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SUMMARY

Adult mitotic tissues like the intestine, skin, and
blood undergo constant turnover throughout the
life of an organism. Knowing the identity of the
stem cell is crucial to understanding tissue homeo-
stasis and its aberrations upon disease. Here we pre-
sent a computational method for the derivation of a
lineage tree from single-cell transcriptome data. By
exploiting the tree topology and the transcriptome
composition, we establish StemID, an algorithm for
identifying stem cells among all detectable cell types
within a population. We demonstrate that StemID re-
covers two known adult stem cell populations, Lgr5+
cells in the small intestine and hematopoietic stem
cells in the bone marrow. We apply StemID to predict
candidate multipotent cell populations in the human
pancreas, a tissue with largely uncharacterized turn-
over dynamics. We hope that StemID will accelerate
the search for novel stem cells by providing concrete
markers for biological follow-up and validation.

INTRODUCTION

The identification of a stem cell in a tissue is a major challenge of
pivotal importance. Being able to detect the stem cell population
allows for powerful approaches to study cell differentiation dy-
namics by, for example, lineage tracing (Barker et al., 2007;
Busch et al., 2015). Additionally, it provides a first step toward
ex vivo propagation of primary stem cells in organoid cultures
(Lancaster et al., 2013; Sato et al., 2009), important for applica-
tions in regenerative medicine. Moreover, stem cell populations
relevant for disease progression, such as cancer stem cells, are
promising targets for therapeutic intervention. Stem cells are
typically rare, which makes their discovery by traditional popula-
tion-based assays very difficult. For example, it took decades of
dedicated research to define the population of hematopoietic
stem cells (HSCs) (Eaves, 2015), but it remains an open question
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how much heterogeneity exists within this subpopulation of bone
marrow cells (Wilson et al., 2015). Similarly, the discovery of in-
testinal stem cells (van der Flier and Clevers, 2009) took years
of work, and heterogeneity within this compartment remains un-
der debate (Buczacki et al., 2013).

The recent availability of single-cell mRNA sequencing
methods allows profiling of healthy and diseased tissues with
single-cell resolution (Grin et al., 2015; Jaitin et al., 2014; Ma-
cosko et al., 2015; Patel et al., 2014; Paul et al., 2015; Treutlein
et al., 2014; Zeisel et al., 2015). The transcriptome of a cell can
be interpreted as a fingerprint, revealing its identity. However,
biological gene expression noise (Eldar and Elowitz, 2010; Raj
and van Oudenaarden, 2008) and technical noise because of
amplification of minute amounts of mRNA from a single cell
(Brennecke et al., 2013; Grin et al., 2014) affects the readout
and makes it a challenge to discriminate cell types based on their
transcriptome. By sequencing large numbers of randomly
sampled single cells from a tissue, it is now possible to compile
a nearly complete inventory of cell types.

These inventories can be screened for cell types of particular
interest, such as stem cells. An obvious strategy for the identifi-
cation of the stem cell is the derivation of a lineage tree from sin-
gle-cell sequencing data. However, transcriptomes of randomly
sampled cells only represent a snapshot of the system, and tem-
poral differentiation dynamics cannot be directly derived. How-
ever, if the system of interest comprises all differentiation stages,
such as the intestinal epithelium or the bone marrow, then at-
tempts can be made to infer a lineage tree by assembling sin-
gle-cell transcriptomes in a pseudo-temporal order. Existing
approaches assume a continuous temporal change of transcript
levels to assemble differentiation trajectories (Bendall et al.,
2014; Haghverdi et al., 2015; Trapnell et al., 2014), but resolving
the correct tree topology remains a challenge.

Here we present a method to identify rare and abundant cell
types of a system and use these cell type classifications to guide
the inference of a lineage tree. We investigate the general prop-
erties characterizing the position of a cell type within the lineage
tree and identify the number of branches and the transcriptome
uniformity of a cell type as features correlating with the degree of
pluripotency. We show that our approach successfully recovers
the identity of the stem cell in the intestine and in the bone
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Figure 1. RacelD2 Recovers Intestinal Cell Types

(A) The intestinal epithelium is a well characterized differentiation system. Lgr5-positive stem cells give rise to secretory and absorptive precursors by WNT and

NOTCH signaling that further differentiate into mature intestinal cell types.

(B) Summary of the lineage-tracing experiment performed to sequence single 5-day-old progeny of Lgr5-positive cells.
(C) Heatmap of cell-to-cell transcriptome distances measured by 1 — Pearson’s correlation coefficient (p). RacelD2 clusters are color-coded along the

boundaries.

(D) t-distributed stochastic neighbor embedding (t-SNE) map representation of transcriptome similarities between individual cells. The clusters identified in (C) are
highlighted with different numbers and colors, and the corresponding intestinal cell types identified based on known marker genes are indicated.

See also Figure S1.

marrow, two systems with a well described stem cell population.
We then use our method to predict multipotent cell populations
in the adult human pancreas.

RESULTS

Robust Identification of Mouse Intestinal Cell Types by
RacelD2

To develop a robust approach for the inference of differentiation
trajectories, we used a previously published dataset from a line-
age tracing experiment comprising the progeny of Lgr5-positive

mouse intestinal stem cells (Grin et al., 2015). This system is
ideal for testing the inference of differentiation dynamics
because the lineage tree is already well characterized (Figure 1A).
The continuously self-renewing intestinal epithelium is arranged
in crypts and villi, with a small number of Lgr5+ stem cells, also
known as crypt base columnar cells (CBCs), residing near the
crypt bottom. These CBCs give rise to rapidly proliferating
transit-amplifying (TA) cells that migrate upward along the
crypt-villus axis and develop into the terminally differentiated
cell types (Barker, 2014; van der Flier and Clevers, 20009).
Although absorptive enterocytes constitute the most abundant
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cell type, the secretory lineage comprises rare cells, such as
mucus-producing goblet cells, hormone-secreting enteroendo-
crine cells, and antimicrobial Paneth cells. Labeled cells were
collected 5 days after label induction using an Lgr5-CreERT2
construct and a Rosa26-YFP reporter with a loxP-flanked tran-
scriptional roadblock (Figure 1B).

We first improved the robustness of the initial clustering step of
our previously developed RacelD algorithm (Grun et al., 2015) by
replacing the k-means clustering with k-medoids clustering (Fig-
ure S1). Second, we noticed that the previously used gap statistic
(Tibshirani et al., 2001) was not ideal for determining the cluster
number. Although increasing the number of clusters in many
cases leads to a growing gap statistic, the decrease of the
within-cluster dispersion (Tibshirani et al., 2001) saturates quickly.
A further increase of the cluster number, therefore, reduces clus-
ter reproducibility. In RacelD2, we thus determine the cluster
number by identifying the saturation point of the within-cluster
dispersion. Together, these two changes lead to a more robust
initial clustering of RacelD2 (Experimental Procedures; Figure S1).

For the intestinal lineage tracing data (Experimental Proce-
dures), RacelD2 recovered a larger group of Lgr5+ stem cells
(cluster 2) and early progeny (clusters 1 and 8) as well as the ma-
jor mature cell types; i.e., enterocytes (cluster 3), goblet (clusters
4 and 19), Paneth (clusters 5 and 6), and enteroendocrine cells
(cluster 7) (Figures 1C and 1D). These cell types could be unam-
biguously assigned based on the cluster-specific upregulation of
marker genes inferred by RacelD2 (Table S1).

Inference of the Lineage Tree with Guided Topology

One of the major challenges for the inference of differentiation
pathways in a system with multiple cell lineages is the determina-
tion of branching points. To overcome this problem, we prede-
fined the topology of the lineage tree by allowing differentiation
trajectories linking each pair of clusters. A putative differentiation
trajectory links the medoids of two clusters, and the ensemble of
all inter-cluster links defines the possible topology of the lineage
tree. To minimize the effect of technical noise and, at the same
time, the computational burden, we first reduce the dimension-
ality of the input space requiring maximal conservation of all
point-to-point distances. In a second step, we assign each cell
to its most likely position on a single inter-cluster link. To find
this position, the vector connecting the medoid of a cluster to
one of its cells is projected onto the links between the medoid
of this and all remaining clusters, and the cell is assigned to the
link with the longest projection after normalizing the length of
each link to one. The projection also defines the most likely posi-
tion of the cell on the link (Figure 2A), reflecting its differentiation
state (Experimental Procedures). If this strategy is applied to the
intestinal data, then only a subset of links is populated (Figure 2B).
To determine links that are more highly populated than expected
by chance and are therefore candidates for actual differentiation
trajectories, we computed an enrichment p value based on com-
parison with a background distribution with randomized cell po-
sitions (Figure 2B; Figure S2A). Furthermore, we reasoned that
the coverage of a link by cells indicates how likely it is that this
link represents an actual differentiation trajectory and not only
biased perturbations driving the transcriptome of a given cluster
preferentially toward the transcriptome of another cluster without
leading to actual differentiation events. We defined a link score as
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one minus the maximum difference between the positions of
each pair of neighboring cells on the link after normalizing the
length of each link to one (Figure S2B). If this score is close to
one, then the link is densely covered with cells with only small
gaps in between. If the link score is close to zero, the cell density
is only concentrated near the cluster centers connected by this
link. A detailed description of the algorithm is given in the Exper-
imental Procedures. The computationally inferred intestinal line-
age tree is consistent with the known lineage tree (Figure 1A).
Secretory cell types (clusters 4, 5, 6, and 7) populate individual
branches emanating from the central Lgr5+ cluster, and absorp-
tive enterocytes (cluster 3) differentiate from the same group viaa
more abundant group of TA cells (cluster 1).

