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Lung cancer is the primary reason of cancer deaths worldwide, and the percentage of death rate is increasing step by step. There are
chances of recovering from lung cancer by detecting it early. In any case, because the number of radiologists is limited and they
have been working overtime, the increase in image data makes it hard for them to evaluate the images accurately. As a result, many
researchers have come up with automated ways to predict the growth of cancer cells using medical imaging methods in a quick and
accurate way. Previously, a lot of work was done on computer-aided detection (CADe) and computer-aided diagnosis (CADx) in
computed tomography (CT) scan, magnetic resonance imaging (MRI), and X-ray with the goal of effective detection and
segmentation of pulmonary nodule, as well as classifying nodules as malignant or benign. But still, no complete comprehensive
review that includes all aspects of lung cancer has been done. In this paper, every aspect of lung cancer is discussed in detail,
including datasets, image preprocessing, segmentation methods, optimal feature extraction and selection methods, evaluation
measurement matrices, and classifiers. Finally, the study looks into several lung cancer-related issues with possible solutions.

1. Introduction

Lung cancer is a significant obstacle to the survival of humans,
and many people lose their lives every year because of lung
cancer. Early detection of pulmonary nodules is essential for
improving lung cancer patients’ survival rates. Nodules are
abnormal tissue growths that can occur anywhere in the body.
They can also grow in in-depth skin tissues as well as internal
organs. When a nodule forms in the lungs, it is referred to as a
pulmonary nodule. A nodule with a diameter of three cen-
timeters or less is called a tumor [1]. There are mainly two
kinds of tumors. It can be either malignant or benign. Ma-
lignant tumors mean cancerous tumors. It can grow and
spread all over the body. On the other hand, benign tumors
are not cancerous. They either do not spread or grow very
slowly or do so. They usually do not return after being

removed by a physician. Approximately 95% of lung nodules
are benign [2]. But it can be malignant also. A larger lung
nodule, such as 30 millimeters or more in diameter, has a
higher risk of being cancerous than a smaller lung nodule [3].

Lung cancers are broadly divided into non-small-cell lung
cancer (NSCLC) and small-cell lung cancer (SCLC) [4].
About 80%-85% of lung cancers are NSCLC, and 10%-15%
of all lung cancers are SCLC. The survival rate of lung cancer is
low. In 2008, there were 12.7 million cancer cases and 7.6
million cancer deaths, with 56% of patients and 64% of fa-
talities occurring in economically developing countries. Lung
cancer is the most common cancer site in men, accounting for
17% of all new cancer cases and 23% of cancer deaths [5].
Lung cancer is diagnosed at an advanced stage in approxi-
mately 70% of patients, with a 5-year survival rate of ap-
proximately 16%. However, if lung cancer is detected early, it
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has a better chance of being treated successfully, with a 5-year
survival rate of 70% [6, 7]. One of the leading causes of lung
cancer is smoking. It can even happen to those who have
never smoked. It can be increased by exposure to secondhand
smoking, arsenic, asbestos, radioactive dust, or radon.
Several attempts have been made since 1980 to develop a
system that can detect, segment [8, 9], and diagnose pul-
monary nodules from CT scans [10]. The detection of
pulmonary nodules is complicated because their appearance
varies depending on their type, whether they are malignant,
and their size, internal structure, and location. Segmentation
has become a big problem, and it now requires a lot of
different methods to solve it. Each technique focuses on
another part of the problem [11]. These systems are referred
to as computer-aided diagnosis systems (CAD). They go
beyond simple image processing to provide specific infor-
mation about the lesion that can aid radiologists in making a
diagnosis. The idea of CAD was initially presented in 1966
[12]. Researchers first thought about using computers to
make automated diagnoses. There were no other ideas or
technologies at the time, so CAD technology was still in its
infancy until the 1980s when the concept moved from
automatic computer diagnosis to CAD [13]. The relevant
ideas and computer technology were also quickly evolving at
the time. All of these factors contributed to the advancement
of CAD technologies. The first study on lung cancer CAD
systems based on CT scans was published in 1991 [14].
Several competitions, such as Lung Nodule Analysis 2016
(LUNAL16) [15] and Kaggle Data Science Bowl (KDSB) [16],
have attracted several professional teams who have created
lung cancer CAD algorithms in recent years. By making it
easier to compare alternative algorithms, these competitions
have aided in advancing lung cancer CAD technology. Lung
cancer CAD can detect lung nodules and predict the like-
lihood of malignancy, making it a handy tool for doctors.
Computer-aided detection (CADe) and computer-aided
diagnosis (CADx) systems are two types of CAD systems.
The former can detect and locate pulmonary nodules, while
the latter can classify them as benign or malignant.
Several researchers analyzed the existing articles previ-
ously for detecting and diagnosing lung nodules using CT
images. Yang et al. [17] examined the use of deep learning
techniques to detect and diagnose lung nodules in particular.
Convolutional neural networks (CNNs) have been the most
widely used deep learning methods in treating pulmonary
nodules. CNNs have produced excellent results in lung
cancer CAD systems. In the 2017 DSB competition, for
example, the winning team’s algorithm was a CNN model
[18], and a CNN model developed by Google and published
in Nature outperformed six professional radiologists [19].
The problem of pulmonary nodule application has been
tackled using various deep learning methods. Poap et al. [20]
introduced a heuristic and nature-inspired method for X-ray
image segmentation-based detection over aggregated im-
ages. The proposed approach for automating medical exams
delivers favorable results for detecting diseased and healthy
tissues. A heuristic red fox heuristic optimization algorithm
(RFOA) was also presented for medical image segmentation
by Jaszcz et al. [21]. In addition, the operation of heuristics
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was modified for the analysis of two-dimensional images,
with an emphasis on equation modification and the de-
velopment of a unique fitness function. Kumar et al. [22]
were the first to employ an autoencoder (AE) to differentiate
benign from malignant pulmonary nodules, while Chen
etal. [23] were the first to use a deep belief network (DBN) in
the context of pulmonary nodule CAD. To improve training
efficiency, Wang and Chakraborty [24] proposed a sliced
recurrent neural network (RNN) model. In their method,
multiple layers of the RNN were taught simultaneously,
which reduced training time. To train a deep learning model,
a large amount of data is required. However, few labeled
datasets are available for researchers due to the need for
specialists and the time-consuming nature of the effort. A
generative adversarial network (GAN) is based on the
negative training paradigm and uses training to generate
new images that are comparable to the original, which has
piqued the interest of many medical imaging researchers
[25]. Some researchers have chosen to generate lung nodule
images with a GAN to increase the amount of data available
[26]. Lung cancer detection has become more structured,
making it more usable and reliable. This structure provides a
basic workflow diagram for detecting lung cancer. However,
the structure is not always the same, and there may be
varijations. When it comes to lung cancer detection, the
process is divided into several steps, including collecting
images or datasets, preprocessing the images, segmentation,
feature extraction, feature selection and classification, and
receiving the results. Figure 1 depicts the method for
detecting cancer in images.

(i) Dataset. Dataset collection is the initial step to starting
the process. There are mainly 3 types of image
datasets used for lung cancer detection: computed
tomography (CT) scans, magnetic resonance imaging
(MRI), and X-rays. CT scan images are mainly used
because of their high sensitivity and low cost. Also, it
is more available rather than MRI and X-ray. More
about the dataset is discussed in Section 3.

(ii) Preprocessing. Image preprocessing is used to im-
prove the original image’s quality and interpret-
ability. The primary goal of CT image preprocessing
is to remove noise, artifacts, and other irrelevant
information from raw images, improve image
quality, and detect relevant information. Section 5
has a brief discussion about it.

(iii) Segmentation. The segmentation of CT images is an
important step in detecting lung nodules and
recognizing lung cancer. Pulmonary segmenta-
tion’s main goal is to separate the pulmonary pa-
renchyma from other tissues and organs accurately.
It uses preprocessed medical images to calculate the
volume of lung parenchyma. Section 6 discusses a
variety of segmentation algorithms.

(iv) Feature Extraction. The features of the segmented
lung images are extracted and analyzed in this step.
Feature extraction is a process in which a large
amount of raw data is divided and reduced to more
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FIGURE 1: The workflow diagram of basic CAD system.

manageable groups after being initially collected. It
makes the process a lot less complicated. Feature
extraction methods are described in Section 7.

(v) Feature Selection. Feature selection identifies and
isolates the most consistent, non-redundant, and
relevant features in model construction. Feature se-
lection is primarily used to improve predictive model
performance while lowering modeling computational
costs. It is also a way to make the classification result
more accurate. Section 8 describes the most com-
monly used feature selection methods.

(vi) Classification. Classification is dividing a given set
of data into groups of similar characteristics. It
separates benign and malignant nodules based on
the feature that has been selected. Well-known
classification methods are discussed in Section 9.

(vii) Result. Finally, the detection result of lung cancer
shows us where the cancerous cell is in the lung. It is
discussed in Section 10.

Figure 2 addresses the taxonomy of this survey. The lung
nodule and cancer analysis were separated into two artificial
intelligence plans applied in clinical imaging. This clinical
imaging was divided into seven categories. We chose studies
from various eras based on their popularity to conduct this
survey. We upheld a systematic review methodology in this
study, which will aid future researchers in determining the
general skeleton of an artificial intelligence-based lung
nodule and cancer analysis. This survey gives a reasonable
perspective on ML and DL structures occupied with dis-
tinguishing lung cancer. This concentration likewise ad-
dresses the identification and characterization of lung
nodules and malignant growth using imaging strategies.
Finally, this survey coordinates a few open exploration
challenges and opportunities for future scientists. We agree
that this review serves as an essential guide for researchers
who need to work with clinical image characterization using
artificial intelligence-based lung nodules and cancer analysis
while using various clinical images. Table 1 shows a cor-
relation between the existing surveys and our survey. Table 2
provides a summary of recent surveys and reviews that have
been conducted on various approaches for the detection,
segmentation, and classification of lung cancer.

The survey discusses the findings of various related re-
search work areas like nodule classification, nodule identifi-
cation, lung cancer detection, lung cancer verification, and so

on. While looking at the present challenges, this study gen-
erates suggestions and recommendations for further research
works. The total contributions of the research are as follows:

(i) The article gives an intelligible review of detecting
systems of lung nodules and cancer.

(ii) The article inspects lung nodule and cancer-
detecting procedures depending on the existing
systems, datasets, image preprocessing, segmenta-
tion, feature extraction, and selection techniques.
Further, the paper exploits the benefits and limi-
tations of those systems.

(iii) The article gives the procedures to detect lung
nodules and cancer in a well-organized way.

