 
NAc/striatal neurons [168], as well as for the synergistic 
actions that occur between CB1 agonists and D2 agonists 
[167]. Since both CB1 and D2 receptors couple to Gi pro-
teins, their activation is expected to decrease cAMP produc-
tion. However, when co-activated, these receptors may fa-
cilitate cAMP mediated signalling and this involves βγ dim-
mers of Gi proteins [167]. There is also a synergy between 
CB1 receptor agonists and ethanol. In all instances, synergy 
requires activation of adenosine A2A receptors [167].  

 A significant reduction of tetrahydrocannabinol-induced 
rewarding and aversive effects was found in mice lacking 
A2A adenosine receptors, indicating a specific involvement 
of A2A receptors in the addictive-related properties of can-
nabinoids [147]. Somatic manifestations of tetrahydrocan-
nabinol withdrawal were also significantly attenuated in 
A2A receptor knockout mice, but antinociception, hypolo-
comotion and hypothermia induced by acute tetrahydrocan-
nabinol administration, remained unaffected [147].  

 In summary, the above mentioned data suggests that 
adenosine A2A receptors facilitate CB1 receptor signalling 
as well as the interplay between CB1 receptors and other key 
receptors and pathways involved in drug addiction (Fig. 3). 
Surprisingly, however, chronic caffeine consumption, there-
fore chronic blockade of adenosine receptors, sensitizes 
GABAergic synapses to the CB1 receptor mediated presyn-
aptic inhibitory action of exo- and endocannabinoids at the 
striatum [128]. Though the detailed receptor mechanisms 
responsible for these observations remain unknown, they 
reinforce previous evidence [43] that chronic and acute 
blockade of adenosine receptors may lead to opposite 
changes in the homeostatic balance mediated by adenosine. 

 A1 receptors appear also to be involved in motor incoor-
dination induced by cannabinoids and this may occur at the 
cerebellum since intracerebellar injection of an A1 selective 
antagonist attenuates the motor incoordination induced by 
CB1 agonists [44]. A reciprocal ability for heterologous de-
sensitization of CB1 and A1 responses due to prolonged 
agonist exposure has also been reported [89, 142].  

1.5. Within Adenosine A1 A2A and A3 Receptor 

 Co-immunoprecipitation, BRET and radiologand-binding 
techniques showed the existence of A1-A2A receptor het-
eromers, intermolecular cross-talk and intramembrane recep-
tor-receptor interactions in co-transfected human embryonic 

kidney (HEK) cells [23]. It has been proposed [57] that the 
A1-A2A receptor heteromer provides a "concentration-
dependent switch" mechanism by which low and high con-
centrations of synaptic adenosine produce opposite effects, 
namely on glutamate release. However, other factors such as 
the topographical arrangement of ecto-enzymes, transporters 
and receptors as well the neuronal firing frequency may also 
influence the A1 versus A2A receptor mediated actions at 
each synapse where both receptors co-localize [136]. 

 Cross talk between A1 and A2A receptors was clearly 
documented at the hippocampus, where activation of A2A 
receptors attenuates the ability of A1 receptor agonists to 
inhibit excitability and synaptic transmission [36, 110]. An 
A2A receptor-mediated decrease in A1 receptor binding was 
also shown in hippocampal [99] and striatal [50] synapto-
somes. A2A receptor-induced inhibition of A1 receptor bind-
ing does not occur in membrane fragments, which indicates 
that the cross talk between A1 and A2A receptors involves a 
diffusible second messenger. The A2A/A1 receptor cross 
talk might be related to PKC, rather than to the classical 
A2A receptor second messenger, the adenylate cyclase-
cAMP-PKA pathway, because the interactions between A2A 
and A1 receptors are prevented by PKC inhibitors but not by 
PKA inhibitors [50, 99]. PKC activators, such as phorbol 
esters, mimic the ability of A2A receptor agonists to de-
crease A1 receptor binding [99]. Thus, in what respects their 
ability to inhibit A1-receptor-mediated responses, A2A re-
ceptors appear to behave similarly to the PLC-coupled me-
tabotropic glutamate receptors and to the muscarinic acetyl-
choline receptors [165], i.e. through a phosphoinositides-
PKC-dependent pathway. Activation of PKC inhibits pre-
synaptic A1 receptors on motor nerve terminals without af-
fecting the affinity of competitive receptor antagonists [139], 
suggesting that the target of PKC is not the ligand binding 

 

 

 

 

 

 

 

 