We compared the inferred lineage tree to the tree predicted by
Monocle (Trapnell et al., 2014), a recent method for the derivation
of branched lineage trees that does not rely on a predefined tree
topology, and found that Monocle could not resolve the different
branches of secretory cells (Figure S2).

High Connectivity and High Transcriptome Entropy
Reveals the Identity of the Stem Cell

Next we attempted to predict the stem cell identity from the line-
age tree. Our working definition of a stem cell for this purpose
purely relies on multipotency. More precisely, we try to identify,
from the lineage tree, the cell population with the highest degree
of multipotency. We noticed that different cell types showed a
variable number of populated links to other clusters. The link
score is reflected by the thickness of the line in our graphical rep-
resentation (Figure 2B). We also show links with a low link score
because they are informative about the associated cell state. For
example, a cell type with many low-scoring links can fluctuate to-
ward a diversity of fate biases, whereas cell types with only a few
links are much more canalized. These two scenarios reflect a
more promiscuous transcriptome, such as expected for stem
cells, versus a more confined transcriptome, as expected for a
mature cell type. In our data, cluster 2, which contains cells pos-
itive for Lgr5 and other established stem cell markers (Asc/2 and
Clca4) (Figure 2C), was the most highly connected cluster.
Another putative property of stem cells is the tendency to exhibit
a more uniform composition of the transcriptome in comparison
with differentiated cells. Mature cell types frequently express a
small number of genes at very high levels, crucial for cell type-
specific functions. The transcriptome of Paneth cells, for
instance, is dominated by high numbers of lysozymes and other
host defense genes. The uniformity of the transcriptome is re-
flected by Shannon’s entropy (Shannon, 1948), and this concept
has previously been applied to study cellular differentiation
(Anavy et al., 2014; Baneriji et al., 2013; Piras et al., 2014) (Exper-
imental Procedures). We anticipate that the transcriptome of a
multipotent cell type is more uniform in each individual cell. In
addition, multiple state biases could coexist within this popula-
tion that can give rise to diverse mature cell types upon external
stimuli, or stochastically, leading to high entropy (Baneriji et al.,
2013; Ridden et al., 2015). For the intestinal lineage tracing
data, both Paneth and goblet cells had clearly reduced entropy
compared with Lgr5-positive cells, whereas the entropy of enter-
ocytes and enteroendocrine cells was comparable with stem
cells (Figure 2D). We found that, for all analyzed datasets (see
below), the number of links discriminates better between
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Figure 2. Lineage Tree Inference for Intestinal Stem Cell Progeny

(A) Schematic of the method used to infer differentiation trajectories (see main text and Experimental Procedures).

(B) Outline of the method visualized in the t-SNE-embedded space. All RacelD2 clusters with more than two cells (top) are connected by links, and, for
each cell, the link with the maximum projection is determined as shown in (A). Only populated links are shown (center). Cluster centers are circled in black.
Significant links are inferred by comparison with the background distribution with randomized cell positions (Experimental Procedures). Only significant links are

(legend continued on next page)
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Figure 3. StemID Identifies Stem Cells in Com-
plex with Non-random Mixtures of Intestinal
Cells

(A) t-SNE map of transcriptome similarities of intes-
tinal cells from a variety of single-cell mRNA
sequencing experiments (main text and Figure S3).
RacelD2 clusters are highlighted with different
numbers and colors. Cell types identified based on
marker gene expression are shown.

(B) Heatmap showing the average expression of
known cell type markers across all clusters with more
than five cells. For each gene, the sum of expression
values over all clusters is normalized to one.

(C) Inferred intestinal lineage tree. Only significant
links are shown (p < 0.01). The color of the link in-
dicates the —logqo p value. The color of the vertices
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multipotent and differentiated cells when rescaled by the en-
tropy. Therefore, the simplest score that performs well in
discriminating multipotent cells from the remaining cell types
was a product of the median entropy (after subtracting the min-
imal entropy observed in the system) and the number of links of a
cluster (Experimental Procedures). This score exhibits a clear
maximum for cluster 2 comprising the Lgr5+ stem cells (Fig-
ure 2D). We named our algorithm StemlID for the lineage tree
inference and the derivation of this score.

StemlID Recovers Intestinal Stem Cells in a Complex
Dataset with Non-random Cell Type Frequencies

Next we wanted to test whether StemID could identify Lgr5+
cells in a larger and more complex dataset comprising intestinal
cells of various independent experiments conducted in our lab.
In this dataset, we combined 3 weeks and 8 weeks of Lgr5 line-
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indicates the entropy. The thickness indicates the link
score, reflecting how densely a link is covered with
cells (Experimental Procedures).

(D) Barplot of StemlID scores for intestinal clusters.
In (B)-(D), only clusters with more than five cells were
analyzed. See also Figures S3, S6, and S7.
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age tracing data. A subset of those was en-
riched in secretory cells by fluorescence-
activated cell sorting (FACS) on CD24 (van
Es et al., 2012; Figure S3). For both time
points, we also sorted non-traced CD24+
control cells (Experimental Procedures; Fig-
ure S3). RacelD2 revealed the known intes-
tinal cell types within this dataset based on
cluster-specific expression of known cell
type marker genes and subdivided these
into stages of differentiation or maturation
(Figures 3A and 3B; Figure S3A). A full list
of differentially expressed genes for each cluster is given in Table
S2. For example, intestinal stem cells in cluster 7, marked by high
expression of Lgr5 and Cica4 (Figure 3B), were connected
directly to all secretory branches, whereas TA cells (cluster 5) pri-
marily give rise to enterocytes (cluster 10) (Figure 3C; Figures
S3C and S3D). Interestingly, we observed two distinct differenti-
ation trajectories for Paneth cells (clusters 13 and 14), one via a
DII1-positive common precursor of Paneth and goblet cells (clus-
ter 1) and another one directly connecting stem cells (cluster 7) or
TA cells in cluster 5, marked by upregulation of the cell-cycle
gene Pcna, directly to the mature Paneth cell clusters. Both the
DIl1-dependent (van Es et al., 2012) and the direct route (Farin
et al., 2014; Sawada et al., 1991), which was observed after
ablation of Paneth cells, have been described. The recovery of
alternative differentiation pathways demonstrates the power of
our guided lineage inference. We were not able to recapitulate
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shown (p < 0.01). The color of the link indicates the —log1op value. The color of the vertices indicates the entropy. The thickness indicates the link score, reflecting

how densely a link is covered with cells (Experimental Procedures).

(C) Transcript counts (color legend) of the intestinal stem cell markers Lgr5, Clca4, and Ascl2 are highlighted in the t-SNE map. Expression of these genes is
restricted to cluster 2 and clusters 5 and 6. Clusters 5 and 6 comprise Paneth cells, which were shown to co-express Lgr5 (Griin et al., 2015). Accumulated
transcript counts across all Defensin genes, which are markers of Paneth cells, are shown at the bottom right.

(D) Barplot of StemID scores for all clusters. The median transcriptome entropy of each cell type was computed across all cells in a cluster (left). The lowest
entropy across all cell types was subtracted for each cell types because absolute differences were only small. This Aentropy was multiplied by the number of

significant links for each cluster (center), yielding the StemlID score (right).
See also Figure S2.
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Figure 4. StemID Identifies Hematopoietic
Stem Cells in Non-random Mixtures of
Bone Marrow Cells

(A) t-SNE map of transcriptome similarities of he-
matopoietic cells sampled from physically inter-
acting doublets or multiplets (main text and Fig-
ure S4). RacelD2 clusters are highlighted with
different numbers and colors. Cell types identified
based on marker gene expression are shown.

(B) Heatmap showing the average expression of
known cell type markers across all clusters with
more than five cells. For each gene, the sum of
expression values over all clusters is normalized
to one.

