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Abstract
The objective of this study was to develop and validate models to predict dry matter intake (DMI) of grazing dairy 
cows using animal energy sinks and status traits in combination with traits related to grazing behaviour, body 
measurements, thermal imaging, heart rate and blood pressure. The dataset used to develop the models comprised 
33 measurements from 113 Holstein-Friesian dairy cows. Multivariable regression models were constructed 
incorporating each independent variable into a benchmark model incorporating the energy sinks (milk yield [MY], 
fat %, protein % and body weight [BW]) and status traits (feeding treatment, parity and calving day of year). Of the 33 
variables tested, 10 showed an association with DMI (P < 0.25). These variables were incorporated into a backward 
linear regression model. Variables were retained in this model if P < 0.05. Grazing bout duration and rumination 
mastication rate were retained in the final model. The inclusion of these variables in the model increased DMI 
prediction by 0.01 (coefficient of determination [R2] = 0.85) compared to the benchmark model alone (R2 = 0.84). 
The models were applied to data recorded on an independent herd of 51 dairy cows. The R2 upon validation was 
0.80 for the benchmark model and 0.79 for the model incorporating rumination mastication rate and grazing bout 
duration in combination with the benchmark variables. The separation of grazing bout duration and rumination 
mastication rate to predict DMI revealed rumination mastication rate slightly increases predictive accuracy upon 
external validation (R2 = 0.81), whereas grazing bout duration did not (R2 = 0.78). This suggests that grazing bout 
duration is not a robust trait for DMI prediction. Results from this study suggest that rumination mastication rate 
can slightly increase the accuracy of DMI prediction surpassing known energy sinks and status traits.
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Introduction

Feed efficiency is an important component of dairy systems 
(Connor, 2014) with genetic variation in feed efficiency of 
pasture-based dairy cows previously documented (Hurley 
et al., 2017). A major obstacle to the direct inclusion of feed 
efficiency in dairy breeding programmes is routine access 
to large amounts of individual animal feed intake data from 
commercial dairy farms (Connor, 2014). The n-alkane 
technique (Mayes et al., 1986) is the marker method 
commonly used to estimate dietary dry matter intake (DMI) 
in grazing dairy cows (McCarthy et al., 2014; Coffey et al., 
2017). However, this method is expensive to employ and 
labour intensive; thus, it is unsuitable for the collection of DMI 
records at commercial farm level.
Known animal energy sinks such as body weight (BW) and 
milk production have previously been used as explanatory 

variables in DMI prediction models for grazing dairy cows 
(Vazquez & Smith, 2000; Lahart et al., 2019). The identification 
of alternative variables that explain additional variation on DMI 
may prove worthwhile, particularly if they have the potential to 
be recorded routinely on commercial farms. The advancement 
of precision agriculture technologies offers potential to develop 
novel methods of predicting the intake of grazing dairy cows. 
Nevertheless, the identification of traits that explain variation 
in DMI is required.
Grazing animals must autonomously harvest pasture to meet 
their energetic demands (Gregorini et al., 2008). Therefore, 
differences in grazing behaviour amongst animals may 
explain some of the inter-animal variability in DMI. Prendiville 
et al. (2010) reported that grazing and rumination behaviour 
traits were associated with intake capacity in grazing dairy 
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cows. Additionally, high intake capacity has been associated 
with larger gastrointestinal tracts per unit BW in dairy cows 
(Beecher et al., 2014). Therefore, body measurements may 
offer potential to predict DMI.
An increase in the metabolic status of the animal such as heart 
rate is linked to increases in rates of feed digestion and the 
rate of heat production following eating (Brosh et al., 1998). 
Heat produced due to maintenance requirements represents 
a large proportion of energy loss of animals (Montanholi et al., 
2009). Infrared thermography can identify variations in body 
temperature and has been reported as a predictor of DMI 
through detecting differences in temperature omitted through 
various body parts of growing Angus bulls (Montanholi et al., 
2009).
No study has explored the potential to predict DMI in grazing 
dairy cows using known animal energy sinks and status traits 
in combination with a comprehensive set of novel animal traits 
of this nature. The objective of this study was to (1) develop 
models to predict the individual animal DMI of grazing dairy 
cows within pasture-based systems using energy sinks and 
status traits in combination with novel animal traits relating 
to grazing behaviour, body measurements, thermal imaging, 
heart rate and blood pressure, and (2) validate the models on 
an independent group of animals.