(iv) Finally, the survey adapts the present challenges of
lung nodules and cancer detection systems, with
further research on pathological diagnosis.

After going through this division, one should adapt how
to get started with this topic.

The remaining sections of the paper are organized as
follows. The methodology of the survey is described in
Section 2. Various categorized datasets obtainable publicly
are displayed in Section 3. Imaging modalities are briefly
described in Section 4. Section 5 describes the preprocessing
algorithm of the image dataset of lung cancer and nodules.
Section 6 discusses the segmentation process and algo-
rithms. Section 7 discusses the most commonly used al-
gorithms for extracting features from CT scans, X-rays, and
MRI images. Section 8 discusses the most commonly used
methods for feature selection. Section 9 discusses the well-
known classification and detection algorithms. A compre-
hensive exploration of the performance for lung cancer and
nodule detection is discussed in Section 10. The challenges
faced most commonly while detecting lung nodules and
cancer are explained with their possible solutions in Section
11. Lastly, the conclusion of this article is given in Section 12.

2. Survey Methodology

The survey is analyzed following a process developed by
Kitchenham [40, 41] called systematic literature review
(SLR). This article divides the SLR processes into three
different parts: the planning phase, the conducting phase,
and the reporting phase. In the subsequent sections, the steps
are discussed in detail.
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FIGURE 2: A taxonomy of Al-based lung nodule and cancer diagnosis.

TaBLE 1: A comparison of different surveys based on lung nodules and cancer detection.

Ref [27] [28] [29] [30] [31] [32] [33] [34] [35] Ours

Survey
Year 2018 2019 2019 2020 2020 2020 2020 2021 2021 —

Taxonomy
Dataset
Image preprocessing
Feature extraction
Segmentation
Feature selection
Image modalities
Evaluation metrics
Challenges
Machine learning

Al based Deep learnin CNN
P & Other

X XXX XN N XN N X
% UN NN XN X XN X
M XNN N XX X XN X
XU XUN X NN XN X
U X NN XX U X
U U XN UX NN XN X
AN N NENENEN
TUXUXCUULCNNN %
TN X XOXUN N XN X
ASANENENENE N N N S NN

TaBLE 2: A summary of recent surveys/reviews on various lung cancer detection, segmentation, and classification techniques.

Ref. Purposes Challenges

. . . lizati ili lem for learning- hods. I
Deep learning techniques are used to detect, segment, and classify Generalization ability problem for learning-based methods. It

[36] pulmonary nodules in CT scans happens because of the different training datasets and the
methods.
. . . . . Probl ith th alizabili d explication of th
A comprehensive analysis of deep learning with convolutional rovlems wi ¢ generalizabllity and expiication of the
[29] . detection results, lack of accurate clinical decision-making tools,
neural network (CNN) methods and their performances .
and well-labeled medical datasets
The review of recent studies in lung nodule detection and fe . . . .
e . Lo . Low sensitivity, high false positive rate, time-consuming, small
[30] classification provides an insight into technological
database, poor performance rates, and so on
advancements
[4] A comparison of various machine learning-based methods for Mainly focuses on machine learning techniques for classification

detecting lung cancer has been presented rather than other processes. Also avoid the MRI type data.
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TaBLE 2: Continued.

Ref. Purposes Challenges
31] Review of recent deep learning algorithms and architectures for The data and the unbalanced nature of it are the current
lung cancer detection limitations
The size of the target object within the image makes it difficult to
. . . impl ; as the size of th j ies, i
[37] Discussing the most recent developments in the field implement a CNN as the size of the target object vanes studies
proposed training the model with images of varying scales to
teach the model about this size variation
1 . . . o Incorporating knowledge from clinical and biological studies into
Providing an accurate diagnosis and prognosis is essential in lung . [ - . .
[38] deep learning methods and utilizing and integrating multiple

(27]

(35]

cancer treatment selection and planning

Algorithms used for each processing step are presented for some
of the most current state-of-the-art CAD systems
An overview of the current state-of-the-art deep learning-aided
lung cancer detection methods, as well as their key concepts and
focus areas
A summary of existing CAD approaches for preprocessing, lung
segmentation, false positive reduction, lung nodule detection,
segmentation, classification, and retrieval using deep learning on

CT scan data

[39] nodules will help radiologists make better diagnoses

A survey of what CADe schemes are used to detect pulmonary

medical imaging methods
Limitation of more interactive systems that allow for better use of
automated methods in CT scan analysis

Limited datasets and high correlation of errors in handling large
image sizes

Deficient data annotation, overfitting, lack of interpretability, and
uncertainty quantification (UQ)

Slight increase in lung density and micronodules whose diameters
are less than 3 mm are difficult to detect. For multimodality,
clinical records and medical images are not combined.

2.1. Planning the Review. This section discusses the planning
for creating this review article in detail. The following topics
are elaborated upon in the next section. The first is the
research topic, the second includes the review materials’
sources, and the third includes the inclusion and exclusion
criteria.

2.1.1. Research Questions. The basic research questions were
as follows:

(1) RQ1l: what is the importance of lung cancer
detection?

(2) RQ2: what type of image modalities is used for lung
cancer detection?

(3) RQ3: which datasets are usually used in lung cancer
detection?

(4) RQ4: what are the most used algorithms for feature
selection and extraction, segmentation, classifica-
tion, and detection?

(5) RQ5: which evaluation matrices are used for lung
cancer detection to evaluate the system?

(6) RQ5: what are the current challenges and limitations
of the existing research and the scope of potential
future research for lung cancer detection?

2.1.2. Source of Review Materials. The survey only looks at
high-quality academic articles from MDPI, ScienceDirect,
SpringerLink, IEEE Xplore, Hindawi, ACM Digital Library,
etc. and papers from well-known conferences.

2.1.3. Inclusion and Exclusion Criteria. The most important
information for this survey is collected using PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses), which is shown in Figure 3. Table 3 shows

the criteria that PRISMA uses to choose which studies to
include and which ones to leave out. In addition, this table
shows how to select a paper based on certain criteria and
standards, which criteria are used, and whether the article is
initially accepted or rejected.

2.2. Conducting the Review. This section explains how the
necessary information is extracted from the articles. Five
subphases are addressed to get the most important infor-
mation and conduct a structured literature review.

2.2.1. Topical Relationship. This section describes how the
articles selected for this survey connect to the others. Fig-
ure 4 shows a word cloud comprised of the papers” keywords
and the most important terms from their titles. It indicates
how closely the selected articles are connected.

2.2.2. Aims and Outcomes. Objectives, contributions, and
challenges of different useful articles are presented in Sec-
tions 1 and 11.

2.2.3. Evaluation Metrics. All the evaluation matrices used
for evaluation are explained in Section 10.

2.2.4. Research Type. It indicates the type of documents,
such as an academic journal, conference or workshop
proceeding, book chapter, or thesis.

2.2.5. Publication Year and Type. At the start of this project,
610 papers were gathered from different sources, and 423
were chosen for the survey. More than 90% of these articles
were published between 2010 and 2021. Therefore, we used
more recent articles to update this review.
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TaBLE 3: The criteria used to choose which review articles to include and which ones to exclude.
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IC4: published articles between the years 2000 and 2022 (in the survey, a few old papers are used for a specific purpose)
IC5: articles being available with full text

EC1: not fitting with the theme of the review
EC2: duplicate articles
Exclusion EC3: low-quality papers
EC4: lack of enough information
ECS5: full text not available
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2.3. Outcome. Finally, the obtained information is exam-
ined, existing issues and difficulties are addressed, and future
research opportunities are presented.

3. Dataset

There are many frequently used datasets that researchers
use for lung cancer diagnosis. From Table 4, it can be seen
that the CT scan is currently the most reliable method for
gathering data on nodule detection in lung cancer. X-rays
and MRIs are also used to detect lung cancer and nod-
ules. CT scan is used because it is a confined method that
can handle most datasets well. CT scans provide a
comprehensive approach for storing data for various
reasons. First, the information must be procured and put
away by some members or patients. It is unacceptable to
have the same storing plan for different patients to get
data. After the patients are prepared, individuals have to
lie down on a table and go through a passage-like ma-
chine that will catch and gauge data. For some time, this
data collection strategy has been in place, with a specific
recording period dictated by the work’s motivation. The
data saved in these sessions and recordings are primarily
lung nodule images estimated by blocks established in
CT scans, X-rays, or MRI. CT scans, X-rays, or MRIs
differ from one member to the next and from one session
to the next. In this segment, the datasets are portrayed,
just as the subjects and X-ray cylinder, indicators, and
sessions.

4. Imaging Modalities

Imaging is vital for the analysis and treatment of lung
nodules and cancer. Hence, this research exhibits that lung
cancer analysis relies upon seven particular classifications of
clinical imaging modalities. CT scan, Xray, MRI, ultrasound
(US), positron emission tomography (PET) scan, and single-
photon emission computed tomography (SPECT) are the
seven clinical imaging modalities, and their combination is
known as multimodalities. The CT scan is the most basic and
widely used imaging modality in lung imaging. As per
Table 4, most of the work was done in computed tomog-
raphy (CT) scan images. The second-highest number of
studies delivered is for X-ray images and MRI [103-106].
Another imaging technique known as a chest radiograph is
an expensive method with limited accessibility. These should
be the reasons for the lower adaptivity of chest radiographs
in research, as this imaging strategy was used in a small
number of examinations [107, 108]. Ultrasound (US) and
PET scan imaging strategies were utilized distinctly in a
couple of studies [109-111]. The SPECT imaging strategy has
acquired prevalence as of late in lung nodule classification
and malignant growth recognition. Because the thermogram
dataset is not publicly available, a couple of studies used this
imaging strategy [112]. Unfortunately, none of the re-
searchers used histopathology. The well-known imaging
strategies are depicted in greater detail in the following
section.

4.1. X-Ray. A type of high-energy radiation, like electro-
magnetic waves, is called X-ray. An X-ray is also called
X-radiation. X-ray imaging makes images of the inside of the
human body. It shows the parts of the body in different
shades of black and white [113]. The soft tissues in the
human body, such as blood, skin, and muscle, absorb the
majority of the X-ray and allow it to transit, resulting in dark
gray areas on the film. However, a bone or tumor, which is
thicker than soft tissue, prevents most X-rays from passing
through and appears white on the film [104]. Gavelli and
Giampalma [114] used X-ray images to detect lung cancer.
They calculate the sensitivity and specificity for evaluating
the outcome.