(C) Inferred hematopoietic lineage tree. Only sig-
nificant links are shown (p < 0.01). The color of the
link indicates the —logo p value. The color of the
vertices indicates the entropy. The thickness in-
dicates the link score, reflecting how densely a link
is covered with cells (Experimental Procedures).
(D) Barplot of StemID scores for hematopoietic
clusters. MP, myeloid progenitor; EP, erythroblast
progenitor.

See also Figures S4, S6, and S7.
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this finding with a minimum spanning tree-based alternative
approach (Figure S3E).

We then computed the StemID score and found that the
Lgr5+/Clca4+ cells (cluster 7) exhibit the highest score (Fig-
ure 3D). The second highest score was observed for cluster
21, which represents a common progenitor to Paneth and goblet
cells. The TA cells in cluster 5, which our lineage inference iden-
tifies as progenitors with an enterocyte fate bias, acquire the
third-highest StemID score.

Noticeably, Paneth cells in cluster 13 and mature goblet cells
in cluster 2 show the same connectivity as the stem and progen-
itor cells in clusters 7, 5, and 21, but rescaling by entropy helps
correctly assign a mature state to these cells (Figure S3F). In
conclusion, StemID could identify intestinal stem cells and
distinguish progenitor populations from more mature intestinal
cell types.

StemID Recovers Hematopoietic Stem Cells within a
Non-random Sample of Bone Marrow Cells

To test the performance of StemID in a different biological sys-
tem, we applied the algorithm to single-cell sequencing data of
mouse bone marrow cells. These cells were selected based on
physical interactions between doublets or larger groups of
cells and are thus not sampled randomly from all cell types
in the bone marrow. This dataset was complemented with
Kit*Sca-1*Lin"CD48~CD150* HSCs (Kiel et al., 2005) sorted
from the bone marrow (Experimental Procedures; Figure S5B).
Cell types identified by RacelD2 were dominated by the myeloid
lineage and comprised HSCs, erythroblasts, megakaryocytes,

123 456 7 8 9 10111213 142228293235

group of B lymphocytes, and several

Cluster

clusters representing progenitor stages

of the myeloid lineage (Figures 4A and

4B; Figure S6A). A full list of differentially
expressed genes for each cluster is shown in Table S3. Cluster
1 comprises almost exclusively sorted HSCs (Figure S4B). The
inferred lineage tree (Figure 4C; Figures S6C and S6D) indicates
that HSCs differentiate into multipotent progenitor cells (cluster
5) but are also directly linked to mature lineages. HSCs and multi-
potent progenitors are both linked to megakaryocytes (cluster 4),
eosinophils (clusters 10 and 29), macrophages (cluster 28), and
two branches covering a spectrum of progenitor and mature
states of the neutrophil (clusters 11, 3, 2, 14, 12, and 22) and
erythroid lineage (clusters 9, 8, 7, 6, and 13), respectively. The
B lymphocytes are only directly linked to the HSCs, suggesting
that cluster 5 represents a myeloid progenitor population, and
no lymphoid progenitors were present in our sample. The in-
ferred lineage tree is therefore consistent with the existence of
a common myeloid progenitor population giving rise to erythro-
cytes, megakaryocytes, granulocytes, and macrophages (Orkin
and Zon, 2008). StemID determines the highest score for cluster
1 and, therefore, correctly recovers HSCs among all cell types in
the mixture (Figure 4D; Figure S6). The second-highest score
discriminates the multipotent myeloid progenitors (cluster 5)
from the remaining cell types, and the third-highest score was
assigned to the earliest progenitor of the erythroblast lineage.
Therefore, the level of multipotency also correlates with the
StemlID score of bone marrow-derived cells.

The high connectivity of cluster 1 provides evidence for early
fate biases already in HSCs. Moreover, the high entropy of
HSCs reflects a more uniform transcriptome in individual cells
of this population. The entropy distribution across all cells in
this cluster is shifted in comparison with all other groups
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Figure 5. The Multipotency of HSCs Is Reflected by High Transcriptome Entropy
(A) Boxplot of the transcriptome entropy for all RacelD2-derived bone marrow cell types with more than five cells. The boundaries of the box represent the 25%
and 75% quantiles, the thick line corresponds to the median, and whiskers extend to the 5% and 95% quantiles. The broken red line indicated the 25% quantile

for HSCs (cluster 1).

(B) Two-dimensional clustering of lineage markers in all HSCs (cluster 1). The heatmap shows logarithmic expression.

(C) Self-organizing map (SOM) of Z-score-transformed, pseudo-temporal expression profiles along the neutrophil differentiation trajectory (clusters 1, 11, 3, 2,
and 12), indicated by the red arrow superimposed on the lineage tree (Experimental Procedures). The pseudo-temporal order was inferred from the projection
coordinates of all cells. The color-coding on the left indicates the cluster of origin. The SOM identified five different modules of co-regulated genes. Examples are
shown at the bottom. The clusters of origin are indicated as colors and numbers. The black line represents a moving average (window size 25).

In (A)-(C), only clusters with more than five cells were analyzed.

(Figure 5A). In general, the inter-cluster variability substantially
exceeds the intra-cluster variability. The narrow entropy distribu-
tion of cluster 1 also rules out a strong dependence on the cell
cycle. However, we also observed that 54 of the 276 HSCs
(20%) show distinct fate biases, revealed by low expression of
lineage-specific marker genes (Figure 5B), a finding that is
consistent with a recent report based on lineage tracing (Perié
et al., 2015). Because the sensitivity of single-cell sequencing
is limited, this number is almost certainly an underestimation.
We note that most HSCs (112 of 276) are assigned to the link
with the multipotent progenitor (cluster 5). We cannot address
whether the observed fate bias persists during differentiation
or whether stochastic switching between distinct cell fates oc-
curs during differentiation. Our observation is also consistent
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with a recent single-cell transcriptome analysis showing an un-
expected heterogeneity of myeloid progenitor cell populations
and suggests the existence of an early cell fate bias (Paul
et al., 2015). We observe very similar sets of marker genes, as
found in this study, but our lineage inference permits an analysis
of the temporal dynamics of gene expression. As an example, we
extracted all cells from the neutrophil branch (clusters 1, 11, 3, 2,
and 12) in pseudo-temporal order derived from the projection
coordinates and clustered temporal expression profiles by using
self-organizing maps (Experimental Procedures). A Z-score of
gene expression values along this trajectory reveals that the
RacelD2 clusters represent sets of cells with common modules
of co-expressed genes and that gene expression within these
modules changes smoothly over time (Figure 5C). Although
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Figure 6. StemID Predicts Human Pancreatic Pluripotent Cells
(A) t-SNE map of transcriptome similarities of human pancreatic cells. RacelD2 clusters are highlighted with different numbers and colors. Cell types identified
based on marker gene expression are shown. For ductal cells, marker genes of sub-populations are shown.
(B) Heatmap showing the average expression of known cell type markers across all clusters with more than five cells. For each gene, the sum of expression values
over all clusters is normalized to one.
(C) Transcript counts (color legend) of the ductal sub-type markers CEACAMG6, FTH1, KRT19, and SPP1 are highlighted in the t-SNE map.
(D) Inferred pancreatic lineage tree. Only significant links are shown (p < 0.01). The color of the link indicates the —log, p value. The color of the vertices indicates
the entropy. The thickness indicates the link score reflecting how densely a link is covered with cells (Experimental Procedures).
(legend continued on next page)
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ribosomal protein-encoding genes and other components of the
translational machinery slowly decline during differentiation,
other genes are transiently switched on in progenitor populations
(e.g., Elane) or immature neutrophils (e.g., Ngp) or only upregu-
lated in mature cells (e.g., Retnlg).

Finally, we note that the identification of the HSC population by
StemlID is robust to changing the contribution of this population
to the mixed sample. For example, when only ten HSCs are
randomly selected and all others are discarded from the dataset,
StemlID still assigns the highest score to the small HSC cluster
(data not shown).

In summary, StemlID could successfully identify the stem cell
type in a complex mixture of cells isolated from bone marrow.
The inferred lineage tree recovered known trajectories but sug-
gested an early cell fate bias present already in HSCs.