Materials and methods

The animal procedures undertaken in this study were approved 
by the Teagasc Animal Ethics Committee and licenced by the 
Health Products Regulatory Authority in accordance with the 
protection of animals used for scientific purposes.
Initial measurements were conducted in 2015 on a herd of 
135 Holstein-Friesian (HF) cows, at the Teagasc, Dairygold 
Research farm (Kilworth, Co. Cork, Ireland). These were 
part of the “Next Generation Herd” project described by 
O’Sullivan et al. (2019). This study comprised two genotypes 
of HF dairy cow divergent in Economic Breeding Index (EBI). 
The EBI, published by the Irish Cattle Breeding Federation 
(www.icbf.com), helps farmers identify the most profitable 
bulls and cows for breeding dairy herd replacements. The 
cows were all spring calving; the mean herd calving date 
was 21 February. There were 35 first, 32 second and 59 third 
lactation cows in the experiment. They were assigned to one 
of three pasture-based feed treatments – control (CTL), 
low grass allowance (LGA) and high concentrate (HC) 
treatments – which had a target post-grazing residual sward 
height of 4.5–5, 3.5–4.5 and 4.5–5 cm and a total concentrate 
allowance of 300, 300 and 1,200 kg/cow per lactation, 
respectively. The animals in all treatments were offered 
similar quality herbage throughout the grazing experimental 
period (O’Sullivan et al., 2019). The experimental area was 

a permanent grassland site containing a perennial ryegrass 
(Lolium perenne L.) dominated sward.
A second phase of measurements was conducted in 2017 
to validate the findings from 2015. An independent herd 
comprising 51 HF dairy cows on the Curtin’s research farm at 
Teagasc Moorepark was used. The herd was a continuation 
of the study published by Coffey et al. (2017). The mean 
calving date of the herd was 22 February. The animals were 
managed under a rotational grazing system, similar to the 
CTL treatment of the initial experiment on a predominantly 
perennial ryegrass sward.

Animal measurements
DMI, milk production and BW
The DMI of each individual animal was estimated three times 
in 2015 at a herd average of 79, 107 and 205 d in milk (DIM). 
During the DMI estimation periods, the diet of the CTL and 
LGA feeding treatments comprised solely grazed grass, 
whereas the diet of the HC feeding treatment comprised  
grazed grass plus 3.6 kg of concentrate (DM). In 2017, DMI 
was estimated at a herd average 96 and 172 DIM. The diet 
of these cows comprised solely grazed grass. The DMI of 
each animal was estimated using the n-alkane technique as 
described by Mayes et al. (1986) and modified by Dillon (1993). 
This procedure involved dosing cows twice daily for a 12-d 
period using paper pellets each containing 500 mg C32-alkane 
(n-dotriacontane). On days 7–12, faeces were sampled prior to 
morning and evening milking. These samples were subsequently 
bulked (12 g/sample) and placed in a 40°C oven prior to being 
milled using a 1-mm sieve. Herbage representative of that 
grazed by the cows was sampled manually using a hand held 
electronic shears on days 6–11 of each DMI estimation period. 
The ratio of naturally occurring C33-alkane (tritriacontane) in 
the herbage to dosed C32-alkane was used to calculate DMI. 
The milk yield (MY) of each individual cow was recorded at 
each morning and evening milking during the DMI estimation 
periods using electronic milk meters (Dairymaster, Causeway, 
Co. Kerry, Ireland). The milk fat and protein constituents were 
determined by analysing milk sampled on successive evening 
and morning milkings once weekly, with a Milkoscan FT6000 
(Foss Electric, Hilerød, Denmark). Body weight was recorded 
once during each DMI estimation period in both 2015 and 2017 
using calibrated weighing scales (Dairymaster). The DMI, MY, 
milk constituents and BW records were subsequently averaged 
per year for 2015 and 2017, respectively.

Body measurements
Body measurements were recorded twice for all animals in 
2015 at a herd average of 164 and 221 DIM. There were 12 
measurements recorded: full chest girth, empty chest girth, 
full-body depth, heart girth, empty body depth, hip width, 
chest width, back length, head length, rump width, withers 
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height and muzzle circumference. The body measurements 
were carried out by two trained individuals using the methods 
outlined by Williams et al. (2019). The body measurement 
data were subsequently averaged per animal.