4.2. CT Scan. A computed tomography (CT) scan is a
medical imaging method utilized in radiology to get com-
prehensive body images for diagnostic purposes. It merges a
series of X-rays taken from various viewpoints around the
body and makes cuts on the bones, veins, and delicate tissues
inside the body [115]. CT scans point out a cross section of
the body part like bones, organs, and soft tissues more clearly
than standard X-rays because normal X-rays are done in two
directions. It depicts the structure, size, and location of a
tumor [116]. CT scans are more detailed than standard
X-rays in identifying cross sections of body parts such as
bones, organs, and delicate tissues [117]. In 2018, Makaju
et al. [51] used CT scan images to detect lung cancer. Using
their proposed model, they attempted to achieve 100% ac-
curacy. Zheng et al. [118] also used CT images to detect lung
cancer and inflammatory pseudo-tumor.

4.3. Magnetic Resonance Imaging (MRI). MRI is a clinical
imaging technique that utilizes radiofrequency signals to
create point-by-point images of the organs and tissues in the
body. MRI scanners use solid magnetic fields, magnetic field
gradients, and radio waves to generate images of the organs
in the body [119]. MRI creates images of soft tissues in the
human body that are often difficult to see with other imaging
techniques. As a result, it is highly effective at detecting and
locating cancers. It also generates images that allow spe-
cialists to see the location of a lung tumor and estimate its
shape and size. A specific dye named a contrast medium is
applied to create a better image before the scan [106].
Cervino et al. [120] tried to track lung tumors by performing
ANN in MRI sagittal images. The mean error was 7.2 mm
using only TM and 1.7mm when the surrogate was com-
bined with TM.

4.4. Positron Emission Tomography (PET) Scan. PETscanisa
helpful imaging method that uses radioactive substances
known as radiotracers to envision and measure changes in
metabolic cycles and other physiological activities, in-
cluding circulation system, regional compound course of
action, and absorption [121]. In addition, PET scan is a
diagnostic tool that helps doctors detect cancer in the body.
The scan employs a unique shading technique that includes
radioactive tracers. Depending on which part of the body is
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TaBLE 4: Different types of datasets of lung.

Dataset name Image type Used in Unit Link
LIDC-IDRI CT scan images [7, 19, 22, 23, 31, 42-60] 1018 [61]
CT scan (which was gathered from LIDC-IDRI

LUNAI6 with slice thickness less than 3 mm) [18, 19, 42, 44, 49, 57, 60, 62-84] 888 [15]
NSLT Low-dose CT images and chest radiographs [85, 86] 3410 [87]
The Cancer Imaging . 3.3 million

Archive (TCIA) All kind of CT scan and X-ray [50, 88-96] images [97]
Society of Radiological X-ray [98-102] 154 [100]

Technology (JSRT)

being examined, these tracers are either swallowed,
ingested, or implanted into a vein in the arm [122]. The
PET scan utilizes a mildly radioactive medication to appear
in spaces of the body where cells are more dynamic than
regular cells. It is used to assist with diagnosing a few
conditions, including malignant growth [123]. It can also
help determine where the cancer has spread and whether or
not it has spread. Because malignant growth cells have a
higher metabolic rate than normal cells, they appear as
bright spots on PET scans. Lung cancer is the bright spot in
the chest that can be seen best on PET and PET-CT images
[124]. Weder et al. [111] tried their model in PET scan and
got a positive predictive value of 96%.

4.5. Single-Photon Emission Computed Tomography (SPECT).
SPECT is an atomic medication tomographic imaging
method utilizing gamma rays. It is similar to traditional
nuclear medicine planar imaging with a gamma camera, but
it can provide accurate 3D data. However, it can provide
accurate 3D data [125]. A SPECT scan is a test that shows
how bloodstreams connect to tissues and organs [126].
Antibodies (proteins that recognize and adhere to cancer
cells) can be linked to radioactive substances. First, assuming
a tumor is available, the antibodies will be attached to it.
Then, at that point, a SPECT output should be possible to
recognize the radioactive substance and uncover where the
cancer is found [127].

4.6. Multiple Modalities. Multiple modalities are considered
an educational approach used to relieve the stress of re-
searchers [128]. It entails giving various introductions and
experiences of the substance to utilize multiple senses and
abilities in a single example. Numerous modalities fre-
quently cater to different learning styles [129]. Modalities
can be performed using a combination of chemotherapy and
radiation therapy. Concurrent chemoradiotherapy is the
simultaneous administration of chemotherapy and radiation
therapy [130]. Farjah et al. [131] implemented single, double,
and tri-modality in their research. They conducted a CT scan
for single modality, CT scan or PET scan with invasive
staging for bi-modality, CT scan, PET Scan, and invasive
stage for tri-modality.

The advantages and disadvantages of these image mo-
dalities are described in Table 5.

5. Image Preprocessing

Image preprocessing organizes images before they are used
in model preparation and induction. The goal of pre-
processing is to improve the quality of the image so that it
can be investigated more thoroughly [132]. It includes, but is
not limited to, rectifications for resizing, arranging, and
shading [133]. As a result, in some cases, a change that could
be an expansion may be better served as a preprocessing step
in others.

5.1. Histogram Equalization. There are two different ways to
contemplate and carry out histogram leveling, either as
picture change or as range change [134]. Much of the time
range change is preferable because it protects the initial data
[135]. It is employed in image analysis. To produce a high
contrast image, the gray level intensities are expanded along
the x-axis [136]. Asuntha and Srinivasan [137] used a his-
togram evening out to close the gap. Shakeel et al. [90]
changed differences in their dataset. Ausawalaithong et al.
[98] preprocessed their picture dataset with histogram
balance. It enhances the CT scan’s contrast; it spreads out the
most frequent pixel intensity values or stretches out the
intensity range of the scan. Let I be a given CT scan image
represented as a I, by I, matrix of integer pixel intensities
ranging from 0 to 256. Let N denote the normalized his-
togram bin of image I for available intensity.

I < number of pixels with available intensity n
N =

, (1)

total number of pixels

where n=0,1,...,255.

5.2. Median Filter Mask. The median filter is a non-straight
computerized separating strategy, regularly used to elimi-
nate roughness from an image or sign [138]. This type of
noise reduction is a common prehandling step used to work
on the aftereffects of later preparation. The median filter is a
sifting procedure used to remove noise from images and
signals [139]. The median filter is essential in image pro-
cessing because it protects edges during clamor expulsion. It
is broadly utilized as it is best at eliminating commotion
while safeguarding borders [140]. Tun and Soe [141] used
and claimed the median filter mask to be the best filter for
their research. Shakeel et al. [142] and Ausawalaithong et al.
[98] used a median filter mask in preprocessing their dataset.
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TaBLE 5: Advantages and disadvantages of imaging modality methods.

Methods Advantages Disadvantages
Harmlessly and easily helps to analyze sickness and It can harm cells H.l the quy, which thus can bull.d
X-ray the danger of creating malignant growth. CT scan is
screen treatment
better than X-ray.
It is easy, painless, and precise. It has the capacity to
CT scan picture bone, delicate tissue, and veins all It requires breath holding and radiation which is

simultaneously. It gives point-by-point pictures of

many kinds of tissue.

difficult for a few patients

It does not include radiation and is more averse to

Magnetic resonance
imaging (MRI)

Positron emission
tomography (PET) scan
Single-photon emission
computed tomography
(SPECT)

covering structures

deliver an unfavorably susceptible response that might
happen when iodine-based substances are utilized for
X-beams and CT checks
It diminishes the quantity of examining meetings a
patient should go through

It tends to be seen in various planes and to isolate

The time required for an MRI is longer than CT.
Additionally, MRI is typically less inclined to be
quickly accessible than CT.

Slow developing, less dynamic cancers may not
assimilate a lot of tracer

It has significant expense and less accessibility

Asuntha and Srinivasan [137] reshaped and resized their
data with a median filter. Sangamithraa and Govindaraju
[143] used the median filter mask in image preprocessing to
detect lung nodules. It moves through the lung images pixel
by pixel, replacing each value with the median value of
neighboring pixels. It can save sensitive components in a
picture while filtering noise, and it is good at eliminating
“salt and pepper” type noise.

5.3. Gaussian Filter. A Gaussian filter is a filter whose re-
sponse is based on a Gaussian capacity [144]. This effect is
widely used in design software, usually to smooth out images
and reduce detail [145]. Gaussian noise, also known as
Gaussian distribution, is a factual noise with a possible
thickness equivalent to ordinary conveyance. This roughness
is produced by combining irregular Gaussian capacity with
image capacity [146]. This roughness can be eliminated by
using a linear filter, as it is an ideal way of eliminating
Gaussian roughness. Riquelme and Akhloufi [31], Teramoto
et al. [147], and Rossetto and Zhou [148] used Gaussian
filters to preprocess their image dataset. Ausawalaithong
et al. [98], Hosny et al. [149], and Shakeel et al. [150] also
utilized this filter to reshape their dataset and use those from
detecting lung nodules. Al-Tarawneh [151] and Avanzo et al.
[152] used CT scans and preprocessed them with the
Gaussian filter. Asuntha et al. [153], Wang et al. [154], Sang
et al. [65], and Ozdemir et al. [42] smoothed and preserved
edges with the Gaussian filter. Fang [155] and Song et al.
[156] applied the Gaussian filter on the LUNA16 [15] dataset
to detect lung cancer. The effect of Gaussian smoothing is to
blur CT scans of the lung similar to the mean filter. The
standard deviation of the Gaussian determines the degree of
smoothing. Gaussian blurring the CT image minimizes the
amount of noise and reduces speckles.

(i) In 1D:

1 2
g (x) = mexp (—:—02). (2)

(i) In 2D:

G,(x,y) =

| 2,2
S exp (_x 2)/ ), (3)

2no 20

where ¢ is referred to as standard deviation of the
distribution. The mean of the distribution is con-
sidered as 0.

5.4. Wiener Filter. The Wiener filter is the MSE-ideal fixed
straight filter for images corrupted by added substance
clamor and obscuring. Wiener filter works when the sign
and roughness measures are assumed to be fixed [157].
Sangamithraa and Govindaraju [143] removed the added
substance noise while also modifying the obscuring. In terms
of the mean square error, Wiener filtering is ideal.It is used
to measure a perfect or arbitrary target interaction by
straight time-invariant sifting of a detected noisy cycle,
expecting to know fixed sign and noise spectra, and adding
substance noise. [158]. It restricts the overall mean square
error during backward sifting and commotion smoothing. It
removes the additive noise and inverts the blurring simul-
taneously in lung images. It eliminates the additive noise,
transforms the obscuring, and limits the general mean
square error during inverse filtering and noise smoothing.
The Wiener sifting is a direct assessment of the first picture
[159].