StemlID Predicts Multipotent Ductal Cell Populations
among Human Adult Pancreatic Cells

After having demonstrated that StemID can robustly identify the
stem cell population in two distinct biological systems, we
applied the algorithm to predict multipotent cell populations in
a less characterized system: the human pancreas. The pancreas
consists of acinar cells that produce the digestive enzymes,
ductal cells secreting bicarbonate to neutralize stomach acidity,
and hormone-producing endocrine cells that regulate hormone
metabolism (Jennings et al., 2015). It is unclear which multipo-
tent cells maintain pancreatic homeostasis and can give rise to
different mature cell types during regeneration upon injury.
Although early studies have suggested that, in humans, these
cell populations could reside within the exocrine compartment
or that dedifferentiation of exocrine cells could give rise to endo-
crine cells (Bonner-Weir et al., 2000; Puri et al., 2015), the identity
of multipotent cell populations is still unclear (Jiang and Mora-
han, 2014). We sequenced pancreatic cells from human donors
(Experimental Procedures), and application of RacelD2 revealed
all major cell types, including different subpopulations of acinar
and ductal cells; hormone-producing a, B, 8, and pancreatic
polypeptide producing (PP) cells; and stellate cells (Figures 6A
and 6B; Figures S5A and S5B). A full list of differentially ex-
pressed genes for each cluster is shown in Table S4. In partic-
ular, we discovered novel subpopulations of ductal cells. In
one of these groups (cluster 14), the cell surface glycoprotein
CEACAMEG6 was significantly upregulated (p < 0.01; Experimental
Procedures), whereas components of the ferritin protein (FTH1,
FTL), which is the major intracellular iron storage protein, were
significantly upregulated (p < 0.01; Experimental Procedures)
in the other group (cluster 4) (Figure 6C).

The inferred lineage tree assigns a central position to the
ductal cells (Figure 6D; Figures S7C-ST7E). Distinct subtypes of
ductal cells appear to give rise to different endocrine sub-types
and acinar cells. Although differentiation trajectories link cluster
4 to acinar, PP, and B cells, cluster 14 is linked to o and 5 cells.
Consistently, clusters 4 and 14 acquire the highest StemID
score, indicating the highest level of multipotency among the

cell types detected in this system (Figure 6E; Figure S7F). The
following ranks of the StemID score were occupied by other
ductal sub-types and precursor cells that give rise to two sub-
states of acinar cells. Interestingly, cluster 4 also directly con-
nects to stellate cells. Upon injury, these cells can switch to an
activated state and migrate to the injured location to participate
in tissue repair (Omary et al., 2007).

To collect further evidence that cluster 4 is an endocrine pro-
genitor cell, we plotted the expression of the cluster 4 marker
FTH1 and the B cell marker insulin (INS) in single cells residing
on the differentiation trajectory connecting these two cell types.
Cells were ordered by their projection coordinate. The genes
exhibited smooth, anti-correlated gradients suggestive of a
continuous transition between these two cell types (Figure 6F).
To independently validate this observation, we performed anti-
body staining against insulin and FTL in human pancreatic tissue
sections. We were able to detect individual cells co-expressing
insulin and FTL within ductal structures, confirming the existence
of cluster 4 cells (Figure 7A). Co-staining of glucagon revealed
that these cells specifically produce insulin and not glucagon
(Figure 7B), as suggested by our analysis (Figure 6C). Our results
indicate that the ferritin-positive sub-population of ductal cells
might differentiate into mature B cells.

DISCUSSION

In this study, we present an approach to identify stem cells using
single-cell transcriptomics data. Because the physiological state
of a cell is an approximate reflection of its transcriptome, it is a
reasonable assumption that cell types can be discriminated
based on their transcriptome. However, determining the stem
cell identity among all rare cell types discovered also requires
the derivation of a lineage tree.

To address this task, we combined cell type identification by
RacelD2 with a tree reconstruction by guided topology. We first
introduce an improved version of our previous RacelD algorithm
(Grln et al., 2015) with a more robust initial clustering step. The
replacement of k-means by k-medoids leads to increased
robustness of clustering for all datasets analyzed in the paper.
For the complex intestinal dataset (Figure 3), the fraction of clus-
ters with Jaccard’s similarity of > 0.7 is 40% for k-means versus
73% for k-medoids. The corresponding fractions are 58%
versus 83% for the bone marrow data and 40% versus 90%
for the pancreas data.

To infer differentiation trajectories, we assign every cell onto a
specific link between its cluster of origin and another cluster
based on the longest projection of the vector connecting the
cluster center with the cell position onto these links. This
adequately reflects how much a cell has moved from the most
representative cell state in the same cluster (the medoid) toward
another cell identity (or vice versa). If significantly more cells
reside on a link than expected by chance, this provides strong
evidence that cells of the cluster of origin exhibit a pronounced
transcriptome bias toward another cell fate. In addition, if a

(E) Barplot of StemlD scores for pancreatic clusters.

(F) Pseudo-temporal expression profiles for INS and FTH1. The transcript count is plotted for cells on the link, connecting clusters 4, 8, and 6. Cells are ordered by

the projection coordinate.

In (B), (D), and (E), only clusters with more than five cells were analyzed. See also Figure S5.
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Figure 7. Validation of Putative Endocrine Precursor Cells in Ductal
Subpopulations by Antibody Staining

(A and B) Antibody staining for INS and FTH1 in human pancreatic showing a
single cell positive for INS and FTH1 residing in the lining of the duct (arrow).
(B) Antibody staining for INS, FTH1, and GCG in human pancreatic tissue.
Shown is a single cell positive for INS and FTH1 residing in the lining of the
duct (arrow) next to a GCG-expressing cell (arrowhead). Another GCG-ex-
pressing cell is found nearby (arrowhead). Both GCG-expressing cells are
FTH1-negative.

continuum of cell states covers a given link, as evidenced by a
high link score, then this link represents a strong candidate for
an actual differentiation trajectory. Significant links with reduced
link scores, on the other hand, indicate plasticity of the con-
nected cell types in a sense that the transcriptome of a cell
type can, to some extent, fluctuate toward another fate.

The quality of our lineage inference is supported by the recov-
ery of known differentiation trajectories in the intestinal epithe-
lium and the bone marrow. Remarkably, we recovered a rare
alternative differentiation pathway where Lgr5+ cells differen-
tiate directly into Paneth cells without intermediate DI/7+ progen-
itors (Farin et al., 2014; Sawada et al., 1991). We could also
show, for the intestinal and the bone marrow data, that StemID
infers a lineage tree with substantially higher resolution in com-
parison with methods published previously (Haghverdi et al.,
2015; Trapnell et al., 2014; Figure S6).

The derived lineage tree for the bone marrow suggested that,
in contrast to the classical view of dichotomous differentiation
via a hierarchy of increasingly restricted progenitor populations
(Giebel and Punzel, 2008), a cell fate bias already exists at
stages as early as the HSC stage (Figure 5B). This observation
is consistent with a recent single-cell transcriptome analysis
revealing heterogeneity of the common myeloid progenitor
cell population, indicating early fate bias (Paul et al., 2015).
Moreover, direct generation of progenitors restricted to the
myeloid fate from mouse HSCs has been described in the
past (Yamamoto et al., 2013), and the existence of unipotent

cells within human HSCs (Notta et al., 2016) and classically
defined mouse multipotent progenitor populations was shown
recently (Perié et al., 2015).

For both model systems, the StemID score, which quantifies
very general properties of a cell type (i.e., the number of links
and the entropy of the transcriptome), ranks RacelD2-predicted
cell types by their level of multipotency. Lgr5+ CBCs and sorted
HSCs acquire the highest score among all cell types of the intes-
tine and bone marrow, respectively, demonstrating the perfor-
mance of our algorithm. We could further demonstrate the
performance of StemID on two previously published datasets
(Figure S7) for cells from developing lung epithelium (Treutlein
et al., 2014) and differentiating human radial glial cells (Pollen
et al., 2015).

Potential problems for the StemID algorithm arise in the
absence of intermediate progenitors or the occurrence of unre-
lated cell types. In the absence of intermediate progenitors,
StemlID infers a link to a more multipotent population. For
example, B lymphocytes in the bone marrow dataset are directly
linked to HSCs. It is known that a spectrum of progenitors will
reside on this trajectory, and, as we have observed for the other
lineages, an early fate bias toward lymphocytes could exist in
HSCs. In the absence of intermediate progenitors, a link to a
more multipotent population reflects all information on the line-
age relationship that can be extracted from the data. If the
stem cell itself is missing from the sample, StemID will identify
the cell type with the highest level of multipotency. The presence
of unrelated cell types in the mixture could lead to false positive
links. However, because the feature space is high-dimensional, it
is likely that none of the links between an unrelated cell type and
the remaining lineage tree will be significantly populated. We
also argue that links of mature cell types to related progenitor
or stem cell populations were identified with high specificity
(oftentimes only a single link in line with previous findings was
detected). This makes the occurrence of significant links be-
tween unrelated cell types unlikely.