Fig. (3). Schematic representation of the reported cross-talk 
between adenosine A2A receptors and CB1 receptors and cor-
responding implications for drug addiction. (+) denotes facilita-
tion and (-) denotes inhibition. Whenever the mechanisms involved 
in the interaction have been evaluated, they are indicated close to 
the arrow. cAMP: cyclic AMP; DARPP-32: Dopamine- and cAMP-
regulated phosphoprotein. See text and references (indicated in 
brackets) for details. 
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domain, but probably a locus related to G-protein coupling, 
the G protein itself, or both.  
 Besides the A2A/A1 receptor interaction, which can be 
observed either using BRET, binding, or functional studies 
with selective agonists to both receptors, there are other 
ways through which A2A receptors activation can also in-
duce a decrease in tonic A1 receptor-mediated synaptic inhi-
bition. Thus, A2A receptors enhance adenosine transport 
through equilibrative nucleoside transporters (ENT) with 
consequent reduction in the availability of endogenous ex-
tracellular adenosine and therefore in tonic activation of A1 
receptors [115]. As it occurs with A2A receptor-mediated 
inhibition of A1 receptor binding [99], the A2A receptor-
induced enhancement of ENT activity is lost upon inhibition 
of PKC, but not of PKA, suggesting the involvement of the 
PLC pathway rather the adenylate cyclase/cAMP one [115].  
 While evaluating the evoked release of acetylcholine at 
different frequencies of stimulation from hippocampal slices, 
it became clear that the A2A receptor-mediated enhancement 
of ENTs activity plays a pivotal role in adjusting adenosine 
neuromodulation to different physiological needs [115]. 
Thus, at high frequency neuronal firing there is a predomi-
nant release of ATP and a predominant formation of adeno-
sine from released ATP [35]. Therefore, extracellular adeno-
sine concentrations exceed the intracellular ones and the gra-
dient of adenosine concentrations across the plasma mem-
brane will direct ENTs to take up adenosine. Since A2A re-
ceptors are concomitantly activated, the A2A receptor-
induced enhancement of ENT activity leads to an enhance-
ment of removal of adenosine from synaptic cleft, therefore, 
to a reduced tonic A1-receptor mediated inhibition of hippo-
campal acetylcholine release at high frequency firing rates 
[115]. This A2A receptor-mediated inhibition of tonic inhibi-
tory adenosinergic tonus may add to the A2A receptor inhi-
bition of A1 receptor activation (see above) and eventually 
shut down tonic inhibition of A1 receptors upon synaptic 
plasticity [41]. This will efficiently reinforce the enhanced 
firing rate of cholinergic afferents into the hippocampus, 
which are known to play a key role in the control of cogni-
tive processes such as attention and memory [79]. Influences 
of A2A receptors upon interneurones may also affect hippo-
campal dependent cognitive processes through exacerbation 
of neuronal firing. Thus, GABAergic inhibitory neurones at 
the hippocampus receive cholinergic inputs through excita-
tory α7 nicotinic receptors (nAChRs); these are acutely de-
pressed by the neurotrophin, Brain Derived Neurotrophic 
Factor (BDNF), an action that required co-activation of 
adenosine A2A receptors [55]. One may therefore speculate 
that adenosine and BDNF, released during high frequency 
neuronal firing, have double influence upon the flow of in-
formation at the hippocampus: 1) by promoting facilitation 
of glutamatergic transmission and 2) by promoting an inhibi-
tion of inhibitory circuits, either through inhibition of A1 
influences upon excitatory transmission or through a reduced 
cholinergic excitation of interneurones. A2A receptor-
induced enhancement of GABA release [33] and GABA 
reuptake [32] may also contribute to sharp inhibitory trans-
mission at the hippocampus. 

 Evidence that endogenous activation of A2A receptors 
plays a pivotal role on associative learning and upon rein-

forcement of relevant hippocampal circuits in vivo, has been 
provided recently. Thus, mice injected with an antagonist of 
A2A receptors have a profound impairment of conditioning 
learning as well as of experimentally evoked LTP of 
CA3/CA1 synapses, recorded concomitantly [65].  

 Desensitization of striatal A1 receptors is accompanied 
by a time-dependent amplification of A2-receptor-mediated 
stimulation of adenylate cyclase [1], indicating that A1 re-
ceptors also control A2A receptor functioning. Reciprocal 
control of neurotransmitter release by presynaptic A1 and 
A2A receptors were clearly observed at motor nerve termi-
nals where endogenous A1 receptor-mediated inhibitory re-
sponses are enhanced in the presence of A2-receptor antago-
nists, and endogenous A2A receptor-mediated excitatory 
responses are increased in the presence of A1-receptor an-
tagonists [28], clearly showing that the net modulation by 
endogenous adenosine depends upon a balanced A1/A2A 
receptor activation. In some cases, however, facilitation of 
neurotransmitter release due to A2A receptor activation is 
prevented by A1 receptor blockade [99], a finding that may 
have at least 2 interpretations: 1) the excitation due to A2A 
receptor activation results from relief of the tonic A1 recep-
tor mediated inhibition [99], 2) there is a close molecular 
interaction between A1 and A2A receptors [57], so that co-
activation of the A1 receptor by endogenous adenosine is 
required to allow the A2A receptor response.  