5.5. Gabor Filter. A Gabor filter is a straight filter used in
image processing for surface analysis, which means it de-
termines whether or not there is a specific recurrence
content in the lung images in explicit terms in a restricted
district surrounding the point or region of examination
[160]. It investigates whether there is a particular recurrence
content. It has gotten significant consideration as it takes
after the human visual framework. It is a neighborhood
operation in which the value of any given pixel in the output
lung scan is determined by applying some algorithm to the
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importance of the pixels in the neighborhood of the cor-
responding input pixel. To remove noise from the dataset,
Mary and Dharma [161] used the Gabor filter.

2 22
uy+yu
F(u,,u,) = exp <—(1);2)> X cos (2771111),

20
R _ (4)
0, = uy cos O+u,sin 6,
i, = —uysin 6+ u,cos 6,

where A means the wavelength of the sinusoidal factor, 6
represents the orientation of the normal to the parallel
stripes of a Gabor function, o is the sigma/standard devi-
ation of the Gaussian envelope, and y is the spatial aspect
ratio and specifies the ellipticity of the support of the Gabor
function.

5.6. Isotropic Voxel. Voxel is short for volume pixel, the
littlest recognizable box-formed piece of a 3D picture. It
could be compared to the 2D pixel [162]. The voxel size on
CBCT images is isotropic, meaning that all sides are of the
same size and have a uniform goal in every direction. The
voxel technique was used by Nagao et al. [163] and Wang
et al. [164] to reduce sharp noises and classify lung cancer.
This method was also used by Quattrocchi et al. [165] to
reshape their dataset to detect breast cancer and lung cancer.

5.7. Thresholding. Thresholding is a non-linear operation
that changes a grayscale image into a binary image in which
the two levels are allocated to pixels that are either below or
above the set threshold value. It mainly converts an image
from shading or grayscale into a twofold picture [166].
Thresholding is used to convert a low-contrast lung scan to a
high-contrast lung scan. Thresholding is also a very effective
tool in image segmentation. Its purpose is to convert
grayscale images to binary format [151]. It takes the colorful
or grayscale lung scans and turns them into binary scans. It
diminishes the intricacy, works on acknowledgment and
grouping, and changes the pixels to simplify the picture.

5.8. Binary Inversion. High-contrast picture reversal is a
picture handling strategy where light regions are planned to
dim, and dull areas are scheduled to light. A rearranged
high-contrast picture can be considered an advanced neg-
ative of the first picture. Sharma et al. [167] used binary
inversion to reduce noise from image datasets.

5.9. Interpolation. Image interpolation happens when one
resizes or contorts one’s image, starting with a one-pixel grid
and then onto the next. Zooming refers to increasing the
number of pixels in an image so that the image’s details can
be seen more clearly [168]. Interpolation is a well-known
method for surveying dark characteristics that lie between
known characteristics [169]. Interpolation is a course of
deciding the obscure qualities in the middle of the realized
information focus. It smooths, enlarges, or averages CT
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scans displayed with more pixels than that for which they
have initially been reconstructed. It is used to foresee ob-
scure qualities. It forecasts values for cubic in a raster. It is
generally used to foresee the obscure qualities of any geo-
logical information, such as commotion level, precipitation,
rise, and so on. The most common way to use test points with
known qualities to figure out prices at other unknown issues
is by insertion [170]. It could be used to predict dark
characteristics for any geographic point data, such as height,
precipitation, substance obsessions, disturbance levels, and
so on [171]. Several insertion strategies have previously been
reported. The broadly utilized strategies are the nearest
neighbor, bilinear, bicubic, b-splines, lanczos2, and discrete
wavelet transform. Lehmann et al. [172] and Zhao et al. [173]
used interpolation in their dataset to detect nodules in the
lungs. Liu et al. [58] used interpolation in CT scans and
cleared noise, and Cascio et al. [174] used interpolation in
3D images to reduce noise.

5.10. Synthetic Minority Oversampling Technique (SMOTE).
SMOTE is an oversampling procedure that permits us to
produce manufactured examples for our minority classes
[175]. It is an oversampling method that creates fabricated
models for the minority class. This computation aids in
overcoming the overfitting problem caused by unpredict-
ability in oversampling [176]. The imbalanced arrangement
has the disadvantage of having too few instances of the
minority class for a model to become comfortable with the
choice limit [177]. Oversampling models from the minority
class are regarded as one solution to this problem [178]. It
randomly chooses a minority class instance and finds its k
nearest minority class neighbors. The fabricated occasion is
then created by arbitrarily selecting one of the k nearest
neighbors b and coupling a and b to frame a line segment in
the component space. The manufactured examples are made
by mixing the two chosen occurrences, a and b [179]. While
restructuring the information with SMOTE, Chen and Wu
[180] found the risk factors. Patil et al. [181] utilized it to
smooth textures and minimize noise. Wang et al. [182]
employed SMOTE to remove borderlines.

5.11. Contrast Limited Adaptive Histogram Equalization
(CLAHE). Contrast limited AHE (CLAHE) is a variation of
versatile histogram in which the differentiation enhance-
ment is restricted to diminish this issue of clamor intensi-
fication [183]. It is utilized further to develop hazy pictures
or video ability levels. It works on little districts in images,
called tiles. The adjacent tiles are then consolidated using bi-
linear insertion to remove the erroneous limits [184].
CLAHE calculation differs from standard HE in that CLAHE
works on small areas of the image called tiles and registers a
few histograms, each comparing to a specific segment of the
image and using them to rearrange the advantages of the
picture [185]. In CLAHE, the differentiation enhancement
near given pixel value is provided by the incline of the
change work [186]. Punithavathy et al. [187], Bhagyarekha
and Pise [188], and Wajid et al. [189] used CLAHE as image
preprocessing methodology. Technically, CLAHE does this
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by setting a threshold. If some gray levels in the lung scan
exceed the threshold, the excess is evenly distributed to all
gray levels. After this processing, the lung scan will not be
over-enhanced, and the problem of noise amplification can
be reduced.

Table 6 shows the pros and cons of these image pre-
processing techniques.

6. Segmentation

Lung nodule segmentation is a crucial process designed to
make the quantitative assessment of clinical criteria such as
size, shape, location, density, texture, and the CAD system
more manageable and more efficient [196-198]. However,
because of their solidity, location, or texture, lung nodules
such as juxta-pleural (nodules directly attached to the
pleura’s surface), juxta-vascular (nodules connected to
vessels), and ground-glass nodules can be challenging to
remove. Deep learning-based segmentation is a pixel-by-
pixel categorization technique used to calculate organ
probability [30]. This method is divided into two stages: the
first is the creation of the probability map using CNN and
image patches and the second is the refinement of the
probability map using the general background of images and
the probability map [196].

6.1. Watershed. Watershed segmentation is a technique for
segmenting watersheds that use image morphology [199]. It
requires the selection of at least one marker (“seed” point)
within each image object, including the background as a
separate object. The markers are picked by an operator or
provided by an automatic mechanism that considers the
object’s application-specific information. A morphological
watershed transformation helps to grow them after marking
the items [200]. After the lung image preprocessing, noise is
removed, images are smooth, and features are enhanced.
Watershed is used in lung segmentation to identify the
various regional maxima and minima [201].

6.2. U-Net. The U-Net [202] architecture is the most used
architecture for medical image segmentation, and it signifi-
cantly improves process performance. The fundamental parts
of the U-Net are association of convolution layers in the
contracting path and deconvolution layers in the expansive
direction. It includes a contraction method for capturing
anatomical structure and an asymmetrical expansion method
for precise localization [28]. U-Net has enabled the seg-
mentation process to form a spatial context at several scales
despite the challenges of collecting both global and local
contexts. As a result, it may be trained from end to end using
only a small quantity of training data [28]. Convolution layers
with rectified linear units and max-pooling layers make up the
contracting route, similar to the classic architecture of a
convolutional neural network. On the other hand, the
expanding method entails sampling the feature map, followed
by up-convolution and convolution layers using ReLU. Be-
cause of the loss of border pixels at each convolution, the
extracting path’s matching feature map must be cropped and

11

concatenated with equivalent layers in the expensive direction
[53]. The input photos and their respective masks are utilized
for training the U-Net during the training phase. A lung image
is supplied as input to generate the appropriate mask output
during the testing phase. The mask is then applied to the
relevant image to segment the area of interest, in this case,
lung parenchyma [202].

6.3. Multiview Deep Convolutional Neural Network
(MV-CNN). The multiview deep convolutional neural
network (MV-CNN) [203] architecture for lung nodule
segmentation is a CNN-based architecture that proposes to
transform lung nodule segmentation into CT voxel classi-
fication. The MV-CNN comprises three branches that
process voxel patches from CT images in axial, coronal, and
sagittal views. To obtain the voxel label, the three branches all
have identical structures, including six convolutional layers,
two max-pooling layers, and one fully connected layer. In
addition, a parametric rectified linear unit (PReLU) [204] is
implemented as a non-linear activation function after each
convolutional layer and the first fully connected layer, and
batch normalization is used for training acceleration [205].

6.4. Central Focused Convolutional Neural Network (CF-
CNN). The central focused convolutional neural network
(CFCNN) [206] architecture includes three-dimensional
and two-dimensional CT imaging views for lung nodules
and cancer segmentation. It uses a CT image to extract a
three-dimensional patch and a two-dimensional different
plate patch self-contained on a single voxel as input to the
CNN [207] model, which predicts whether the voxel belongs
to the nodule or healthy tissue class. After feeding all voxels
into this CNN model, a probability map assigns each voxel a
probability of belonging to a nodule.

6.5. Fuzzy C-Means (FCM). The FCM algorithm [208] is one
of the most extensively used fuzzy clustering methods. Data
elements can belong to multiple clusters in fuzzy clustering,
and each part has a set of membership levels associated with it.
It uses a CT image to extract a three-dimensional patch and a
two-dimensional different plate patch self-contained on a
single voxel as input to the CNN [207] model, which predicts
whether the voxel belongs to the nodule or healthy tissue class.
After feeding all voxels into this CNN model, a probability
map assigns each voxel a probability of belonging to a nodule.

6.6. Hessian-Based Approaches. Image enhancement is
performed on voxels in Hessian-based strategies to acquire
the 3D Hessian matrix for each voxel and calculate the
relevant eigenvalues. These eigenvalues are used to locate
and segment lung nodules in a subsequent step. To begin,
multiscale smoothing is used to reduce noise in the image
and make nodule segmentation easier. Following that, the
3D Hessian matrix and associated eigenvalues are computed,
and the results of each method are combined to produce the
segmentation masks [209].
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TaBLE 6: Advantages and disadvantages of image preprocessing methods.