Grazing behaviour
The grazing behaviour of each cow was recorded once in 2015 
at a herd average of 141 DIM using Institute of Grassland and 
Environmental Research (IGER) behaviour recorders that 
have been validated against visual observation (Rutter et al., 
1997) over a 24-h recording period. Recording commenced 
following morning milking once acclimatisation collars were 
detached and the IGER recorders attached. Acclimatisation 
collars had been attached 24 h previously to acclimatise the 
cows to the sensation of wearing recorders. Measurements 
were recorded on between one and five animals within each 
treatment per day. If a record was of a poor or unusable quality, 
an IGER recorder was attached to the animal for a further 24-h 
recording period. In total, one 24-h recording for each of the 
126 cows was obtained in 2015. After the data were collected, 
files were downloaded and the jaw movements were analysed 
using the “Graze” analysis software (V.08, IGER, North Wyke, 
UK) (Rutter, 2000) from which outputs of the focal behaviour 
parameters such as grazing and rumination time, grazing and 
rumination bouts, grazing bites, rumination mastications and 
rumination boli were obtained. These data were subsequently 
used to extrapolate the parameters: grazing bout duration, 
rumination bout duration, bite rate, rumination mastication 
rate and rumination boli per rumination bout.
Grazing behaviour was recorded for each animal in 2017 
during the DMI estimation periods using RumiwatchSystem 
(ITIN+HOCH, Laubibergstrasse, Liestal, Switzerland) over a 
5-d period for each individual cow. The RumiwatchSystem 
was used in place of the IGER recording system used in 
2015. The RumiwatchSystem has been validated against 
visual observation by Werner et al. (2018) to record 
grazing and rumination behaviour of dairy cows. The 
grazing behaviour data from the RumiWatch devices were 
downloaded to the RumiWatch Manager 2 (V.2.1.0.0, 
ITIN+HOCH, Laubibergstrasse, Liestal, Switzerland) and 
subsequently analysed using the RumiWatch Convertor 
software (V.0.7.3.36, ITIN+HOCH, Laubibergstrasse, Liestal, 
Switzerland), as described by Werner et al. (2018) to obtain 
similar focal behavioural parameters to the 2015 study. 
Data were subsequently categorised into similar behaviour 
parameters as the 2015 dataset.

Thermal imaging
Thermal images of the eyes, ribs, front and back hooves were 
captured twice in 2015 at a herd average of 181 and 212 DIM 
using an FLIR T430sc thermal camera (FLIR Systems Inc., 
Stockholm, Sweden) as described by Byrne et al. (2017). Images 

were recorded following morning milking in a covered shed with 
no direct sunlight ensuring all cows were subjected to a similar 
ambient temperature at the time of measurement. Images of the 
left eye, ribs, fore and hind hooves were taken at 1.25, 2, 2 and 
1 m from the cow, respectively. To ensure repeatability, three 
images of each body part were captured (Byrne et al., 2017).
The thermal images were analysed and had temperatures 
extracted using Thermovision LabVIEW Toolkit 3.3 (FLIR 
Systems Inc.) as outlined by Byrne et al. (2017). The emissivity, 
ambient temperature, humidity, object distance and reflected 
temperature were adjusted in each image prior to analysis. 
Images of the eye and ribs were cropped to a pre-set area 
by one user. Eye images were cropped through drawing a 
rectangle around the outer edges of the cornea. The images 
of the ribs were cropped at the mid-point of the ribs. The 
average temperature of each body part was calculated from 
the images. Additionally, these values were subsequently 
averaged over the two measurement periods.

Heart rate
Heart rate was measured once in 2015 at a herd average of 
137 DIM using a heart rate monitor (Polar V800, Polar Electro 
LTD, Warwick, UK). The heart rate monitor was fitted after 
morning milking for a 24-h period during which it continuously 
recorded the heart rate of each animal. The heart rate monitor 
was placed within a girth belt which was strapped around the 
chest of the animal. The heart rate monitor was placed on the 
chest of the animal at the location of the heart.

Blood pressure
Blood pressure was recorded twice in 2015 (111 and 138 DIM, 
respectively) using a blood pressure device (Suntech 247, 
SunTech, Morrisville, NC, USA). The blood pressure cuff was 
placed on the tail of each cow, 16 cm below the horizontal line 
of the hip bone. The blood pressure cuff was initially activated to 
acclimatise the animal to the device. Systolic and diastolic blood 
pressure was subsequently taken over four consecutive 10-min 
recording periods, with 2-min intervals between each period. All 
measurements were taken on all animals by the same operator.