 A positive cooperativity between A1 and A2 receptors, 
which also requires concomitant activation of metabotropic 
glutamate receptors, was observed in cultured astrocytes 
[108]. 

 A3 receptor activation attenuates the synaptic inhibitory 
actions of adenosine in the CA1 area of the hippocampus 
[53]. Because adenosine A3 receptors might couple to phos-
pholipase C, and phospholipase-C-coupled receptors are able 
to inhibit A1-receptor-mediated responses (see above) it is 
possible that this A3-A1-receptor mediated interaction in-
volves this transducing system, in a way similar to that de-
scribed in relation to the A3-receptor-mediated inhibition of 
metabotropic receptor functioning [101]. 

 In summary, there are reciprocal interactions between 
different adenosine receptors (Fig. 4). In neurons, A2A and 
A3 receptors attenuate A1 receptor functioning most proba-
bly through activation of a PKC-dependent pathway. A2A 
receptors also limit the availability of extracellular adeno-
sine, by enhancing adenosine uptake, a process that also in-
volves PKC. In astrocytes positive cooperation between A1 
and A2A receptors might occur.  

1.6. Interaction with P2 Receptors 

 Although ATP and adenosine operate distinct families of 
receptors and play very distinct roles in the CNS (adenosine 
being exclusively a neuromodulator and ATP behaving as a 
neurotransmitter, neuromodulator, or co-modulator) interac-
tions between receptors for these two ‘family related’ mole-
cules have been reported. P2Y1 and A1 receptors can form 
heteromeric complexes and display a high degree of co-
localization in the brain [170]. P2Y1 and A1 receptors are 
co-localized at glutamatergic synapses and surrounding as-
trocytes and P2Y1 receptor stimulation impairs the potency 



186    Current Neuropharmacology, 2009, Vol. 7, No. 3 Sebastião and Ribeiro 

of A1 receptor coupling to G protein, whereas the stimula-
tion of A1 receptors increases the functional responsiveness 
of Gq/11 coupled P2Y1 receptors [156]. Similarly, oli-
gomerization of A1 and P2Y2 receptors generates a complex 
in which the simultaneous activation of the two receptors 
induces a structural alteration that interferes with signalling 
via G(i/o) but enhances signalling via G(q/11) [151].  

 The presynaptic facilitatory dinucleotide receptor is also 
under control by adenosine receptors co-localized in the 
same nerve terminals. Thus, the apparent affinity of diadeno-
sine pentaphosphate (Ap5A) for its receptor in hippocampal 
nerve terminals is increased up to the low nanomolar range 
by co-activation of A1 or A2A receptors, whereas it is de-
creased towards the high micromolar range when A3 recep-
tors are co-activated [46]. P2 receptor activation by endoge-
nous ATP may also inhibit dinucleotide receptor functioning 
[47]. 

2. INTERACTION WITH IONOTROPIC RECEPTORS 

 Adenosine receptors interact with ionotropic receptors, 
and this has putative implications for neuroprotection, plas-
ticity and learning, as it is the case of AMPA and NMDA 
glutamate receptors, as well as nicotinic acetylcholine recep-
tors (nAChRs). Some of these interactions involve cyclic 
AMP – mediated ionotropic receptor phosphorylation fol-
lowed by enhanced desensitization, others involve more 
complex transduction pathways. 

2.1. Modulation of NMDA and AMPA Receptors by A1 
and A2 Receptors 

 In isolated rat hippocampal neurones [42], as well as in 
bipolar retinal cells [31], A1 receptor activation inhibits 
NMDA-receptor-mediated currents. Interestingly, this inhibi-
tory post-synaptic action of A1 receptor agonists is observed 
at very low concentrations, compatible with a tonic inhibi-
tory action of adenosine. Accordingly, selective A1 receptor 
antagonism enhances the NMDA component of excitatory 
postsynaptic currents in CA1 hippocampal neurones, proba-
bly due to recruitment of previously silent NMDA receptors 
at synapses [88]. Endogenous adenosine, through a postsyn- 
 