Finally, we used StemID to screen human adult pancreatic
cells for multipotent cell populations. It is unclear which adult
pancreatic cell types can give rise to the different mature pancre-
atic lineages during normal tissue turnover or regeneration.
Although initial evidence suggested that multipotent cells within
the ductal compartment could differentiate into endocrine cells
both in humans and mice (Jiang and Morahan, 2014), subse-
quent lineage-tracing experiments produced contradictory re-
sults. Although mouse lineage tracing of carbonic anhydrase |
(Ca2)-positive ductal cells revealed that these cells give rise to
B cells upon injury (Bonner-Weir et al., 2008), lineage tracing of
Sox9-, Muc1-, or Hnf1B-positive cells could not confirm this
finding (Furuyama et al., 2011; Kopinke and Murtaugh, 2010;
Kopp et al., 2011; Solar et al., 2009). Using StemID, we were
able to predict distinct sub-populations of ductal cells with vary-
ing differentiation potential. Although ductal cells marked by high
levels of CEACAMS are predicted to differentiate into «, 8, and
PP cells, another sub-population expressing high levels of the
ferritin complex primarily appears to give rise to B cells and
acinar cells. We note that the latter sub-population does not ex-
press any of the markers used in previous lineage-tracing exper-
iments, but we caution that expression of these genes might be
too low to be reliably detected by single-cell nNRNA sequencing.
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We further remark that B cell differentiation in the adult pancreas
might not be conserved between human and mouse.

We provide the well documented R source code for RacelD2
and the StemlID algorithm at https://github.com/dgrun/StemID.
We hope that StemID will be useful for a better understanding
of differentiation dynamics in a variety of systems.

EXPERIMENTAL PROCEDURES

Lineage-Tracing Experiments
For lineage-tracing experiments, we injected 0.4 mg tamoxifen into 3-month-
old Lgr5-CreERT2 C57BI6/J mice bred to Rosa26LSL-YFP reporter mice.

Isolation of Crypts from Mouse Small Intestine
Crypts were isolated from mice as described previously (Sato et al., 2009). See
the Supplemental Experimental Procedures for more details.

Human Islet Isolation, Dispersion, and Sorting

Pancreatic cadaveric tissue was procured from a multiorgan donor program
and only used when the pancreas could not be used for clinical pancreas or
islet transplantation, according to national laws, and when research consent
was present. Human islet isolations were performed in the islet isolation facility
of the Leiden University Medical Center according to a modified protocol orig-
inally described by Ricordi et al. (1988). See the Supplemental Experimental
Procedures for details regarding culturing and cell sorting.

Immunofluorescence

Pancreatic tissue samples were fixed overnight in 4% formaldehyde (Klini-
path), stored in 70% ethanol, and subsequently embedded in paraffin. After
deparaffinization and rehydration in xylene and ethanol, respectively, antigen
retrieval was performed in citric buffer for 20 min. Sections were blocked
with 2% normal donkey serum and 1% lamb serum in PBS. Primary antibodies
were rabbit anti-Ftl (ab69090), mouse anti-glucagon (ab10988), and guinea pig
anti-insulin (ab7842). Alexa Fluor-conjugated secondary antibodies against
rabbit, mouse, and guinea pig immunoglobulin G (IgG) (Life Technologies;
A11008, A10037, and A21450) were used at a dilution of 1:200. Nuclear coun-
terstaining was done by embedding with DAPI Vectashield (Vector Labora-
tories, H-1500). Imaging was performed on a Leica SP8 confocal microscope
using hybrid detectors.

Preparation of Mouse Hematopoietic Cells

We used C57BI/6 female or male mice from 23 to 52 weeks bred in our facility.
Experimental procedures were approved by the Dier Experimenten Commis-
sie of the Royal Netherlands Academy of Arts and Sciences and performed ac-
cording to the guidelines. Bone marrow was isolated from femur and tibia by
flushing Hank’s balanced salt solution (HBSS, Invitrogen) without calcium or
magnesium, supplemented with 1% heat-inactivated fetal calf serum (FCS)
(Sigma). See the Supplemental Experimental Procedures for details regarding
single cell isolation.

Single-Cell Sequencing Library Preparation
The protocol was carried out as described previously (Griin et al., 2015). See
the Supplemental Experimental Procedures for a detailed description.

Quantification of Transcript Abundance

Read mapping and quantification were done as described previously (Griin
et al., 2015). See the Supplemental Experimental Procedures for a detailed
description.

RacelD2 and StemID

A brief overview is given in the Results. The algorithm and follow-up analyses
are described in full detail in the Supplemental Experimental Procedures.

ACCESSION NUMBERS

The accession numbers for the RNA sequencing datasets reported in this pa-
per are GEO: GSE76408, GSE76983, and GSE81076.
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SUPPLEMENTAL FIGURES

Figure S1. RacelD2 improves robustness of clustering. (Related to Figure 1)

(A) Gap statistitic (Tibshirani et al., 2001) computed with k-means clustering of the
similarity matrix as in RacelD (left) and with k-medoids clustering using 1- pearson’s
correlation directly as clustering distance metric as in RacelD2 (right). (B) Jaccard’s
similarity computed by bootstrapping for k-means (upper panel) and k-medoids
(lower panel) clustering with 5 clusters. K-medoids clustering shows higher
reproducibility. (C) Criterion for the selection of the cluster number used for k-
medoids clustering. If the change of the within-cluster dispersion (Tibshirani et al.,
2001) upon increasing the cluster number (k., = k;+ 1) is within the error of the
average change upon further increase (k.., ..., kmw), k; iS chosen as input. The
average change across cluster numbers k,,,, ..., k., and its error is computed from a
linear regression. The within-cluster dispersion as a function of k is shown on the left.
The right panel shows the change of the within-cluster dispersion as a function of k
and the average dispersion for higher values of k with error bars (red). In both panels
the selected cluster number is circled in blue. (D) Outliers identification by RacelD2 is
the same as in RacelD. Shown is the number of outliers as a function of the p-value

cutoff. The red line indicates the cutoff chosen for this work (P<107).
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Figure S2. Lineage inference by StemlD and comparison to an alternative
method for the derivation of differentiation trajectories does not resolve
secretory intestinal cells. (Related to Figure 2) (A) The heatmap shows the log,-
ratio of the cell number assigned to each link between RacelD2 clusters and the
expected number computed by a background model with randomized cell positions.
Only significantly enriched or depleted links are highlighted. A log.-ratio of zero is
assigned to all other links. (B) The heatmap shows the link score for each pair of
clusters, reflecting how densely a link between clusters is populated with cells (see
Experimental Procedures). Values close to one indicate dense coverage, while
values close to zero indicate that cells are concentrated near the centers of the
clusters connected by the link. A higher value reflects a higher likelihood that the link
represents an actual differentiation trajectory. (C-E) The Monocle (Trapnell et al.,
2014) algorithm was run on the single cell transcriptomes of the 5 days Lgr5 lineage
tracing data. (A) Minimum spanning tree computed by Monocle. Since 5 different cell
types were observed in the data, Monocle was run with num_paths = 4. RacelD2
clusters were highlighted by numbers and colors used in Figure 1. (B) Expression of
lineage markers (Apoe17: enterocytes; Chga: mature enteroendocrine cells; Chgb:
early and mature enteroendocrine cells; Clca3: Goblet cells; Clca4: crypt bottom
columnar cells; Defa24. Paneth cells) in cells assembled in pseudo-temporal order
computed by Monocle. (C) Transcript counts (color legend) of mature lineage
markers highlighted in the t-SNE map. RacelD2 clusters reliably discriminate different
cell types (see Figure 2C). Monocle assigns stem, goblet, Paneth and
enteroendocrine cells to one state and the inferred pseudo-temporal order does not

reflect the published one shown in Figure 1A and inferred by StemID.
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Figure S3. StemID identifies stem cells in a complex intestinal dataset. (Related
to Figure 3)

We ran RacelD2 and StemlID on a dataset combining single mouse intestinal cell
transcriptome data from a variety of experiments conducted in our lab, comprising
Cd24-positive secretory cells, 3 weeks old progeny of Lgr5-positive cells and a sub-
population of those positive for Cd24, and 8 weeks old Cd24-positive progeny of
Lgr5-positive cells. (A) Heatmap of cell-to-cell transcriptome distances measured by
1 — Pearson’s correlation (p) coefficient. RacelD2 cluster are color coded along the
boundaries. (B) t-SNE map representation of transcriptome similarities between
individual cells. Different experiments are highlighted with different colors and
symbols. (C) The heatmap shows the log,-ratio of the cell number assigned to each
link between RacelD2 clusters and the expected number computed by a background
model with randomized cell positions. Only significantly enriched or depleted links are
highlighted. A log,-ratio of zero is assigned to all other links. (D) The heatmap shows
the link score for each pair of clusters, reflecting how densely a link between clusters
is populated with cells (see Experimental Procedures). Values close to one indicate
dense coverage, while values close to zero indicate that cells are concentrated near
the centers of the clusters connected by the link. A higher value reflects a higher
likelihood that the link represents an actual differentiation trajectory. (E) t-SNE map
showing the projections of all cells as computed in a high dimensional space (see
Experimental Procedures) in the embedded two-dimensional space. The black solid
line indicates a minimum spanning tree connecting the cluster centers, which was
computed based on the distances between cluster centers. The minimum spanning
tree recovers the main differentiation trajectories, but does not identify a number of
alternative trajectories revealed by the projection-based approach. (F) Barplot of the
number of links (upper panel) and the Aentropy (lower panel). A comparison to the
StemID score (Figure 3C) shows that neither of these quantities alone could rank the

cell types by pluripotency with the same specificity as the StemID score.
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Figure S4. StemID identifies hematopoietic stem cells in single cells sequenced
from the bone marrow. (Related to Figure 4)