Statistical analysis
Model development
All statistical analysis in this study was conducted using SAS 
v9.4 (SAS Institute Inc., Cary, NC, USA). Data collected 
in 2015 were used to develop prediction models for DMI 
(Table 1). Data were assessed for normality using SAS PROC 
UNIVARIATE. Outlying values were examined, and one animal 
was removed due to obvious errors in body measurement 
records. The relationship between DMI and each individual 
variable of interest was assessed to establish the strength and 
directions of the associations using PROC CORR and PROC 
GPLOT in SAS. After observing the correlations and scatter 
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plots, heart girth was removed from the analysis as it had a 
correlation of >0.80 with the variable BW.
Initially, SAS PROC REG was used to develop a benchmark 
regression model for the prediction of DMI using known animal 
energy sinks (MY, fat %, protein % and BW) and status traits 
(parity [coded as dummy variables], feeding treatment [coded 
as dummy variables] and calving day of year). The effect of 
genotype (high EBI vs. average EBI) was investigated and in 
agreement with O’Sullivan et al. (2019) was non-significant 
(P = 0.75) and was omitted from the model. All other variables 
were retained in the regression model regardless of P value as 
they were deemed biologically plausible adjustment variables 
for DMI in grazing dairy cows (Kennedy et al., 2003; McCarthy 
et al., 2014; Lahart et al., 2019). All seven variables were 
subsequently used as a benchmark model to which additional 
traits could be incorporated.
As an initial screening step, 33 separate multivariable linear 
regression models were constructed using SAS PROC REG. 
DMI was the dependent variable and the benchmark variables 
(energy sinks and status traits; forced into the model) along 
with one novel variable of interest were the independent 
variables. Only cows with values for all variables were included 
in the analysis (n = 113). Variables of interest P < 0.25 were 
retained for assimilation into a backward linear regression 
model. The backward linear regression model again included 
the adjustment variables (energy sinks and status traits) and 
the variables which passed the initial screening step. Variables 
remained in the final model where P < 0.05. The final models 
were repeated to incorporate the maximum number of cows 
with values for all novel traits significantly associated with 
DMI.
The coefficient of determination (R2) was used to estimate 
the proportion of DMI explained by both the benchmark 
and the final models. Multi-collinearity was monitored in 
prediction models through the variance inflation factor (VIF) 
and the intercept-adjusted condition index. A VIF of >10 or 
an intercept-adjusted condition index >30 indicated multi-
collinearity. Model residuals were standardised and normality 
checks were performed using SAS PROC UNIVARIATE.

Model validation
Data collected from the 2017 study were used to validate the 
benchmark and final models. Data were assessed for normality 
using SAS PROC MEANS and SAS PROC UNIVARIATE. 
Outlying values were examined, with no observations 
removed. A regression analysis was undertaken using SAS 
PROC REG to evaluate the prediction models. Criteria used 
to validate the predictive ability of the equation included the 
R2, the average bias, the slope between true and predicted 
DMI values, the root mean square error (RMSE) and relative 
prediction error (RPE) (Fuentes-Pila et al., 1996; Derby, 2010; 
Zom et al., 2012).

Table 1: Phenotypic values of traits from the calibration dataset

Variable Mean  ±s.d.