aptic action inhibits voltage- and NMDA receptor-sensitive 
dendritic spikes in the CA1 area of the hippocampus [95]. 
Because of the important role played by NMDA receptors in 
synaptic plasticity phenomena it is conceivable that the abil-
ity of A1 receptors to inhibit NMDA receptor mediated cur-
rents, together with the well know A1 receptor mediated 
inhibition of glutamate release, are the basis of the A1-
receptor-mediated inhibition of synaptic plasticity phenom-
ena such as long-term potentiation (LTP) and long-term de-
pression (LTD) at CA3/CA1 excitatory synapses of the hip-
pocampus [41]. Similar mechanisms also contribute to A1-
receptor-mediated neuroprotective actions during hypoxia 
[137] and to refrain epileptiform firing in CA1 pyramidal 
cells [95]. Interestingly, the expression of A1 receptors and 
of A1 mRNA transcripts is enhanced in astrocytes [9] and in 
neurones [10] by IL6, an interleukin whose expression is 
enhanced by A2B receptor activation in astrocytic cells [62]. 
Such regulatory loop leads to an enhancement of A1 recep-
tor-mediated signalling under excitotoxic situations, such as 
hypoxia, excessive glutamate exposure or seizures, with a 
beneficial impact on neuronal survival [10].  

 ATP, probably by directly binding to the glutamate-
binding pocket of the NR2B subunit of NMDA receptors can 
act as an inhibitor of NMDA receptors and attenuate 
NMDA-mediated neurotoxicity, an effect not mediated by 
ATP or adenosine receptors [112]. 

 On medium spiny neurones at the striatum, A2A receptor 
activation inhibits (rather than facilitates) the conductance of 
NMDA receptor channels, by a mechanism involving the 
phospholipase C / inositol (1,4,5) triphosphate / calmodulin 
and calmodulin kinase II pathway [163]. In Mg(2+)-free 
conditions, therefore in conditions where NMDA receptors 
are not blocked, A2A receptor activation postsynaptically 
inhibits NMDA receptors in a subpopulation of striatal neu-
rones; however, if NMDA receptors are blocked by Mg2+, 
the predominant A2A receptor mediated action is a presyn-
aptic inhibition of GABA release [164]. Whether the A2A 
receptor mediated inhibition of NMDA receptors in the stria-
tum explains the unexpected protective influence of A2A 
agonists towards NMDA-induced excitotoxicity [153]  
 

 

 

 

 

 

 

 

 
Fig. (4). Schematic representation of the reported cross-talk among different purine receptors. Interaction with equilibrative nucleoside 
transporter (ENT) is also indicated. (+) denotes facilitation and (-) denotes inhibition. Evidence for tight molecular interactions, that may 
involve heteromerization, is also pointed out. See text and references (indicated in brackets) for details. 
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remains to be evaluated [117]. Other putative neuroprotec-
tive actions of A2A receptor agonists may involve a rather 
distinct mechanism, namely potentiation of the action of 
neurotrophic factors, such as glial derived neurotrophic fac-
tor (GDNF), on striatal dopaminergic nerve endings [74] and 
this may prove particularly useful in early stages of neurode-
genetive diseases such as Parkinson’s disease, i.e. at stages 
where it may still be possible to rescue neurones from death 
through enhancement of trophic support.  

 Long term potentiation (LTP) of synaptic transmission 
between CA3 and CA1 hippocampal areas of the hippocam-
pus involves a postsynaptic facilitation of AMPA currents, a 
well known process that requires previous activation of 
NMDA receptors and involves both pre- (enhanced gluta-
mate release) and post- (depolarization-induced relieve of 
NMDA receptor blockade by Mg2+) synaptic mechanisms. 
Interestingly, A2 receptor activation induces a form of LTP 
in the CA1 area that is NMDA receptor independent [87]. In 
contrast, A2A receptors localized postsynaptically at syn-
apses between mossy fibres and CA3 pyramidal cells are 
essential for a form of LTP of NMDA currents, sparing 
AMPA currents [121]. Taking into consideration that 
CA3/CA1 LTP is predominantly NMDA receptor dependent, 
and that LTP at mossy fibres/CA3 synapses is predominantly 
pre-synaptic and NMDA receptor independent, it appears 
that A2A receptors are particularly devoted to unmask non-
predominant forms of plasticity, therefore fine-tuning net-
working and information flow within the hippocampus. 
Whether NMDA receptors are required for the A2A recep-
tor-dependent associative learning and concomitant CA3/ 
CA1 synaptic plasticity in the hippocampus in vivo [65] 
awaits evaluation.  