Algorithms Advantages Disadvantages

Histogram It is a versatile strategy to the picture and an invertible It is not the best technique for contrast improvement

equalization [190]

Median filter mask
(10]

Gaussian filter
[191]

Wiener filter [192]

Gabor filter [151]

Isotropic voxel
[193]

Thresholding [142]

Binary inversion
[194]

Interpolation [195]

SMOTE [179]

CLAHE [187]

administrator. It can be recuperated and expands
differentiation of pictures.
It can save sharp components in a picture while filtering
noise, and it is good at eliminating “salt and pepper” type
noise

Its Fourier change has zero recurrence. It is broadly utilized
to diminish picture noise and lessen detail.

It eliminates the additive noise, transforms the obscuring,
and limits the general mean square error during inverse
filtering and noise smoothing
It investigates whether there is a particular recurrence
content. It has gotten significant consideration as it takes
after the human visual framework.

It is the fastest approach and a “precise” 3D structure block,
as it copies particles and opens new reproduction
procedures
It diminishes the intricacy, works on acknowledgment and
grouping, and changes the pixels to make the picture
simpler
CT scans were converted into black and white to detect the
nodules as binary inversion will get the dark part as black
which means 1
It is used to foresee obscure qualities. It forecasts values for
cubic in a raster.

It is an oversampling procedure and is powerful to handle
class awkwardness. It assists with conquering the overfitting
issue.

The adjoining tiles are joined using bilinear expansion to

and is unpredictable. It expands the contrast of
foundation noise.

It separates picture edges and produces false noise edges
and cannot smooth medium-tailed noise dissemination

It decreases subtleties and cannot deal with “salt and
pepper” noise. It sometimes makes all parts blue and
obscures the objects.

It is hard to acquire ideal rebuilding for the noise,
relatively delayed to apply as working in the recurrence
area

It requires huge investments. It has a high excess of
provisions.

It is hard to fabricate complex articles utilizing voxels. It
does not have numerical accuracy.

There is no assurance that the pixels distinguished by
the thresholding system are bordering

It is not a clear form to detect nodules and it has a huge
chance to miss the nodules

It obscures the edges when the decreased proportion is
less
It can build the covering of classes and present extra
commotion. Often it does not constrict the
predisposition.

Any commotion that might be accessible in the picture

take out incorrect representation incited bounds

6.7. SegNet + Shape Driven Level Set. SegNet [210], a deep,
fully convolutional network architecture, is used for coarse
segmentation because it is designed primarily for pixelwise
semantic labeling. A high-level network model SegNet is a
network composed of encoders and decoders. SegNet is a
preconfigured segmentation solution for a variety of medical
imaging applications [211, 212]. A batch of lung field images
is used during the training phase to feed the deep network.
The output of CNN is used to initialize the level set function
for lung nodule segmentation. The authors [213] used shape
information as the primary image feature to guide the
evolving shape to the intended item border.

6.8. Faster R-CNN. Faster R-CNN [214] is an improvement
on the previous Fast R-CNN [215]. As the name implies,
Faster R-CNN is much faster than Fast R-CNN due to the
region proposal network (RPN). The model comprises two
parts: the RPN and the Fast R-CNN. The input image is first
subjected to convolution and pooling operations via the
basic feature extraction network to obtain the image’s fea-
ture map. After that, the feature map is transmitted to the
RPN network, which performs preliminary border regres-
sion and classification judgment on the image. As the
foundation for categorizing, the candidate frame is classified
based on the background or object to be recognized. The
RPN outputs the candidate frame’s position and score

information, and then they are sent to the Fast R-CNN for
final processing by the fully connected layer. They are the
final regression of the frame and the specific categorization
of the object to be recognized in the final regression. First,
ConvNet [216] is used to extract feature maps from lung
pictures. Next, these are fed into RPN, which returns the
candidate bounding boxes. The ROI pooling layer is then
applied to reduce the size of the candidates. Finally, the
proposals are transferred to a fully linked layer to obtain the
final lung segmentation result [217].

6.9. Mask R-CNN. Mask R-CNN [80] is a compact and
adaptable generic object instance segmentation system. It
recognizes targets in images and provides high-quality
segmentation results for each target. Mask R-CNN is divided
into two sections, the first of which is RPN. It is a new
network developed by Faster R-CNN [214] that replaces the
previous R-CNN’s selective search approach [215], and Fast
R-CNN [215] integrates all content into a single network,
significantly improving detection speed. The second stage
features two concurrent branches, one for detection and the
other for classification and bounding box regression. The
mask branch is used for segmentation. The preprocessing
program receives raw lung image sequences and generates
2D images before processing basic images such as coordinate
transformation, slice selection, mask generation, and
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normalization. Then, it is used in the detection and seg-
mentation module to detect and segment the locations and
contours of expected pulmonary nodules [218].

6.10. Robust Active Shape Model (RASM). Biomedical photos
typically feature complicated objects that fluctuate signifi-
cantly in appearance from one image to the next. It can be
challenging to measure or recognize the existence of specific
structures in such photos. The RASM [219] is trained using
hand-drawn contours in training images. It employs prin-
cipal component analysis (PCA) to identify critical variances
in the training data, allowing the model to automatically
determine whether a contour is a potentially excellent object
contour [220, 221]. It also includes matrices that describe the
texture of lines perpendicular to the control point; these are
utilized to rectify positions during the search stage. The
contour is deformed by finding the best texture match for the
control points when the RASM is created. The movement of
the control points is limited by what the RASM perceives as a
“normal” object contour based on the training data in this
iterative procedure. Then, PCA determines the formation’s
mean appearance (intensities) and variances in the training
set. For example, the outline of the lungs is approximately
segmented from lung images using a robust active shape
model matching technique [222].

6.11. Region Growing. Growing a region is a bottom-up
process that starts with a set of seed pixels [223]. The goal is for
each seed to establish a uniformly connected zone. Intensity
indicates that the measurement is used to grow a region from
a seed point and to segment it. As each unallocated nearby
pixel in the area is compared, the region’s size increases. To
compute similarity, the difference between the intensity value
of a pixel and the region’s mean is used. The pixel is assigned
to the area, and the minor difference is calculated. The op-
eration is terminated when the intensity difference between
the region means and the new pixel exceeds a predetermined
threshold. Each pixel’s intensity values are compared to those
of its neighbors starting with the seed, and if they are within
the threshold, the pixel is labeled as one [219]. Next, an image
of a tumor-bearing lung is uploaded. The growth’s starting
point (pixel) coordinate is established, and the base value
stores the selected point’s color intensity. Next, the initial pixel
is stored in an array’s coordinates. The process continues until
all pixels are eligible and the queue is full. The tumor tissue
refers to all pixels in the points array that create a surface. The
outermost pixels are also introduced as the tumor boundary,
which is curved [224].

Table 7 shows the pros and cons of segmentation
methods.

7. Feature Extraction

Feature extraction is a process that reduces an initial col-
lection of raw data into more manageable groups that are
easier to process [228]. It reduces the number of features in a
dataset by creating new ones from existing ones. The feature
extraction strategy provides new features that directly blend
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with the existing elements. When compared to the first
feature esteems, the new arrangement of elements will have
various qualities [229]. The main point is that fewer features
will be required to capture comparable data [230].

7.1. Type of Features. Some features need to be extracted and
selected to detect lung nodules and cancer more efficiently.
There are three kinds of features. If these features are re-
moved, the outcome can be boosted.

7.1.1. Shape-Based Feature. Shape features are significant
because they give an option in contrast to depicting an
object, utilizing its many attributes, and diminishing how
much data are put away. It is one of the most fundamental
characteristics of a mass. The irregularity of the mass’s shape
makes removal difficult [231]. It is classified into two types:
region-based techniques and contour-based techniques. A
curve estimation method, peak point characterization, and
peak line following calculation are all used. Local procedures
use the entire item region for its shape highlights, while
form-based techniques use data in an article. Shape high-
lights are classifications of a morphological part. Figure 5
shows the shape-based features very clearly.

7.1.2. Texture-Based Feature. The texture is used to segment
pictures into areas of interest and group those locales. It
refers to all spatial area variations and the selection of
general visual perfection or harshness of images. The texture
is defined as the spatial distribution of force levels in a given
area. They provide invaluable information about the un-
derlying object arrangements of action in a picture, as well as
their relationship to climate [231]. Texture-based features
are shown in Figure 6.

7.1.3. Intensity-Based Feature. Intensity refers to how much
light is emitted or the mathematical worth of a pixel. As
demonstrated by image feature intensity, it first requests
insights that rely upon individual pixel esteems. The in-
tensity of the light varies from pixel to pixel [231]. Therefore,
pixel intensity is the most easily accessible pattern recog-
nition component. Shading is typically addressed by three or
four-part intensities in a shading imaging system. The mode,
median, standard deviation, and variance of image intensity
can all be used to evaluate it. Figure 7 gives a clear view of
intensity-based features.

7.2. Feature Extraction Methods. The feature extraction
strategy gives us new elements, which are considered a
straight mix of the current features. The new arrangement of
features will have various qualities when contrasted with the
first feature esteems. The fundamental point is that fewer
features will be needed to catch similar data.

7.2.1. Radiomics. Radiomics is a strategy that separates an
enormous number of provisions from clinical pictures
utilizing information portrayal measurements [232].
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Algorithms Advantages Disadvantages

Watershed [225] Being able to divide an image into its components

U-Net [226] Images can be segmented quickly and accurately
No user-interactive parameters or assumptions
MV-CNN [203] about the shape of nodules are needed
CF-CNN [206] Gathered sensitive 1n.f0rmf1t10n about nodules from
CT imaging data
FCM [188] Ignored noise sensitivity limitation, successfully

overcoming the PCM’s clustering problem
High robustness against noise and sensitivity to
small objects
Correct seed point initialization with no manual
intervention in the level set
The efficiency of detection is high
Easy to train, generalizable to other tasks, effective,
and only adds a minor overhead
Well suited to large shape models and parallel
implementation allowing for short computation
times
The concept is simple, multiple criteria can be
selected simultaneously, and it performs well in
terms of noise

Hessian-based
approaches [209]
SegNet + shape driven
level set [213]

Faster R-CNN [214]

Mask R-CNN [218]

RASM [219]

Region growing [227]

Takes too long to run in order to meet the deadline,
sensitivity to false edges and over-segmentation
Redundancy occurs due to patch overlap, also relatively
slow

The loss of gradients may have an effect
Less adaptable for small nodules and cavitary nodules
Row sum constraints must be equal to one in order to work

Performance decreases for large nodule

Segments the lung nodule partly occluded, also takes a
longer time
It could take a long time to reach convergence
Low-resolution motion blur detection typically fails to pick
up on objects

Cannot segment areas with sharp angles and is not built to
handle juxta-pleural nodules

Computing is time-consuming. Noise or variation may
result in holes or over-segmentation, making it difficult to
distinguish the shading of real images.