Dry matter intake (kg) 17.51  1.96

Body weight (kg) 532  50.6

Milk yield (kg) 22.1  4.38

Fat % 4.2  0.51

Protein % 3.8  0.22

Parity 2.2  0.8

Calving day of year 52  16.4

Heart girth (cm) 192  7.0

Empty chest girth (cm) 237  14.5

Full chest girth (cm) 244  9.6

Empty body depth 125  15.7

Full-body depth 127  6.1

Back length (cm) 96  8.6

Hip width (cm) 42  3.0

Chest width (cm) 65  7.7

Rump width (cm) 26  2.9

Withers height (cm) 135  4.8

Head length (cm) 51  4.4

Muzzle circumference (cm) 45  2.1

Grazing mastications (n) 8,049  3,059.2

Grazing bites (n) 35,805  5,814.1

Grazing bite rate (n/min) 60  5.7

Grazing bouts (n) 9.4  2.35

Grazing time (min) 596  71.3

Grazing bout duration (min/bout) 67  18.1

Rumination bouts (n) 17.3  4.74

Rumination mastications (n) 30,324  7,016.1

Rumination boli (n) 499  115

Rumination time (min) 453  84.5

Ruination mastication rate (n/min) 66  5.3

Rumination bout duration (min/bout) 28  9.4

Rumination boli per bout (n) 30  9.5

Systolic blood pressure (mm Hg) 105  16.6

Diastolic blood pressure (mm Hg) 72  11.8

Heart rate (beats/min) 78  9.7

Thermal eye temperature (°C) 34  0.7

Thermal front left hoof temperature (°C) 26  1.3

Thermal front right hoof temperature (°C) 26  1.4

Thermal back left hoof temperature (°C) 28  1.3

Thermal back right hoof temperature (°C) 28  1.3

Thermal rib temperature (°C) 32  1.0

1The average grass and concentrate dry matter intakes across the 
feeding treatments were 16.0 and 0 kg for the low grass allowance, 
17.4 and 0 kg for the control plus 15.5 and 3.6 kg for the high-
concentrate feeding treatment, respectively.
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Results

The proportion of variation (R2) in DMI explained by each 
individual trait in the benchmark model was as follows: MY = 
0.66 (P < 0.001), milk fat % = 0.02 (P = 0.18), milk protein % 
= 0.04 (P < 0.05), BW = 0.38 (P < 0.001), feeding treatment 
= 0.35 (P < 0.001), parity = 0.33 (P < 0.001) and calving day 
of year = 0.01 (P = 0.41). When combined, MY, protein %, 
BW, parity and feeding treatment all remained significantly 
associated (P < 0.05) with DMI. The VIF and intercept-
adjusted condition index indicated multi-collinearity was not 
present in the model.
There were 113 animals with records for all of the novel 
variables that were included in the analysis. The initial 
screening step revealed 10 of the 33 variables had a tendency 
towards association with DMI (P < 0.25): empty chest girth, 
rump width, hip width, grazing bout duration, number of 
rumination boli, rumination mastication rate, average front 
left hoof temperature, average front right hoof temperature, 
average back left hoof temperature and average back right 
hoof temperature. The subsequent step, backward linear 
regression, identified grazing bout duration, rumination 
mastication rate, rumination boli and right back hoof 
temperature, and remained in the model (P < 0.05) in addition 
to the benchmark variables. When the number of animals 
in the final model were maximised (animals with records for 
all the measurements retained in the final model; n = 120), 
rumination boli and right back hoof temperature became non-
significant and were removed from the model. The R2 of the 
final model was 0.85. The inclusion of the variables such as 
grazing bout duration and rumination mastication rate led to 
a 0.01 increase in the R2 surpassing the benchmark model. 
Both the benchmark model (adjusted for animals in the final 
model; n = 120) and the final model are presented in Tables 2 
and 3, respectively.

Validation
The models developed using the 2015 dataset were applied 
to the independent dataset generated in 2017 to predict DMI. 
The benchmark model predicted DMI of the independent 
dataset with an R2 of 0.80 and an RMSE of 1.20 kg (Figure 
1). The slope between true and predicted DMI was 1.68  
(s.e. = 0.12; b ≠ 1, P < 0.05). The prediction model resulted in 
an average bias of –0.20 and an RPE of 0.08. The residuals 
from this model were normally distributed. The final model 
incorporating grazing bout duration, rumination mastication 
rate and the benchmark variables predicted DMI of the 
independent dataset with an R2 of 0.79 and an RMSE of 1.23 
kg (Figure 2). The slope between true and predicted DMI 
was 1.65 (s.e. = 0.12; b ≠ 1, P < 0.05). The prediction model 

resulted in an average bias of –0.35 and an RPE of 0.09. The 
residuals from this model were normally distributed.