 In summary, the major trend for the interaction between 
ionotropic glutamate receptors and adenosine receptors is an 
A1-mediated inhibition and an A2A-mediated facilitation of 
NMDA receptor functioning. This fits with the global voca-
tion of adenosine, with A1 receptors being inhibitory and 
neuroprotective, whereas A2A receptors facilitate synaptic 
reinforcement but also excitotoxicity phenomena. An 
NMDA receptor-induced exacerbation of A2A receptor me-
diated excitatory actions in the hippocampus [106], may re-
inforce positive interactions between these two receptors, 
closing a positive feedback loop where A2A and NMDA 
receptors reciprocally facilitate not only plasticity and learn-
ing but also neuronal damage. Interestingly NMDA receptors 
also exacerbate the ability of A1 receptors to increase G pro-
tein-activated inwardly rectifying K+ (GIRK) channel activa-
tion, a process critically involved in synaptic depotentiation 
[21]. 

2.2. Modulation of Nicotinic Acetylcholine Receptors 

 Endogenous adenosine, by activating A2A receptors 
coupled to the adenylate cyclase/cAMP transduction path-
way, tonically downregulates presynaptic nicotinic acetyl-
choline receptors at either the skeletal neuromuscular junc-
tion [27] and myenteric plexus [52]. Other inhibitory influ-
ences of A2A receptors upon cholinergic receptors involve 
facilitation of BDNF-induced fast inhibition of α7 nAChR 
mediated currents, as shown at hippocampal interneurones 
[55]. 

3 INTERACTION WITH RECEPTORS FOR NEU-
ROTROPHIC FACTORS 

 Receptors tyrosine kinase belong to a third class of mem-
brane receptors, which by themselves possess catalytic activ-
ity, involving autophosphorylation in tyrosine residues as a 
consequence of ligand binding. This triggers a chain of 
phosphorylation events that lead to activation of several cas-
cades that regulate cell death, survival and/or differentiation. 
Examples of this class of receptors are the receptors for neu-
rotrophins, such as TrkA for Nerve Growth Factor (NGF), 
TrkB for BDNF, TrkC for Neurotrophin-3 (NT-3) or recep-
tors for other theurotrophic factors, such as Ret for GDNF.  

 Presynaptic depolarizationn which is known to increase 
extracellular adenosine levels, as well as enhancement of 
intracellular cyclic AMP, the most frequent A2 receptor 
transducing pathway, triggers synaptic actions of BDNF [12, 
13]. On the other hand A2A receptors can transactivate TrkB 
receptors in the absence of the neurotrophin [94]. This trans-
activation requires long-term incubation with A2A receptor 
agonists and receptor internalization [120]. It is yet not clear 
whether TrkB receptor transactivation occurs through the 
same mechanism as the more recently identified ability of 
adenosine A2A receptors to trigger synaptic actions of 
BDNF. Indeed, it has been recently recognized that adeno-
sine A2A receptor activation is a crucial requisite for the 
functioning of receptors for neurotrophic factors at synapses. 
This has been shown for the actions of BDNF on synaptic 
transmission [48, 49, 152], and LTP [66] at the CA1 area of 
the hippocampus as well as for the action of GDNF at striatal 
dopaminergic [74] and glutamatergic [73] nerve ending. 
Adenosine A2A and TrkB BDNF receptors can co-exist in 
the same nerve ending since the facilitatory action of adeno-
sine A2A receptors upon TrkB-mediated BDNF action is 
also visible at the neuromuscular junction [118], a single 
nerve ending synapse model. The ability of BDNF to facili-
tate synaptic transmission is dependent of the age of the 
animals [48] and this may be related to the degree of activa-
tion of adenosine A2A receptors by endogenous adenosine at 
different ages. Thus, at infant rats, i.e. immediately after 
weaning, to trigger a BDNF facilitatory action it is necessary 
to increase the extracellular levels of adenosine, either by 
inhibiting adenosine kinase or by a brief depolarization [49, 
118] or by inducing high frequency neuronal firing, such as 
those inducing LTP [66]; in all cases the actions of BDNF 
are lost by blocking A2A receptors with selective antago-
nists. In adult animals, BDNF per se, through TrkB receptor 
activation, can facilitate synaptic transmission but this effect 
is also fully lost upon blockade of adenosine A2A receptors 
[48] or in A2A receptor knockout mice [152]. Nicotinic α7 
cholinergic currents in GABAergic hippocampal neurons are 
inhibited by BDNF, and this also requires co-activation of 
adenosine A2A receptors [55]. BDNF-induced inhibition of 
GABA transporters (GAT) of the predominant neural sub-
type, GAT1, does not fully depend upon co-activation of 
A2A receptors, since it is not abolished by A2A receptor 
blockade, but it may be enhanced by exogenous activation of 
A2A receptors [157]. Maximum transport velocity and sur-
face expression of GAT1 is, however, directly affected by 
A2A receptors at GABAergic nerve terminals, through a 
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mechanism that involves PKA-dependent relieve of PKC-
induced GAT1 inhibition [32].  