We ran RacelD2 and StemlID on a single cell sequencing dataset comprising mouse
bone marrow cells manually isolated from interacting doublets or multiplets of cells
and Kit" Sca-1" Lin" CD48 CD150" hematopoietic stem cells (HSCs). (A) Heatmap of
cell-to-cell transcriptome distances measured by 1 — Pearson’s correlation (p)
coefficient. RacelD2 cluster are color coded along the boundaries. (B) t-SNE map
representation of transcriptome similarities between individual cells. Different
experiments are highlighted with different colors and symbols. (C) The heatmap
shows the log,-ratio of the cell number assigned to each link between RacelD2
clusters and the expected number computed by a background model with
randomized cell positions. Only significantly enriched or depleted links are
highlighted. A log,-ratio of zero is assigned to all other links. (D) The heatmap shows
the link score for each pair of clusters, reflecting how densely a link between clusters
is populated with cells (see Experimental Procedures). Values close to one indicate
dense coverage, while values close to zero indicate that cells are concentrated near
the centers of the clusters connected by the link. A higher value reflects a higher
likelihood that the link represents an actual differentiation trajectory. (E) t-SNE map
showing the projections of all cells as computed in a high dimensional space (see
Experimental Procedures) in the embedded two-dimensional space. The black solid
line indicates a minimum spanning tree connecting the cluster centers, which was
computed based on the distances between cluster centers. The minimum spanning
tree recovers the main differentiation trajectories, but does not identify a number of
alternative trajectories revealed by the projection-based approach. (F) Barplot of the
number of links (upper panel) and the Aentropy (lower panel). A comparison to the
StemID score (Figure 4C) shows that neither of these quantities alone could rank the

cell types by pluripotency with the same specificity as the StemID score.
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Figure S5. StemID predicts pluripotent cells in random mixtures of human
pancreatic cells. (Related to Figure 6)

We ran RacelD2 and StemID on a single cell sequencing dataset comprising single
human pancreatic cells isolated form five different donor (D2, D3, D7, D10, D17).
Different enrichment strategies were applied to collect random mixture, endocrine
and exocrine cells, or subsets of those. (A) Heatmap of cell-to-cell transcriptome
distances measured by 1 — Pearson’s correlation coefficient (p). RacelD2 cluster are
color coded along the boundaries. (B) t-SNE map representation of transcriptome
similarities between individual cells. Different experiments are highlighted with
different colors and symbols. (C) The heatmap shows the log,-ratio of the cell
number assigned to each link between RacelD2 clusters and the expected number
computed by a background model with randomized cell positions. Only significantly
enriched or depleted links are highlighted. A log,-ratio of zero is assigned to all other
links. (D) The heatmap shows the link score for each pair of clusters, reflecting how
densely a link between clusters is populated with cells (see Experimental
Procedures). Values close to one indicate dense coverage, while values close to
zero indicate that cells are concentrated near the centers of the clusters connected
by the link. A higher value reflects a higher likelihood that the link represents an
actual differentiation trajectory. (E) t-SNE map showing the projections of all cells as
computed in a high dimensional space (see Experimental Procedures) in the
embedded two-dimensional space. The black solid line indicates a minimum
spanning tree connecting the cluster centers, which was computed based on the
distances between cluster centers. The minimum spanning tree recovers the main
differentiation trajectories, but does not identify a number of alternative trajectories
revealed by the projection-based approach. (F) Barplot of the number of links (upper
panel) and the Aentropy (lower panel). A comparison to the StemID score (Figure
6C) shows that neither of these quantities alone could rank the cell types by

pluripotency with the same specificity as the StemID score.
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Figure S6. StemID provides novel information in comparison to published
methods. (Related to Figure 3 and 4)

For the complex intestinal data set (Fig. 3) and the bone marrow data (Fig. 4) we
derived a lineage tree with two previously published methods. On the one hand we
used Monocle (Trapnell et al.,, 2014), which constructs a minimum spanning tree
connecting all cells based on transcriptome similarity, and on the other hand we
applied a recent method based on diffusion maps (Haghverdi et al., 2015). Results of
Monocle and diffusion maps are shown in (A) and (B) for the intestinal data and in
(C) and (D) for the bone marrow data. For the intestinal data (A, B) both methods
reveal major branches (Paneth/goblet cells, tuft cells, enterocytes, compare to Figure
3 for colors and cluster labels). However, the small clusters of different
enteroendocrine cells could not be assembled onto a branched tree by any method.
Moreover, none of the methods reveals that Paneth and goblet cells have a common
precursor, but rather place mature Clca3 expressing goblet cells on the same branch
with mature Paneth cells. Monocle does not recover the relation between TA cells
and mature enterocytes. Crucially, none of these methods provides a cell type
inference and a prediction of the stem cell identity. For both methods, it is not
apparent from the topology that cluster 7 represents the stem cell identity.

For the bone marrow data (C, D) both methods recover the major branches of
neutrophils and erythroblasts, but intermingle the low frequency cell types with

myeloid precursors.
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Figure S7. StemlID predicts the stem cell identity for previously published data
sets. (Related to Figure 3 and 4)

To test StemID on additional published datasets we searched the literature for single
cell profiling of stem cell differentiation systems. We could not find suitable unique
molecular identifier (UMI) based data and therefore applied StemID to read based
data for the developing lung epithelium (Treutlein et al., 2014) and for developing
radial glia cells (Pollen et al., 2015). Although our algorithm was not designed for
read based quantification, StemID could infer correct lineage trees and correctly
predict the stem cell identity in both systems. (A-D) StemID on 80 cells extracted
from mouse lung epithelium at E18.5 (Treutlein et al., 2014). (A) t-SNE map showing
the major populations inferred by RacelD2. Clusters are highlighted with different
numbers and colors. Alveolar type 1 (AT1) and bipotential progenitors (BP) clustered
together (cluster 1). Since our outlier identification is designed for UMI based
quantification these subtypes remained unresolved. The other major groups
correspond to Clara cells and alveolar type 2 (AT2) cells. (B) Expression of
population specific markers (Treutlein et al., 2014) was highlighted in t-SNE maps on
a logarithmic (log,) scale (color legend). (C) Inferred intestinal lineage tree. Only
significant links are shown (P<0.05). The color of the link indicates the -logqgp-value.
The color of the vertices indicates the entropy. Cells are shown in the background as
grey dots. A black circle indicates a significant projection component. From these
cells an additional link between cluster 1 and clusters 3 and 4 can be recognized,
which is marginally significant (P~0.06). (D) Barplot of StemID scores. The BP/AT1
cluster acquires the highest StemID score. With the additional marginal link the
difference between cluster 1 and the other clusters would be even larger. (E-H)
StemID on 393 cells from the ventricular and subventricular zone of the human
cortex at gestational week 16-18 (Pollen et al., 2015). (E) t-SNE map showing the
major populations inferred by RacelD2. Clusters are highlighted with different
numbers and colors. Clusters 1,2 and 3 represent radial glia cells while 4,6,7,8
represent intermediate progenitors and mature neurons. (F) t-SNE map highlighting
expression of radial glia markers (PAX6, PTPRZ1) and an early neuronal marker
(NEUROD1) on a logarithmic (logz) scale (color legend). Up-regulation of PTPRZ1
identifies cluster 3 as outer and cluster 1 and 2 as ventricular radial glia (RG) cells.
(C) Inferred cortical lineage tree. Only significant links are shown (P<0.05). The color
of the link indicates the -logsop-value. The color of the vertices indicates the entropy.
The thickness indicates the link score reflecting how densely a link is covered with
cells (see Experimental procedure). The tree links the RG sub-types to the mature

neurons (cluster 4 and 8) via a NEUROD1 expressing progenitor population (D)



Barplot of StemID scores. The highest score was correctly assigned to outer RG
cells, which have been shown to express self-renewal pathways (as opposed to
ventricular RG cells) and differentiate into various neural and glial cell types.