Table 2: Partial regression coefficients, s.e. and P values associated 
with the benchmark model to predict DMI (number of records = 120; 

coefficient of determination = 0.84)

Variables Partial regression 
coefficient (95% CI)

s.e.  P value

Intercept −0.38 (−4.78, 4.02) 2.22  0.865

Body weight (kg) 0.007 (0.003, 0.012) 0.002  0.002

Milk yield (kg) 0.29 (0.22, 0.36) 0.03  <0.001

Fat % 0.36 (−0.06, 0.79) 0.21  0.089

Protein % 1.60 (0.62, 2.57) 0.49  0.002

Feeding treatment – –  <0.001

LGA vs. CTL −0.81 (−1.20, −0.42) 0.20  <0.001

HC vs. CTL 0.32 (−0.14, 0.78) 0.23  0.167

Parity – –  0.003

Parity 2 vs. 1 0.77 (0.27, 1.28) 0.25  0.003

Parity 3 vs. 1 0.32 (−0.32, 0.96) 0.32  0.320

Calving day of year −0.003 (−0.013, 0.007) 0.005  0.542

CI = confidence interval; CTL = control; DMI = dry matter intake;  
HC = high concentrate; LGA = low grass allowance.

Table 3: Partial regression coefficients, s.e. and P values associated 
with the final model to predict DMI (number of records = 120; 

coefficient of determination = 0.85)

Variables Partial regression 
coefficient (95% CI)

s.e.  P value

Intercept −1.87 (−6.35, 2.62) 2.16  0.396

Body weight (kg) 0.007 (0.002, 0.011) 0.002  0.003

Milk yield (kg) 0.27 (0.20, 0.34) 0.03  <0.001

Fat % 0.38 (−0.03, 0.79) 0.21  0.068

Protein % 1.26 (0.30, 2.22) 0.49  0.011

Feeding treatment – –  <0.001

LGA vs. CTL −0.75 (−1.13, −0.37) 0.19  <0.001

HC vs. CTL 0.64 (0.17, 1.12) 0.24  0.008

Parity – –  <0.001

Parity 2 vs. 1 1.00 (0.48, 1.51) 0.26  <0.001

Parity 3 vs. 1 0.65 (−0.01, 1.31) 0.33  0.052

Calving day of year −0.006 (−0.016, 0.032) 0.005  0.193

Graze bout duration 0.012 (0.003, 0.021) 0.004  0.007

Rumination 

mastication rate

0.038 (0.006, 0.070) 0.016  0.021

CI = confidence interval; CTL = control; DMI = dry matter intake; HC 
= high concentrate; LGA = low grass allowance.
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Removing grazing bout duration and incorporating rumination 
mastication rate alone with the benchmark variables slightly 
increased the predictive accuracy (R2 = 0.81; RMSE = 1.16) 
when compared to the benchmark model alone (Figure 3), 
while the slope between true and predicted DMI was 1.70 
(s.e. = 0.12; b ≠ 1, P < 0.05). The prediction model resulted 
in an average bias of –0.20 and an RPE of 0.08. In contrast, 

grazing bout duration alone in combination with benchmark 
variables resulted in a lower predictive accuracy compared 
to the benchmark model with an R2 of 0.78 and an RMSE 
of 1.26 (data not shown), while the slope between true and 
predicted DMI values was 1.64 (s.e. = 0.12; b ≠ 1, P < 0.05). 
The prediction model resulted in an average bias of –0.34 and 
an RPE of 0.09.

y = 1.6499x – 11.773
R2 = 0.792
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Figure 2. The relationship between observed and predicted dry matter intake (DMI) for validation of the final model.
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Figure 1. The relationship between the observed and predicted dry matter intake (DMI) for validation of the benchmark model.
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Discussion

There is considerable genetic variation in feed efficiency 
of dairy cows (Hurley et al., 2017). However, with the 
exception of Australia (Pryce et al., 2015) and the 
Netherlands (Manzanilla-Pech et al., 2017), the inclusion of 
the trait in breeding indexes has been limited. At present, 
partial selection for gross feed efficiency exists within the 
EBI through simultaneous negative selection of BW and 
positive selection of milk production (Berry & Pryce, 2014). 
Nevertheless, O’Sullivan et al. (2019) did not observe 
superior feed efficiency (milk output/DMI) with high EBI 
dairy cows under grazing conditions. Thus, direct selection 
for feed efficiency may be required to improve the trait. 
The energy sinks have previously been reported as good 
predictors of DMI (Kennedy et al., 2003; McCarthy et al., 
2014). Such data are readily available on commercial dairy 
farms. For instance, half the Irish dairy herd is routinely 
milk recorded (Roche et al., 2017), while weighing scales 
are widely available for the purpose of weighing growing 
replacement animals. Nonetheless, identifying additional 
traits correlated with DMI may prove useful in explaining 
further variation in DMI and possibly unexplained variation 
in feed efficiency. The aim of this study was to assess if 
various novel animal traits could explain variation in DMI 
surpassing known animal energy sinks and status traits in 
grazing dairy cows.