Shape Based
feature

i

|

v '
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FIGURE 5: Shape-based features.
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FiGURE 6: Texture-based features.

Radiomic highlights may reveal growth examples and
qualities that the unaided eye does not recognize [233]. The
standard radiomic investigation includes the evaluation of
size, shape, and textural highlights that contain useful spatial
data on pixel or voxel circulation and examples [234].
Echegaray et al. [235], Vial et al. [236], and Pankaj et al. [237]
used the radiomics method for feature extraction. Mahon
et al. [238] used radiomic radiology to extract features.

7.2.2. Transfer Learning and Fine-Tuning. It first trains a
base network on a base informational index and undertakes
transfer learning. Afterward, it exchanges the learned
components to a subsequent objective organization to
prepare for objective informational collection and errand. It
trains a model on a dataset and uses it for preparing another
dataset [239]. Nishio et al. [240], Sajja et al. [159], and da
Nobrega et al. [241] used transfer learning for lung cancer.
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FIGURE 7: Intensity-based features.
Haarburger et al. [242], Marentakis et al. [94], Paul et al. n-1n-1 ,
[243], and Tan et al. [244] fine-tuned image to extract Z Z (i-w" - pQ, ), (6)
i=0 j=0

features. It takes the underlying patterns, and then a pre-
trained model has learned and adjusted its outputs to be
more suited to your problem. It saves preparation time, does
better execution of neural organizations, does not require a
great deal of data, and can prompt higher exactness.

7.2.3. LSTM + CNN. The LSTM strategy has turned into a
fundamental structure square of neural NLP [245]. To
strongly approve of moving examples, some use them as
contributions to a value-based classification approximate
to the first LSTM production [246]. The CNN long short-
term memory network, or CNN LSTM for short, is LSTM
engineering explicitly intended for grouping expectation
issues with spatial information sources, similar to pictures
or recordings. Concerning the improvement of the CNN
LSTM model design for system expectations. Tekade and
Rajeswari [247] used a layer of CNN LSTM for feature
extraction in lung image datasets. Pictures can also be
addressed with high-request statistical features processed
from run-length matrices or frequent models. Statistics are
basic measurements that help us for better comprehension
of our pictures [248].

7.2.4. Standard Deviation. Standard deviation limits the
ratio of reserves or dispersions of many properties. A low-
quality deviation indicates that the properties will be close to
the set average as a general rule. In contrast, an elite re-
quirement deviation suggests that the properties will cover a
large area [249].

(5)

where ¢ is the population standard deviation, N means the
size of items, S; is each value from the set, and y is the mean
of all the values.

7.2.5. Variance. Variance is the inconstancy in the model
expectation—how much the ML capacity can change con-
tingent upon the given informational collection [250]. In this
technique, the modified term quantifies how far each
number is from the mean and how far each unit number is
from the mean [251].

where y is the mean of all the values.

7.2.6. Mean. Mean is a method for executing feature ex-
traction. It ascertains and takes away the mean for each
component. A typical practice is similar to separate this
worth by the reach or standard deviation.

02
M = Si) (7)
N i=1

where ¢ is the population standard deviation, N is the total
amount of pixel present in the segmented region, S; is each
value from the set, and g is the mean of all the values.

7.2.7. Fourth-Moment Kurtosis. The kurtosis k is charac-
terized to be the normalized fourth focal second. The fourth
second is kurtosis, which indicates the level of focal
“peakedness” or, more accurately, the “largeness” of the
external tails. Kurtosis denotes whether the data have been
significantly or lightly followed by the traditional course
[252].

1 N 1/4
ku:(N*g‘l*;(Si_/")4> ; (8)

where o is the population standard deviation, N is the total
amount of pixel present in the segmented region, S; is each
value from the set, and g is the mean of all the values.

7.2.8. Third-Moment Skewness. Skewness is a proportion of
the evenness of a circulation. It estimates the measure of
likelihood in the tails [253]. The worth is frequently com-
pared to the kurtosis of the average conveyance, which is
equal to three. If the kurtosis is more remarkable than three,
the dataset has heavier tails than a typical appropriation
[254].

| N 1/3
Sk=<N*9*Z(si_‘“)3> , 9)

i=1

where ¢ is the population standard deviation, N is the total
amount of pixel present in the segmented region, S; is each
value from the set, and g is the mean of all the values.
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7.2.9. Entropy. Entropy is a substantial proportion of ir-
regularity that can describe the surface of the info picture. In
image processing, discrete entropy is a proportion of the
number of pieces needed to encode picture data [255]. It
distinguishes different communication signals by describing
the signals’ distribution state characteristics. It is utilized in
any course of weight assurance. It is vigorous and com-
putationally fundamental. The higher the entropy value is,
the more detailed the image will be. Entropy is a proportion
of haphazardness or confusion and thus a proportion of
vulnerability [256]. Hussain et al. [257] used entropy to
analyze lung cancer image data.

n-1

Y. -In (Py)Py;. (10)

i,j=0

7.2.10. Autoencoders. Autoencoder is a sort of neural net-
work that is utilized to gain proficiency with a compacted
portrayal of unrefined information [258]. An autoencoder is
made up of an encoder and a decoder submodel [259]. The
encoder compresses the information, and the decoder at-
tempts to reproduce the contribution from the encoder’s
compressed variant. Ahmed et al. [260], Z. Wang and
Y. Wang [261], Z. Wang and Y. Wang [262], and Kumar
et al. [22] used an autoencoder to extract the feature and
classify lung nodules. The encoder compresses the input lung
scan, and the decoder attempts to recreate the input lung
scan from the compressed version provided by the encoder.
It can be incredible to highlight extraction, conservativeness,
and speed in using backpropagation.

7.2.11. Wavelet. Wavelet is a frequency-selective modula-
tion technique [263]. The wavelet change can assist with
changing over the sign into a structure that makes it a lot
simpler for our pinnacle locator work. Sometime after the
first ECG signal, the wave coefficient for each scale is plotted.
Wavelet was used by Kumar et al. [22] to extract features.
Soufi et al. [264] attempted to detect lung cancer using a
wavelet. Park et al. [265] included and extracted a large
number of wavelet features. A discrete wavelet transform
(DWT) decomposes a signal into sets of numbers. Every set
is a period series of coefficients portraying the time devel-
opment of the signal in the corresponding frequency band
(DWT). DWT is an effective tool for multiresolution
analysis, and it is primarily pursued in signal processing,
image analysis, and various classification systems [266]. It is
broadly used in feature extraction as it is efficient, which can
be declared by seeing its previous results.

7.2.12. Histogram of Oriented Gradients (HOG) Features.
HOG, or histogram of oriented gradients, is a feature ex-
tractor that is frequently used to extract features from
picture information [266]. Adetiba and Olugbara [267] used
HOG to improve image clarity. Xie et al. [268] used a variety
of feature extraction methods, including HOG. Firmino et al.
[269] used HOG to extract features from lung image data to
detect cancer.
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(i) Mathematically, for a given vector V:

V =lal,a2,a3,....,a36]. (11)

(ii) We calculate root of the sum of squares:

k=@ + (@2’ +(@3) +... + @36y, (12)

(iii) Divide all the values in the vector V with this value

(K):

normalized vector = <%, %, %, . ,%). (13)

7.2.13. AlexNet, VGG16, and VGG19. AlexNet is the name
of a CNN that usually affects Al in a way that unequivocally
selects some way of looking at a machine [270]. It joined
ReLU initiation after each convolutional and completely
associated layer. VGG16 is a CNN model that is represented
in the paper by Zisserman from the University of Oxford in
their survey [271]. The model achieved 92.7% of the top-5
test accuracy on ImageNet (a dataset of fourteen million-
+images, including one thousand classes). The most striking
feature of the VGGI16 is that, unlike many other hyper-
boundaries, it consistently empties the convolution layers
and uses the same cushioning and max pool [272]. VGG19 is
a 19-level deep vascular neural entity. Creating more than
1,000,000 images from the Imagine information base can
save an organization’s pretrained presentation. Khan et al.
[273] presented a pretrained VGGI19-based automated
segmentation and classification technique for analyzing lung
CT images that achieved 97.83% accuracy.

Table 8 shows the pros and cons of feature extraction
methods.

8. Feature Selection

Feature selection refers to reducing the number of input
variables required to develop a predictive model. It would be
preferable to reduce the number of input variables that can
lower the overall computing cost of the model and, in some
cases, improve its performance [281]. The primary advan-
tage of feature selection is that it aids in determining the
significance of the original feature set.

8.1. Genetic Algorithm (GA). GA is used to identify the most
relevant features for lung nodule detection. The GA gen-
erates a binary chromosome of 4096 bits in length evaluated
offline during the CADe system’s training phase.

Logic “1” indicates that this feature is relevant, and logic
“0” means irrelevant. As a result, it is removed from the test
phase’s optimized feature vector. The fitness function is then
calculated for each of the population’s chromosomes [282].
It uses an evolutionary approach to determine an efficient set
from lung images. The initial stage in feature selection is to
create a population based on subsets of the possible



Journal of Healthcare Engineering

17

TaBLE 8: Advantages and disadvantages of feature extraction methods.

Algorithms Advantages

Disadvantages

It could extricate and distinguish many provisions and
component types. It has a minimal expense.

It saves preparation time, does better execution of neural
organizations, does not require a great deal of data, and
can prompt higher exactness
It is appropriate to separate compelling elements and
group, process, and foresee time series given delays of
obscure length

Radiomics [274]

Transfer learning and
fine-tuning [244]

LSTM + CNN [94]

Standard deviation
[275]

It gives an exact thought of how the data are
appropriated. It is detached by outrageous qualities.

It can be incredible for highlight extraction,
conservativeness, and speed in coding utilizing
backpropagation
It treats all deviations from the mean and assists an
association with being proactive in accomplishing targets
It will be in the positive structure, and conveyance about
the mean gets tighter as the mean gets bigger
It offers a synchronous restriction on schedule and
recurrence space. It is quick and can isolate the fine

Autoencoder [276]

Variance [277]

Fourth-moment
kurtosis [50]

Wavelet [278]

For respiratory movement, it obscures data. It has
restricted data of remade pictures.
Transfer learning has the issue of negative exchange.
Fine-tuning can at some point befuddle to sort out
subclasses.