For (B-D) and (F-H) only clusters with >5 cells were analyzed.
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SUPPLEMENTAL TABLE LEGENDS

Table S1. Differentially regulated genes within cell clusters derived for the 5
days Lgr5 lineage tracing data. (Related to Figure 1)

For each cluster, the first column contains the gene identifier, composed of the
official gene symbol and the chromosome separated by a double underscore. The
second and third columns contain the average expression across all cells not in the
cluster and across cells within the cluster, respectively, normalized to the median
expression within the cluster. The third column indicates the fold change and the last
column shows the p-value for the observed fold change (see Experimental

Procedures).

Table S2. Differentially regulated genes within cell clusters derived for the
complex intestinal data. (Related to Figure 3)

For each cluster, the first column contains the gene identifier, composed of the
official gene symbol and the chromosome separated by a double underscore. The
second and third columns contain the average expression across all cells not in the
cluster and across cells within the cluster, respectively, normalized to the median
expression within the cluster. The third column indicates the fold change and the last
column shows the p-value for the observed fold change (see Experimental

Procedures).

Table S3. Differentially regulated genes within cell clusters derived for the
bone marrow data. (Related to Figure 4)

For each cluster, the first column contains the gene identifier, composed of the
official gene symbol and the chromosome separated by a double underscore. The
second and third columns contain the average expression across all cells not in the
cluster and across cells within the cluster, respectively, normalized to the median
expression within the cluster. The third column indicates the fold change and the last
column shows the p-value for the observed fold change (see Experimental

Procedures).

Table S4. Differentially regulated genes within cell clusters derived for the
pancreatic data. (Related to Figure 6)

For each cluster, the first column contains the gene identifier, composed of the
official gene symbol and the chromosome separated by a double underscore. The

second and third columns contain the average expression across all cells not in the



cluster and across cells within the cluster, respectively, normalized to the median
expression within the cluster. The third column indicates the fold change and the last
column shows the p-value for the observed fold change (see Experimental

Procedures).



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Isolation of crypts from mouse small intestine

Crypts were isolated from mice as described previously (Sato et al., 2009). Briefly,
the whole of the small intestine was dissected, flushed with cold Ca* and Mg**-free
PBS and cut to 4 — 5 cm pieces for convenience. Intestines were cut open
longitudinally and villi were scraped off with a glass slide. Intestine fragments were
washed twice with cold Ca™ and Mg**-free PBS, then incubated with 5 mM EDTA in
PBS at 4°C for 30 minutes, with gentle agitation. Crypts were released by vigorous
shaking of the tissue fragments, pelleted by centrifugation (200g at 4°C for 5
minutes), washed once with cold PBS and once with Advanced DMEM/F12 medium
(Life Technologies) and pelleted by centrifugation. Crypts were washed once with
DMEM and resuspended in DMEM containing 2mg/mL Trypsin (Sigma) and
2000U/mL DNasel (Sigma) and incubated 30 minutes at RT, pipetting up and down
the crypts every 5 minutes. Single cells were peletted by centrifuging (400g at 4C for
5 minutes). Single cells were resuspended in DMEM containing 4000U/mL DNasel
and strain through a 40 uM mesh into a FACS tube. Viable cells were gated by
negative DAPI staining. CD24 antibody (Life Technologies) was added 1:200.

Human islet isolation, dispersion and sorting

Pancreatic cadaveric tissue was procured from a multiorgan donor program and only
used if the pancreas could not be used for clinical pancreas or islet transplantation,
according to national laws, and if research consent was present. Human islet
isolations were performed in the islet isolation facility of the Leiden University Medical
Center according to a modified protocol originally described by Ricordi et al. (Ricordi
et al.,, 1988). Islets were cultured in CMRL 1066 medium (5.5 mM glucose)
(Mediatech) supplemented with 10% human serum, 20 u g/ml ciprofloxacin, 50 u
g/ml gentamycin, 2 mM L-glutamin, 0.25 n g/ml fungizone, 10 mM HEPES and 1.2
mg/ml nicotinamide for 3-6 days. Islets were maintained in culture at 37°C in a 5%
CO; humidified atmosphere. Medium was refreshed the day after isolation and every
2-3 days thereafter until cell sorting.

For cell sorting cultured Islets were briefly washed in cold PBS to remove any
residual medium. The islet pellet was then suspended in 1 ml of Accutase per 5000
islet equivalents and incubated at 37 degrees with gentle intermittent shaking for 8-
10 minutes until the islets were dispersed into single cells. The digestion process was

stopped using an excess volume of cold RPMI medium containing 10% FCS. The



dispersed tissue was washed briefly with cold PBS followed by filtering through a
sieve to get rid of any debris and undigested material. To assess the viability of the
cells, Propidium iodide (P1) or DAPI was added to the suspension of cells. The tissue
was stored on ice until sorting using a FACSAria Il (BD biosciences). Cells were
sorted into 96-well skirted qPCR plates (Greiner) in a mix of TRIzol reagent (Ambion)
and 1:250.000.000 ERCC spike-in mix (Ambion; 4456740) and immediately frozen to
-80°C.

Preparation of mouse hematopoietic cells

We used C57BI/6 female or male mice, from 23 to 52 weeks, bred in our facility.
Experimental procedures were approved by the Dier Experimenten Commissie
(DEC) of the KNAW, and performed according to the guidelines. Bone marrow was
isolated from femur and tibia by flushing Hank’s Balanced Salt Solution (HBSS,
Invitrogen) without calcium or magnesium, supplemented with 1% heat-inactivated
Fetal Calf Serum (FCS, Sigma). Bone marrow was then mildly dissociated by a few
pipetting up-and-down. Small interacting structures were selected by visual
inspection under a dissection stereomicroscope (Leica) and transferred by mouth
pipetting to a microscope (Zeiss) equipped with micromanipulators (Narishige).
These structures could be doublets, triplets, etc. or slightly bigger units composed of
around 10 to 20 cells. In the case of small structures, the cells were manually pulled
apart, without enzymatic dissociation, with the help of two pulled needles. For the
bigger units, small structures were first sequentially trimmed off the unit, with the help
of the dissection needles, and then single-cell dissected as described previously. The
single-cells were mouth pipetted directly into eppendorf tubes containing 100 uL of
TRIzol (Life technologies), 0,02 pyL of 1:50.000 ERCC Spike-in RNA (Ambion), and
0,2 pL of GlycoBlue (Ambion). Tubes were immediately frozen on dry ice. The pipette
used for mouth pipetting was always washed in between pipetting with HBSS 1%
FCS.

CEL-seq library preparation

The protocol was carried out as described previously (Grin et al., 2015). Briefly,
single cells were processed using the previously described CEL-seq technique
(Hashimshony et al., 2012), with several modifications. A 4bp random barcode as
unique molecular identifier (UMI) was added to the primer in between the cell specific
barcode and the poly T stretch. Dried RNA, prepared from single cells by TRIZOL
extraction method, was resuspended in primer solution, denatured at 70°C for 2

minutes and quickly chilled, after which the first strand synthesis mix was added.



Libraries were sequenced on an lllumina HighSeq 2500 using 50 bp paired end

sequencing.

Quantification of transcript abundance

Paired end reads obtained by CEL-seq were aligned to the transcriptome using bwa
(Li and Durbin, 2010) (version 0.6.2-r126) with default parameters. The transcriptome
contained all RefSeq gene models based on the mouse genome release mm10
downloaded from the UCSC genome browser (Meyer et al.,, 2013) and contained
31,109 isoforms derived from 23,480 gene loci. All isoforms of the same gene were
merged to a single gene locus. The right mate of each read pair was mapped to the
ensemble of all gene loci and to the set of 92 ERCC spike-ins (Baker et al., 2005) in
sense direction. Reads mapping to multiple loci were discarded. The left read
contains the barcode information: the first eight bases correspond to the cell specific
barcode followed by 4 bases representing the unique molecular identifier. The
remainder of the left read contains a polyT stretch followed by few (<15) transcript-
derived bases. The left read was not used for quantification. For each cell barcode
we counted the number of unique molecular identifiers for every transcript and
aggregated this number across all transcripts derived from the same gene locus.
Based on binomial statistics we converted the number of observed unique molecular

identifiers into transcript counts (Grin et al., 2014).

RacelD2

The RacelD2 algorithm incorporates a number of improvements of the previously
published RacelD algorithm (Grin et al., 2015). To safeguard against technical
artifacts only down-sampling is used for data normalization. For initial clustering the
k-medoids algorithm is used instead of k-means, since it leads to more robust
clustering results. K-medoids clustering is directly done with the correlation based
distance metric d,=1-p,;, where p,; is Pearson’s correlation coefficient between the
transcript count vectors of cell i and ;.