Evaluation of prediction models
The R2 of the models is similar to that of previous studies that 
developed DMI regression models for grazing dairy cows 
(Vazquez & Smith, 2000; Coleman et al., 2010; Rombach 
et al., 2019). Body weight was a significant predictor of DMI. 
Animals with a larger BW have a greater energetic requirement 
for the maintenance of metabolic functions (McDonald, 2002). 
Each 100 kg increase in BW was associated with a 0.70 kg 
increase in DMI. In agreement with Vazquez and Smith (2000) 
and Rombach et al. (2019), MY was a significant contributor 
to the prediction of DMI. This is not surprising, as dairy cows 
eat primarily to meet their energetic requirements for milk 
production (Holmes et al., 2002). As a result, there is a strong 
genetic relationship between milk production and DMI in dairy 
cows (Manzanilla-Pech et al., 2014), meaning high-yielding 
cows have a greater DMI than lower-yielding cows (Buckley 
et al., 2000). In agreement with previous studies (Kennedy 
et al., 2003; McCarthy et al., 2014), increased parity was 
associated with increased DMI. Unsurprisingly, the feeding 
treatments were also strong predictors of DMI as O’Sullivan 
et al. (2019) reported significant differences across the feeding 
treatments for DMI.
Grazing bout duration was significantly associated with DMI 
in the final model. Rombach et al. (2019) reported that total 
eating time per day was positively associated with herbage 
DMI in a prediction model for grazing dairy cows. Within 
this study, each 1-min increase in grazing bout duration 
was associated with a 0.12 kg increase in DMI. Rumination 
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Figure 3. The relationship between observed and predicted dry matter intake (DMI) for validation of the model solely comprising rumination 
mastication rate in combination with the benchmark variables.
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mastication rate was also positively associated with DMI. 
Animals ruminate to break down ingested feed into smaller 
particles for further digestion (Van Soest, 1994). In grazing 
animals, a greater number of rumination mastications could 
indicate a higher level of feed to be digested, hence a greater 
DMI. Interestingly, recent research has also reported positive 
associations between DMI and rumination mastication rate 
in grazing steers and heifers (Lahart et al., 2020) as well as 
between DMI and the number of daily rumination mastications 
in lactating beef cows at pasture (Williams et al., 2019). 
Collectively, this suggests that ruminating activity is a useful 
predictor of DMI in grazing cattle regardless of sex, breed and 
physiological state.
There was a marginal (+0.01) improvement in the R2 of the 
model when grazing bout duration and rumination mastication 
rate were combined with the benchmark model. Clement et al. 
(2014) reported no improvement to DMI prediction of lactating 
dairy cows when rumination time was used in combination with 
a model comprising milk production, BW and DIM (Clement 
et al. 2014). Williams et al. (2019) observed a 0.24 increase in 
the R2 for DMI prediction when traits pertaining to linear body 
scores and daily rumination mastications were combined with 
known energy sinks and status traits in a study with lactating 
beef cows. However, the energy sinks and status traits in their 
study explained significantly less variation in DMI (R2 = 0.45) 
compared to the current study (R2 = 0.84). This may be partly 
related to the fact that Williams et al. (2019) estimated MY, 
whereas MY was directly recorded in the current study.
None of the other novel traits were significantly associated 
with DMI. It should be acknowledged that traits such as 
heart rate, blood pressure, body measurements and thermal 
imaging were not recorded concurrent with DMI estimation. 
The labour-intensive nature of the measurements prevented 
the simultaneous recording of DMI with these measurements. 
It is unclear if this affected associations with DMI. Although 
traits such as thermography are relatively repeatable (Byrne 
et al., 2017).