It is inclined to overfitting, and it is hard to apply as it
requires 4 direct layers which require a lot of memory

It tends to be affected by anomalies, is hard to ascertain
or comprehend, and works out all vulnerability as
error
It cannot deal with adequate preparation information,
prepares some unacceptable use cases, and is
excessively lossy
It gives added weight to anomalies, is not effectively
deciphered, and does not offer wonderful precision
The weakness is that it will not have a negative or
indistinct structure

It has shift affectability, its directionality is poor, and it
has absence of stage data

subtleties in a sign.

Entropy [279]

Histogram of oriented
gradients [267] the articles unmistakably
Third-moment
skewness [50] into slanted conveyance
AlexNet, VGG16, and
VGG19 [280]

It is utilized in any course of weight assurance. It is
vigorous and computationally basic.

It shows invariance to photometric changes by making a
dark foundation with white molecules which sharpens

It is smarter to gauge the presentation of the speculation
returns, transforming the data point of high skewness

AlexNet has 8 layers that exceed the yield dissimilar to
other enactment capacities. VGG is an incredible
structure block for learning reasons.

It has restricted critical thinking part and relative
disparity, contingent upon the given length and
biasing
The last descriptor vector develops bigger to set more
effort to extricate and to prepare utilizing a given
classifier

It is eccentric. The ascent and defeat of a network are
best instances of the skewness.

AlexNet battles to examine all provisions accordingly
delivering helpless performing models. VGGNet is
agonizing to prepare and its loads itself are very huge.

characteristics derived through lung feature extraction.
Then, the subsets of this population are evaluated using a
predictive model for the target task.

8.2. mRMR. The minimum redundancy maximum rele-
vance (mRMR) [93] algorithm is a filtering approach that
attempts to minimize repetition between selected charac-
teristics while also choosing the most linked attributes with
class tags. First, the method determines a collection of
features from lung images that have the highest correlation
with the class (output) and the lowest correlation among
themselves [283]. Then, it ranks features based on mutual
information using the minimal-redundancy maximal-rele-
vance criterion. Finally, a measure is used to eliminate re-
dundancy between features, which is stated as follows:

mRMR (F;) = max; o [1(F;; Cy)
1 (14)

F;eS

m-—1

where I(F;Cy) represents the mutual correlation between
feature X; and class Cy, I(F;;F;) represents the correlation
between features F; and F;, S denotes the selected feature set,
and m means its size (i.e., m=|S|).

8.3. Least Absolute Shrinkage and Selection Operator (LASSO).
The LASSO [284] is a method for modeling the relationship
between one or more explanatory factors and a dependent
variable by fitting a regularized least-squares model to the
dependent variable. It can efficiently identify significant
characteristics related to the dependent variable from a small
number of observations with many features when used for
compressed sensing. For example, it uses lung data by
regularizing and selecting the most significant features
simultaneously.

8.4. Sequential Floating Forward Selection (SFFS). The SFES
is a bottom-up search procedure that starts with the current
feature set and adds new features by applying the basic SFS
procedure. Then, if there is still room for improvement in the
previous set, the worst feature in the new set is removed. It
counts the number of backward steps taken after each
forward step [285]. If an intermediate solution at the fun-
damental level cannot be improved upon, there are no
backward steps. The procedure’s inverse counterpart, on the
other hand, can be described similarly. Because both algo-
rithms provide “self-controlled backtracking,” it is possible
to find practical solutions by dynamically modifying the
trade-off between forwarding and backward steps. They
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analyze what they require in a way that does not rely on any
parameters [286]. To begin, it starts with an empty set. Then,
SFES takes backward steps on lung images after each step as
long as the objective function increases. It reduces the
number of unnecessary features from lung images.

8.5. PCA. PCA is a dimensionality-reduction approach
commonly used to reduce the dimensionality of data by
lowering an extensive collection of variables into a smaller
set of variables that retains the majority of the learning from
the large set of variables [287]. In addition, smaller datasets
are easier to analyze and visualize, making them more ac-
cessible. For example, it chooses characteristics from lung
images based on the magnitude of their coefficients.

8.6. Weight Optimized Neural Networks with Maximum
Likelihood Boosting (WONN-MLB). Newton and Raphson’s
MLMR preprocessing model and the boosted weighted
optimized neural network ensemble classification algo-
rithms are used to develop the WONN-MLB [288]. The
additive combination approach is utilized in the WONN-
MLB method to incorporate the highest relevancy with the
least amount of redundancy. To achieve the goal of lung
cancer detection accuracy with the least amount of time and
error, an ensemble of WONN-MLB qualities is used [289]. It
only overviewed the extracted features from the lung feature
based on the probability.

8.7. Hybrid Intelligent Spiral Optimization-Based Generalized
Rough Set Approach (HSOGR). The hybrid intelligent spiral
optimization-based generalized rough set approach
(HSOGR) [90] is used to select the features. The spiral
optimization method [290] is based on spiral phenomena
and aids in the resolution of the unconstrained optimization
problem when picking features. The approach employs
adequate settings such as convergence and periodic descent
direction in the n-dimensional spiral model to achieve
success. The approach predicts optimization characteristics
according to the exploration (global solution) and exploi-
tation (local key) phases with the help of the parameters
(good solution). Rather than using a single gradient function
when selecting an optimization process, this method em-
ploys several spiral points [291], which aid in the estab-
lishment of the current optimal fact at any given time. To
determine whether the selected characteristics accurately aid
in detecting lung cancer, the search space must be inves-
tigated using a generalized rough set procedure.

Table 9 shows the pros and cons of feature selection
methods.

9. Classification and Detection

A classification algorithm is an algorithm that gauges the
information included, so the yield isolates one class into
positive qualities and the other into negative qualities [297].
The classification methodology is a supervised learning
strategy used to recognize classes of novel perceptions based
on information preparation [298].
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Detection is a computer innovation connected with
computer vision and image processing that arranges with
recognizing occasions of semantic objects of a specific class
in computerized pictures and recordings [299]. It is a
computer vision strategy for finding objects in pictures or
recordings. When humans look at pictures or videos, objects
can be perceived and found in minutes. The objective of
object detection is to reproduce this intelligence utilizing a
computer [68]. In addition, well-informed areas of article
recognition incorporate face location and passerby
identification.

9.1. Machine Learning (ML). Machine learning is a subor-
dinate part of artificial intelligence, which is comprehen-
sively characterized as the ability of a machine to
impersonate shrewd human conduct [300]. This implies
machines that can perceive a visual scene, comprehend a text
written in ordinary language, or play out an activity in the
actual world [301]. In addition, machine learning calcula-
tions utilize computational techniques to “learn” data
straightforwardly from information without depending on a
foreordained condition as a model [302]. Table 10 describes
various types of machine learning (ML) algorithms.

9.2. Deep Learning (DL). DL is a subfield of ML and AI that
copies the path of individual achieving knowledge [313].
Deep learning uses both organized and disorganized in-
formation, like text and images, to train the models [314].
Deep learning methods are stored in a sequential pattern for
complexity and abstraction, whereas established ML
methods are linear [315]. Moreover, deep learning elimi-
nates some data preprocessing techniques and can extract
features automatically [316]. Several deep methods have
gained tremendous results. They are described in Table 11.

9.3. Convolutional Neural Network (CNN). A convolutional
neural network (CNN) is a methodology under DL that is
capable of taking in input images, emphasizing different
objects from the image, and distinguishing continuously
[329]. In addition, CNNs are considered a type of neural
network that allows for more feature extraction from cap-
tured images [330]. CNNGs are classified into three categories:
convolution, max-pooling, and activation [331]. In com-
parison to other classifiers, a CNN requires little pre-
processing. Although the filters are hand-engineered in a
primitive way, CNN can learn these filters/features through
adequate training [332]. Table 12 describes the usage of CNN
to detect lung nodules and cancer.

9.4. Hybrid System. A hybrid structure of CNN with LeNet
and AlexNet is developed for analysis by combining the layer
settings of LeNet with the parameter settings of AlexNet. It
begins with the LeNet architecture, incorporates ReLU,
LRN, and dropout layers into the framework, and finally
develops the Agile CNN. In addition to two fully connected
layers, the proposed CNN, based on LeNet, has two con-
volutional layers, two pooling layers, and two fully
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Algorithms Advantages Disadvantages

GA [292] Tries to avoid becoming stuck in a local optimal solution GA does not gqarantee an op timal solution and has
high computational cost

mRMR [293] Effectively reduces the redundant features while keeping the =~ Mutual information is incompatible with continuous

LASSO [294]
SFFS [295]

PCA [296]

relevant features

Very accurate prediction, reduces overfitting, and improves model In terms of independent risk factors, the regression
interpretability

Reduces the number of nesting issues and unnecessary features
Selects a number of important individuals from all the feature

components, reduces the dimensionality of the original samples,

and improves the classification accuracy

WONN-MLB
[288]
HSOGR [90]

Integrates the maximum relevancy and minimum redundancy

Effectively selects optimized features

data

coeflicients may not be consistently interpretable

Difficult to detect all subsets

Only considers the linear relationships and
interaction between variables at a higher level

Has certain amount of irrelevant attributes

Its execution is complex

TaBLE 10: Most commonly utilized machine learning classifiers for classifying nodules and cancer.