 A2A receptors, due to their ability to enhance excitotox-
icity fenomena, including glutamate release and action, are 
mostly regarded as promoters of neuronal death. However, in 
some cases, such as cultured retinal neurones, A2A receptors 
have been shown to protect neurones against glutamate in-
duced excitotoxicity [61]. Whether this is due to the ability 
of A2A receptors to facilitate actions of neurotrophic factors, 
as it has been shown to occur in relation to A2A receptor-
mediated neuroprotection of motor neurones [160] requires 
further investigation. It is worthwhile to note that while TrkB 
enhances survival of injured facial motor neurons in vivo 
[160], TrkB receptor activation by BDNF may render spinal 
cord cultured motor neurons more vulnerable to insult [103]. 
Interestingly enough, in both cases activation of A2A recep-
tors by endogenous adenosine is required since A2A receptor 
antagonism prevents both the favourable [160] and the dele-
terious [103] TrkB mediated actions.  

 A2A receptors activation enhances NGF-induced neurite 
outgrowth in PC12 cells and rescues NGF-induced neurite 
outgrowth impaired by blockade of the MAPK cascade, an 
action that requires PKA activation [19]. Furthermore A2A 
receptors activation, through Trk-dependent and phosphati-
dylinositol 3-kinase/Akt-mechanisms, promote PC12 cell 
survival after NGF withdrawal [94]. A similar A2A receptor-
mediated neuroprotection mechanism has been shown to 
occur in hippocampal neurones after BDNF withdrawal [94]. 
Contrasting with A2A receptors which usually promote ac-
tions of neurotrophic factors, A1 receptors inhibit neurite 
outgrowth of cultured dorsal root ganglion neurons, both in 
the absence and in the presence of NGF [154]. 

 Besides interactions at the receptor level, adenosine re-
ceptor activation may also induce release of neurotrophic 
factors. Thus, the expression and/or release of NGF are en-
hanced by activation of A2A receptors in microglia [80] and 
by activation of A1 receptors in astrocytes [22]. A2B recep-
tors in astrocytes are also able to enhance GDNF expression 
[166]. A2A receptors are required for normal BDNF levels 
in the whole hippocampus [152]. 

 Interactions among purinergic, growth factors, and cyto-
kine signalling, are also highly relevant in non-pathologic 
brain functioning namely, to regulate neuron and glia matu-
ration as well as development. Both ATP and adenosine re-
ceptors are involved in neuronal-dependent glia maturation 
[63]. The extracellular adenosine levels attained during high 
frequency neuronal firing are sufficient to stimulate adeno-
sine receptors in olygodendrocyte ancestor cells, inhibiting 
their proliferation and stimulating their differentiation into 
myelinating oligodendrocytes [149]. Unfortunately, the na-
ture of the adenosine receptor involved in these actions was 
not identified. In premyelinating Schwann cells, A2A recep-
tors activate phosphorylation of ERK1/2 and inhibit Schwann 
cell proliferation without arresting differentiation [148].  

3.1. Consequences of A2A/TrkB Cross Talk for Synaptic 
Plasticity 

 BDNF has an important role upon synaptic plasticity 
even in the adult hippocampus [102]. BDNF expression and 

release [7, 78], as well as release of adenosine [114], or of its 
precursor ATP [159] is more pronounced upon depolari-
zation and during physiologically relevant patterns of neuro-
nal activity, namely those that induce hippocampal LTP. 
Accordingly, released ATP [35] and high-frequency neuro-
nal stimulation [28] favours A2A receptor activation. There-
fore, high neuronal activity seems to create ideal physio-
logical conditions for the interplay between adenosine A2A 
and TrkB receptors to occur. The finding that the facilitatory 
action of BDNF upon LTP in the CA1 area of the hippo-
campus is fully lost upon blockade of adenosine A2A recep-
tors as well as upon depletion of extracellular adenosine [66] 
highlights the A2A receptor as a new physiologic partner, to 
the TrkB signalling processes that influences synaptic 
plasticity phenomena. Remarkably, associative learning and 
concomitant LTP recorded in vivo is also abolished in mice 
under the influence of a selective A2A receptor antagonist 
[65]. 