Validation of prediction models
The RPE of the models upon validation (0.08–0.09) indicates 
satisfactory DMI prediction (Fuentes-Pila et al., 1996). It is 
difficult to achieve fitting statistics close to unity in prediction 
models for grazing animals due to the use of marker 
techniques which estimate DMI, not directly measuring the 
trait. The alkane technique as used in this study can be poor 
at estimating within animal variation in DMI due to differences 
in selective grazing, digestion and recovery rates between 
animals (Dove et al., 2000). However, the fitting statistics 
in the current study did not seem to be impaired by the 
technique and were greater than fitting statistics reported by 
O’Neill et al. (2013), who developed herd average grass DMI 
prediction models for grazing dairy cows using animal and 

sward variables. It should be highlighted that the DMI data in 
the present study were the mean of multiple estimates which 
likely led to the improved fitting statistics. Nevertheless, 
there was a large slope when actual DMI was regressed 
on predicted DMI, signifying that the model overestimated 
low DMI values and underestimated high DMI values. The 
incorporation of more records into the prediction model may 
alleviate this.
Grazing bout duration and rumination mastication rate in 
combination were not useful at increasing the predictability 
of DMI surpassing the energy sinks upon external validation. 
Grazing behaviour was recorded using IGER recording 
devices in the 2015 calibration study, whereas it was recorded 
using RumiWatch recording devices in the 2017 validation 
study. Nonetheless, previous research by both Rutter et al. 
(1997) and Werner et al. (2018) has shown the two devices 
to be as accurate as visual observation. When the traits were 
separated, rumination mastication rate did prove to improve 
the predictability of DMI, whereas grazing bout duration did 
not. There was a considerable difference in grazing bout 
duration in the 2015 calibration study (67 min/bout) compared 
to the 2017 validation study (86 min/bout; data not shown), 
whereas there was little difference between rumination 
mastication rate in 2015 (66 chews/min) compared with 2017 
(65 chews/min; data not shown). The discrepancies in grazing 
bout duration between the calibration and validation studies 
may be due to differences in concentrate supplementation 
(one-third of the animals in the calibration study received 
concentrate supplementation), environmental conditions and 
photoperiod, all of which can influence the trait (Gregorini 
et al., 2006; O’Sullivan et al., 2019).

Application of prediction models to improve feed efficiency
Alternative methods of selecting for feed efficiency have been 
proposed; both De Haas et al. (2015) and Pryce et al. (2015) 
have demonstrated that genomic selection can be used as a 
method of selecting for feed intake and feed efficiency. These 
genomic breeding values have been derived predominantly 
from feed intake records of animals in indoor environments. 
However, genotype by environmental interactions need to be 
considered when predicting breeding values for grazing dairy 
cows, as genetic correlations between the two feeding systems 
tend to be low (Berry et al., 2014). Thus, actual phenotypes 
of grazing dairy cows may be required to make substantial 
genetic gain for feed efficiency. The energy sinks have been 
proposed as suitable predictors of DMI (Manzanilla-Pech 
et al., 2017). However, further detail is warranted, specifically 
to explain true variation in net feed efficiency (residual feed 
intake) between animals (De Haas et al., 2015). Rumination 
mastication rate in the current study explained additional 
variation in the feed intake complex surpassing the energy 
sinks upon external validation. Albeit the improvement was 

8



Lahart et al.: Predicting dry matter intake of dairy cows

small, however, the trait possibly represents true variation 
in net feed efficiency between animals. Data on feeding 
and rumination time are routinely recorded on commercial 
dairy farms using accelerometer devices for heat detection 
and health monitoring. Given the rapid pace at which these 
technologies are developing, it may be possible to record 
rumination intensity in the future. The decision to invest in 
collecting such information relies on the marginal response 
in genetic gain in the overall breeding index from measuring 
such data (Berry & Crowley, 2013). Ideally, these traits should 
be genetically correlated with DMI but should also explain 
genetic variation in DMI surpassing the energy sinks (De Haas 
et al., 2015). It is unclear if the marginal phenotypic variation in 
the feed intake complex explained by rumination mastication 
rate within the current study would translate through to 
genetic gain in feed efficiency. Further work assessing the 
genetic associations amongst feeding behaviour traits such 
as rumination mastication rate and feed intake and efficiency 
in grazing cattle may be beneficial.

Conclusion

The current study aimed to evaluate a range of animal traits 
with regard to their ability to explain additional variation in 
DMI in grazing dairy cows over and above known animal 
energy sinks and status traits. Despite the comprehensive 
measurements undertaken, rumination mastication rate was 
the only trait identified that could increase the accuracy of DMI 
prediction upon external validation. If routinely available, the 
trait may be a useful contributor to breeding for improvements 
in feed efficiency of grazing dairy cows in the future.
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