RacelD2 also utilizes a more robust approach to determine the initial number
of clusters used as input for k-medoids. The cluster number is inferred based on the
saturation of the average within-cluster dispersion. In this approach the number of
clusters is the minimal number k; such that the change of the within-cluster dispersion
upon further increase of the cluster number k,,= k;+ 1 is equal, within the estimated
error interval, to the average change upon further increase of the cluster number

quantified by a linear regression across k., ..., knx.. INn other words, the cluster



number is determined such that adding more clusters only leads to a linear decrease
of the within cluster-dispersion.

For better visualization using the t-SNE map, the t-SNE algorithm is initialized with
positions in the embedded space as determined by classical multidimensional
scaling.

To derive significantly up- or down-regulated genes for each cluster the same
strategy as in RacelD is applied, but gene expression is compared between all cells
in a cluster and the remaining cells not in this cluster, as opposed to comparing to all
cells.

The R-code of RacelD2 with extensive documentation is available for

download at https://github.com/dgrun/StemID.

StemiID

StemID is an algorithm based on RacelD2 for the inference of differentiation
trajectories and the prediction of the stem cell identity. As an initial step, the algorithm
embeds the space of transcript counts for each gene, in which every cell can be
represented, into a lower dimensional space in order to maintain only the number of
dimensions necessary to represent all point-to-point distances. For the Euclidean
metric, only n-1 dimensions are necessary to embed n data points from a high
dimensional space (>n dimensions) with exactly conserved distances. For a
correlation-based metric as used by RacelD2 this is not true. Here, we embed into
k<n-1 dimensions, with k being the number of positive eigenvalues of the squared
double-centered distance matrix. The distance d,; between cells i and j is defined as
d;;=1- p,;, where p,;; equals Pearson’s correlation coefficient of the transcriptome of
these cells. The embedding is computed in R using the function cmdscale.

For the derivation of differentiation trajectories the medoid m; of cluster i is
connected to the medoids m; of all other clusters j(j = 1, ..., i1, i+1, ..., N) in the
embedded space. Subsequently, for each cell k in cluster i the vector z;, = y;,— m,
connecting its position y;, to m;, is projected onto each link /;; = m; — m; between cluster
iandj (=1, ...,i-1,i+l, ..., N, i. e. the component of this vector (anti-)parallel to
each connection is calculated. Projections p,,; correspond to the cosine of the angle
o,,;; between z;; and /;; times the length of /;; and are computed based on the dot

product of the two vectors:

Pri;= |Zi,k| eosa ;=



If the vector component is anti-parallel to a link it will be negative. The respective cell
is then assigned to the connection with the longest projection using the coordinate
computed from the projection. This procedure is repeated for every cell in each
cluster. To determine connections with significantly more assigned cells than
expected by chance, the computation is repeated after randomizing the cell positions
in the embedded space. Randomization is performed by sampling new cell positions
from a uniform interval with boundaries given by the real data for each embedded
dimension. Cluster centers are kept constant to maintain the topology of the
configuration.

Outgoing and incoming links are distinguished for the p-value calculation, i. e.
for each cluster it is computed how many of its cells are assigned to each link to
another cluster. The distribution of expected cells on each outgoing link is sampled
by repeating the randomization procedure 2,000 times. A p-value for each link is
derived as the quantile of this distribution corresponding to the actual number of cells
on the link. In general, a cluster can have an enriched outgoing link, which is at the
same time a depleted incoming link. We consider a link significantly enriched if this is
true for either the outgoing or the incoming link.

To compute a p-value, the sampling is repeated sufficiently often. For

instance, if a p-value threshold of P<0.01 is chosen to assign significance to a link,
the randomization is repeated 2,000 times to calculate the 1%-quantile with sufficient
confidence. For lower p-values the number of randomizations needs to be increased.
The ensemble of significant connections can be interpreted as a predicted lineage
tree comprising all commonly used differentiation trajectories of a system. The
projection of a cell onto a trajectory reflects its differentiation progress measured by
pseudo-time and can be used to infer pseudo-temporal ordering of cells on a
trajectory defined by a connected set of links.
To assess the confidence of a particular link, a link score is computed that reflects its
coverage by cells. This score is defined by the maximum difference between two
neighboring cell positions after rescaling the link length to one. Values close to zero
reflect coverage only near the connected cluster centers, while values close to one
indicate uniform link coverage.

To predict the stem cell identity the algorithm also takes into account the

transcriptome entropy of each cell. The entropy E; of cell j is computed as

N
E, = Epi,j logy p; ;.

i=1



where p;; = n, /N and n,; equals the number of transcripts of gene i in cell j. N equals
the total number of transcripts in each cell, which is the same for all cells due to the
downsampling (or median-normalization) performed by RacelD2. Next, the median

delta-entropy AE, is computed for each cluster &, defines as
AE, = median ., (EI) —min, (medianja (Ej )) :
To predict the stem cell identity, StemID computes a score for each cluster k given by
s, =1 -AE,,
where [, denotes the number of significant links of cluster k.

The R-code of RacelD2 and StemID with extensive documentation is

available for download at https://github.com/dgrun/StemID.

Datasets and parameter settings

We used previously published mouse intestinal Lgr5+ 5 days lineage tracing data
(Gran et al., 2015) for the data presented in Figure 1 and 2. Before filtering, this
dataset comprises 432 cells with a median number of 5,469 sequenced transcripts
per cell. RacelD2 analysis was performed with parameters mintotal=3000,
maxexpr=500 and default parameters otherwise. StemID was run with cthr=2, i. e.
only clusters with >2 cells are included in the lineage analysis. Very small clusters
are considered uninformative for this analysis. The dataset presented in Figure 3
comprises randomly isolated mouse intestinal Cd24+ cells (enrichment for secretory
cells) and a set of Cd24+ cells from an Lgr5+ 8-weeks lineage tracing experiment.
Additionally, cells from an Lgr5+ 3-weeks lineage tracing experiment were included,
a subset of which were also Cd24+ (see Figure S3B). In total, a median number of
6,208 transcripts were sequenced in 672 cells for this dataset. RacelD2 was run with
the same parameters as the first dataset and cIn=5, an adjusted cluster number
suggested by our saturation criterion. StemID was run with cthr=5, since substantially
more cells were available compared to the first dataset. The hematopoietic data
presented in Figure 4 comprise mouse bone marrow cells and sorted Kit" Sca-1" Lin’
CD48 CD150" HSCs (Figure S4B). Prior to filtering this dataset was composed of
2,104 cells with a median number of 938 transcripts per cell. One library was
removed from the original data, since cells clustered separately from the remaining
cells. Moreover, we noticed the presence of cells with high expression of Kchq1ot1,
which we had observed as a non-cell type specific marker of subsets of cells in all
datasets analyze. We hypothesize that these have either been exposed to stress
during isolation affecting the transcriptome and therefore discarded cells with 10 or

more Kcnqiot1 transcripts. We then removed Kcnq7ot! and the Rn45s pre-



ribosomal RNA from our pool of reference transcripts which both confounded the cell
type identification. The hematopoietic transcriptome data required more pruning,
because the overall sensitivity was substantially lower than for the intestinal datasets.
To account for the reduced sensitivity, RacelD2 was run with parameters
mintotal=900, minexpr=3, maxexpr=500 and default parameters otherwise. StemID
was run with cthr=5.

The human pancreatic dataset comprises material from five donors (D3, D7,
D10, D17), obtained with or without specific enrichment of cell types (see Figure
S5B). In total, 1,728 cells were sequenced with a median number of 4,885 transcripts
per cell. RacelD2 was run with parameters mintotal=2000, minexpr=4, probthr=107°
and default parameters otherwise. We adjusted the probability threshold, since
heterogeneity was increased due to cells included from different patients. RacelD2
clusters marked by up-regulation of Kcnq1ot1 were removed before subsequent

analysis.

Inference of co-expressed gene modules

To identify modules of co-expressed genes along a specific differentiation trajectory
(defined as a succession of links) all cells assigned to these links assembled in
pseudo-temporal order based on their projection coordinate. Next, all genes that are
not present with at least three transcripts in at least a single cell are discarded from
the sub-sequent analysis. Next, a running mean is computed along the differentiation
trajectory with a window-size of 25 cells. The pseudo-temporal gene expression
profiles of all genes are sub-sequently z-score transformed and topologically ordered
by computing a one-dimensional self-organizing map (SOM) with 1,000 nodes. Due
to the large number of nodes relative to the number of clustered profiles, similar
profiles are assigned to the same node. Only nodes with more than 5 assigned

profiles are retained for visualization of co-expressed gene modules.
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