 Another way A2A receptors have to influence BDNF-
related plasticity is through the interplay with the homopen-
tameric α-7 subtype of nAChR, which is particularly rele-
vant for transmitter release and plasticity [75, 83] due to its 
high calcium permeability. Adenosine, through A2A recep-
tors, and BDNF, through TrkB receptors, exert double con-
trol over α-7-nicotinic currents at GABAergic interneurons 
in the hippocampus, as it can be concluded from the finding 
that blockade of A2A receptors abolishes the BDNF-induced 
current inhibition [55]. Since postsynaptic α7 nAChR-
mediated inputs to GABAergic interneurons regulate inhibi-
tion within the hippocampus, A2A receptors by allowing the 
inhibition of cholinergic currents by BDNF, might temporar-
ily relieve GABAergic inhibition, therefore facilitating plas-
ticity phenomena.  

3.2. Pathophysiological Implications of the Cross-Talk 
Between Adenosine and Neurotrophic Factors 

 A decrease in levels and/or action of neurotrophic factors 
have been implicated in the pathophysiological mechanisms 
of many diseases of the nervous system, such as Alzheimer’s 
disease, Parkinson’s disease, Huntington’s disease, diabetic 
neuropathies, amyotrophic lateral sclerosis and even depres-
sion, therefore making the use of the naturally occurring neu-
rotrophic factors very promising for treatment of these disor-
ders [17, 134]. However, until now the pharmacological ad-
ministration of neurotrophic factors in vivo has not been easy 
because these molecules are unable to cross the blood brain 
barrier, making invasive application strategies like intracere-
broventricular infusion necessary. The evidence that adeno-
sine A2A receptors trigger or facilitate actions of neurotro-
phins upon synaptic strength and neuronal survival high-
lights interest upon the use of adenosine A2A receptor ago-
nists that cross the blood brain barrier as tools to potentiate 
neurotrophic actions in the brain. The expression [34] and 
functioning [122] of A2A receptors in the forebrain increases 
with age, whereas the number of TrkB receptors is markedly 
lower in the hippocampus of aged rats [144]. The increase in 
the adenosine A2A receptor tonus partially compensates the 
loss of TrkB receptors upon ageing, rescuing to certain de-
gree the facilitatory action of BDNF in aged animals [48]. 
This might prove particularly important in the prevention of 
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neurodegeneration, since neurodegenerative diseases are 
most frequent upon ageing. Furthermore, it reinforces the 
therapeutic potential of adenosine-related therapies to influ-
ence the actions of neurotrophic factors in old subjects.  

 A promising area of research, as regards adenosine/ 
BDNF cross talk, is Huntington’s disease, which has been 
associated with low BDNF levels in the cortical-striatal 
pathway, most probably due to a loss of function of mutated 
huntingtin [174]. How the low BDNF signalling can be 
compensated by A2A receptor activation deserves detailed 
investigation. Interestingly, daily administration of the A2A 
receptor agonist, CGS 21680, delays progressive deteriora-
tion of motor performance, huntingtin aggregation and in-
crease in striatal choline levels in a transgenic mouse model 
(R6/2) of Huntington’s disease [20]. This animal model in-
volves genetic mutation of Huntingtin, therefore most proba-
bly, a reduction of striatal BDNF levels since there is strong 
evidence that a major contributing pathway to striatal degen-
eration in Huntington’s disease is an impairment of an-
terograde transport BDNF from the cortex to the striatum 
[68,150].  

 A particular mention has to be made to epilepsy, where 
neurotrophic factors have been considered both harmful, 
being causal mediators in the development of acquired epi-
leptic syndromes, and eventually useful to attenuate epi-
lepsy-associated neuronal damage [131, 146]. On the top of 
this controversy we can add discrepant findings of both anti-
convulsive [81] and pro-convulsive [171] adenosine A2A 
receptor-mediated actions, the pro-convulsive being much 
more expected due to the usually excitatory nature of these 
receptors. A better understanding of the influence of adeno-
sine A2A receptors upon the actions of BDNF in epilepsy is 
particularly relevant because therapies that lead to localized 
enhancement of extracellular adenosine levels (adenosine 
augmentation therapies, AATs) are currently under devel-
opment [161] as a strategy to fight pharmacoresistant epi-
lepsy, but research in this area has been only focusing on the 
beneficial influences mediated by inhibitory adenosine A1 
receptors [11]. Highly promising results with AATs were 
already obtained in animal models, where intrahippocampal 
implants of stem cells engineered to lack adenosine kinase 
(therefore locally releasing considerable amounts of adeno-
sine into the extracellular space) prevent epileptogenesis 
[96]. Once in the extracellular space, adenosine may, how-
ever, reach not only the predominantly expressed adenosine 
receptors in the forebrain, the A1 receptors, but also the A2A 
receptors, which in spite of their low density in the forebrain 
have high affinity for adenosine and, as reviewed above, are 
mostly devoted to fine tune neuronal activity. It may happen 
that A2A receptors prove detrimental in epilepsy due to their 
ability to enhance excitability, and therefore these receptors 
need to be concomitantly blocked in adenosine augmentation 
therapies; conversely, it may happen that these receptors 
facilitate the positive influences of BDNF upon neuronal 
survival and therefore, an A2A receptor mediated favourable 
influence would add to the A1 receptor mediated one. Lastly, 
it may happen that these receptors due to its low density are 
without any influence upon the outcome of AATs in epi-
lepsy. 

 Results from clinical and basic studies have demonstrated 
that stress and depression decrease BDNF expression and 
neurogenesis, leading to the neurotrophic hypothesis of de-
pression [17, 90]. The involvement of TrkB receptors upon 
sensitivity to antidepressive treatment has recently been 
highlighted [97]. As A2A receptor activation may have anti-
depressive action [85], one may, therefore, speculate that the 
ability of A2A receptors to facilitation the actions BDNF 
may contribute to the antidepressive actions of adenosine. It 
is worthwhile to note that deep brain stimulation, now 
widely used by neurosurgeons to treat tremor and other 
movement disorders, as well as in a number of psychiatric 
diseases, including obsessive-compulsive disorders and de-
pression [92], produces its effects by inducing the release of 
ATP which is subsequently converted extracellularly to 
adenosine [8]. Whether adenosine, through facilitation of 
BDNF actions, contributes to the antidepresssive properties 
of deep brain stimulation, also awaits further evaluation. 

 Finally, the cross-talk between adenosine A2A receptors 
and receptors for neurotrophins points to the need of caution 
about therapies with A2A receptor antagonists in neurode-
generative diseases (see Fig. 5), as it has been proposed for 
Parkinson’s disease to ameliorate L-DOPA induced dyskine-
sias [104]. Indeed, the identification of postsynaptic A2A/D2 
receptor interactions in the striatum together with the find-
ings that A2A receptor antagonists are neuroprotective in 
Parkinson’s disease models [18] and increase dopamine syn-
thesis from L-DOPA [72], led to the proposal for the use of 
A2A receptor antagonists in Parkinson´s disease. On the 
other hand, neurotrophic factors, in particular GDNF, may be 
a potential therapeutic approach in the management of Park-
inson´s disease [100, 113]. GDNF control of the glutamater-
gic cortico-striatal pathway requires tonic activation of 
adenosine A2A receptors [73]. Also, the faciliatory action of 
GDNF upon dopamine release in the striatum is lost upon 
blockade of A2A receptors and is enhanced by A2A receptor 
agonists [74]. All these observations point towards the need 
for further studies on the consequences of long-term therapy 
with A2A receptor blockers in neurodegenerative diseases, 
where neurotrophic factors may play a beneficial role. One 
issue that should be explored in the future is the optimal time 
window for combined beneficial effects for neurotrophic 
factors and adenosine A2A receptor agonists/antagonists. 
Perhaps, in the late stages of neurodegenerative diseases, 
A2A receptor antagonists may be advantageous to prevent 
and/or attenuate dyskinesias; however, in the early stages, 
where neurones are struggling for life and an enhancement of 
neurotrophic factors is highly desirable, A2A receptor an-
tagonists should be avoided and A2A agonists could be con-
sidered to potentiate neurotrophic influences.  

CONCLUDING REMARKS 

 Data presently available allow envisaging adenosine as a 
sort of ‘universal modulator’ or a ‘maestro’, which, via con-
trolling the release and action of many synaptic mediators, 
would serve as the main molecule involved in the coordina-
tion of brain activity. A better understanding of the intimate 
cross-talk that this modulator establishes with other signaling 
molecules will enhance our understanding of brain function 
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and dysfunction, such as cognition, neurodegenerative dis-
eases, psychiatric diseases, and drug addiction.  
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Fig. (5). Negative and positive actions of A1 and A2A adenosine receptors to protect neuronal cells. Note that whereas A1 receptors 
possess predominant neuroprotective actions, A2A receptors may operate mechanisms leading to neuronal protection or damage. A better 
knowledge of the time windows for those actions, and how to manipulate them will allow the increase in the therapeutic potential of adeno-
sine related drugs. 
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