Model name Purpose ]t);;[: Result Strength Limitation
RF [303] Using pretrained model to detect cT Acc Improves the capacity of lung nodule  Limited dataset and
lung cancer accurately 82.5% prediction result
SVM [300] Classifying the lung nodules in four cT Acc  Predicts small-sized lung nodules, even ~ The limited dataset
lung cancer stages 84.58% in low density affected their results
Optimal feature
LDA [301] Classifying cancer using ODNN and cT Acc It is quick, easy to use, non-invasive, selection with
LDA 94.56% and inexpensive multiclassifier was
missing
R [304] ulAn? gﬁ?anceg?gsslsicrztllzzc?lfles cT Sens  Pretrained CNNs are employed, which  All kinds of nodules
P Y p(PFNs) 86.8% makes them faster than training CNNs  were not classified
SVM [78] To increase the accurate prediction cT Acc Predicts lung cancer from low- The model sometimes
of lung cancer 85.7% resolution data images fails to predict
RE [299] To detect malignancy of nodules cT Pres SOhd’czit;Sglzliizgisnoggfs(ﬂ;jeSOdule Big nodules were
with self-built model NoduleX 99% 8 ’P accurately detected
automatically
. - . . The description of their
RF [305] Classified the measured solidity or CT  Acc95% AV'OldS potent'lal errors caus_ed by work is not described
nodules inaccurate image processing
clearly
SVM [306] Al? lf;%r(:(‘)’egefei-trledrlll Ct;(;rzlnlleest};zd CT Spec Removes around half of the existing ~ Only small cohort is
b ung " 97.2% FPs used
PET/CT images
Classification of nodules with fusion Fl Generates more accurate outcomes The model only detects
Boosting [307] of texture, shape, and deep model- CT 96.65% than three existing state-of-the-art bie no du)l’es
learned data e techniques J
Multikernel Dls;ﬁlflﬁzl;{r;go33?3;;::&?3 ule cT Acc  Increases the efficacy of false positive Dataset name is
learning [302] dlassification 94.17% reduction unclear
Extracting absolute information Acc Obtains promising classification
SVM [308] inherent in raw hand-crafted CT 95.5% p outco r;gles The reference is limited
imaging components =7
Outperforms the state-of-the-art
Decision tree Using autoencoder with decision cT Sens techniques on the overall accuracy The results are low
tree to detect nodule .01% measure, even after experimenting wit
[22] d dul 75.01% f peri ing with
nearly five times the data amount
e . . It extracts the representative image of =~ The model cannot
SVM [309] Nodule dassﬁ:xﬁ? with hybrid CT 92; " lung nodule malignancy from chest CT ~ detect type, position,
= images and size
Decision tree Discovering radiomics to detect cT Sens  Increases the accuracy of lung cancer The reference is limited
ung cancer .52% rediction diagnostics and results are low
[310] lung 77.52% prediction diagnosti d 1 1
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TaBLE 10: Continued.

Model name Purpose It)ya;: Result Strength Limitation
. . The references of figure
. s AUC Quickly finds the exact positions of
Boosting [66]  Identifying nodules from CT scan  CT 86.42% latent lung nodule and table ggi :ccurately
. To describe the algorithm for false . Automatically reduces unnecessary All false positive
Multikernel . .o Jindex feature subsets to get a more N
. positive reduction in lung nodule ~ CT o . reduction is not done
learning [311] . . 91.39% discriminative feature set with
computer-aided detection (CAD) . DU yet
promising classification performance
Loglsu? Prediction of the malignancy of Sens Add1t1.0nal information paseq on It only takes large
regression ) . CT o, hodule size has at best a mixed impact
ung nodules in CT scans 94.5% . nodules
[312] on classifier performance
FP reduction and
. . Spec It can be expanded into other areas of automated
DBScan [68]  Detecting nodules with 3D DCNN CT 79.67% medical image identification classification are
missing
A pretrained CNN to extract deep The method’s performance is such that
Naive Bayes features from lung cancer images cT Acc adding nodule size information has ~ The dataset was too
[243] and train classifiers to predict all 82.5% only a mixed effect on classifier small
term survivors performance
TaBLE 11: Most commonly utilized deep learning classifiers for classifying nodules and cancer.
Data  Result S
Model name Purpose type (%) Strength Limitation
DBN with RBM To detect nodules with deep Acc Ng relative location information is The refere.nces were very
CT ignored to extract features that  limited with less info of
[317] networks 92.83 L.
express the original image better method
Detecting lung cancer with several . . .
DRL [318] potential deep reinforcement CT  Acc 80 Got promlslng.resglts in tumor Th.e result of their work
. localization is not fully cleared
learning models
DRN [319] ?;;eiznguﬁl;e% ﬁgiioler—ggs(e;-ﬁgg PET Acc  Lung cancer detection is automated The outcome is
g scans 97.1  even at low effective radiation doses insufficient
DBN with RBM  Testing the feasibility of using DL Acc - Accuracy was slightly
[320] algorithms for lung cancer diagnosis cr 79.40 [t has shown very promising results less than CNN model
. A combmé'ltlon of deep-learned Increased the ability to differentiate
Deep denoising  representations was employed to . .
. Acc between malignant and benign The dataset was not a
autoencoder create a lengthy feature vector, which ~ CT : L
. 95.5 nodules, with a significant benchmarked dataset
[321] was then used to train the improvement in sensitivit
classification of nodules b Y
Detects small nodules
Training model first and applying 3D .
DRN [322] ConvNet to detect lung nodule with ~ CT Acc It detects pulmonary nodules from anc% cannot class%fy
. . 86.7 low-dose CT scans malignant or benign
hybrid loss learning
nodules
It solves the longstanding challenge
DBN with RBM Comparing DL and CNN model on Sens of d.aSSIfymg lung. nOdL.ﬂes as The classification was
. CT malignant or benign without o
[23] lung nodule detection 734 . > very limited
computing morphological or textural
data
Identification of lung nodules from
CT scans is efficient for lung cancer It is reliable and detects well. It may Figures and table are not
DRN [323] diagnosis, and false positive CT  Acc 98 also be easily extended to detect 3D &
o . ) referred clearly
reduction is important, so it was the objects.
aim
Developing and validating a Eliminated the major issue of false
DRL [77] reinforcement learning model for cT Acc positives in CT lung nodule Only the big nodules
early identification of lung nodules 99.1  screening, saving unwanted tests and were detected

in CT images

expenditures
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Data  Result o
Model name Purpose type (%) Strength Limitation
. A spherical harmonic expansion is e
Deep denoising . s . . Classification of nodule
used as it has ability to approximate It can show small or big lung nodule . :
autoencoder CT  Acc 96 L s as malignant or benign
[324] the surfaces of tough shapes of the spatial inhomogeneities was not done
detected lung nodules
Multilayer To analyze the performance of . . The layers of the model
- Acc  The presented image preprocessing .
perceptron several ML methods for detecting ~ CT were not discussed
88.55 method detects cancerous bulk -
model [325] lung cancer briefly
The main purpose is to train a 3D
Deep stacked CNN with data and convert it into a It can senerate the score map for the The results were not
autoencoder 3D fully convolutional network CT  Sens 80 wh fle volume in a sinel 5 ass compared with other
[326] (FCN) that can generate the score gep models
map
Deep sparse Analyzlr.lg the nodules of CT data Improving the display of actual . .
and helping the experts to be more Acc . . The information of
autoencoder . . CT medical CT data may automatically S
the accurate with proposed analysis 99.57 dataset is missing
[327] tool extract pulmonary nodule features
Building a 3D U-Net and CNN to Detects laree nodule
segment and identify nodule and Acc Malignant nodule detection is 8
GAN [328] ; . . CT . . more accurately than
assist the radiologists understand CT 95.4 precise and effective
. the small nodules
images
Deep stacked To get an accurate diagnosis of the Acc It classified nodules using higher- They did not mention
autoencoder CT > °. " . any reshape or resize
detected lung nodules 92.20 order MGRF and geometric criteria .
[260] techniques
TaBLE 12: Different types of CNN models.
Model name Purpose ]t);;[: Result (%) Strength Limitation
. . . A large amount of labeled
MV-CNN [54] MahgnantA noFlule CT  Acc92.31 [tis a fast gnd reliable data is needed for better
characterization computer-aided system
accuracy
Acc 87.80
. . > It uses both local and global . . .
MP-CNN [333] Automatic detection of lung cr Speo 89.10, contextual variables to detect Different image size affects
cancer recall lune cancer the accuracy
87.40 &
. . No domain specialists can
To predict the malignancy of Acc 84.40, Model interpretability fine-tune it by prioritizing
a pulmonary nodule seen on sens 70.50, . . L Lo
HSCNN [334] CT improves with prediction more discriminating
a computed tomography spec 88.90, accurac features under challengin
(CT) scan AUC 85.60 Y g1ng
cases
Cross-validated results may
NODULEX (CNN D1tferent1ate betwe.en Acc 94.60, . be less ac.cura.te. .Other
malignant and benign Excellent accuracy in datasets with significantly
features + QIF features) . CT sens, 94.80, . . gt .
[335] nodule patterns with spec 9430 classifying nodule malignancy  differing CT scan picture
accuracy P ’ quality or criteria were not
directly fit.
It has good parameter
efficiency and is parameter
DENSEBTNET . Identifying multiscale Acc 88.31, light. It enhances DenseNet tts depsely connected
(centercrop operation) . . CT e mechanism causes feature
features in nodule candidates AUC 93.25 performance and classification
[336] redundancy
accuracy over other
approaches.
Accurately identifying the
nodule areas, extracting It can predict the malignancy
PN-SAMP [337] semantic information from CT  Acc 9758 of lung nodules and offer Only works on CT images

the detected nodules, and
predicting the malignancy of
the nodules

high-level semantic features
and nodule location
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TaBLE 12: Continued.

Data

Model name
type

Purpose

Result (%)

Strength Limitation

Dual-pathway CNN Predicting the nodule’s
[338] malignancy

Developing a fully
automated lung CT cancer ~ CT
detection system

DeepLung (DUAL-path
3D DCNN+) [71]

Ensemble learning of
CNNS/multiview
knowledge-based
collaboration (MV-
KBC) [268]

Differentiating between
malignant and benign CT
pulmonary nodules

CT  Acc 86.84

Acc 90.44

Acc 91.60, backpropagation to categorize
AUC 95.70

It performs end-to-end lung
nodule diagnostics with high
classification accuracy. It can
also handle smaller datasets
using transfer learning.

A pulmonary nodule cannot
be detected automatically

It is smaller and more efficient Lung nodule annotation is
than residual networks not satisfactory

It uses an adaptive weighting

system learned during error . .. .
Y & During training, there is a

relatively high level of

lung nodules, allowing the computational complexity

MV-KBC model to be trained
end-to-end

connected layers. Layer C1 contains 20 feature maps for each
feature map in total. The input data for each unit are linked
to a neighborhood. Therefore, a connection from the input
cannot extend outside the confines of the feature map
boundary. The first feature map in P1 is connected to the
second feature map in C1 by 22 neighborhoods. Every unit
in P1 is linked to the second feature map in C1. Then, on
layer C2, there are 50 feature maps. The other options are the
same as they were for the previous layers. F1 and F2 are the
final two layers after layer P2. In terms of neuron units, F1
and F2 have 500 and 2 neuron units, respectively. The effect
of the parameters of the kernel size, learning rate, and other
aspects on the performance of the CNN model is explored by
varying these parameters, and an optimized setup of the
CNN model is obtained as a result [339]. There are various
hybrid methods to detect lung cancer and nodules
[340-343]. Figure 8 gives an overview of CNN’s hybrid
structure. In artificial intelligence, the image is commonly
convolved with a particular filter (HOG or LBP) to enhance
shapes and edges. Consequently, the first stage of CNN
consists primarily of Gabor-like filters. Additionally, the
scale-space method was initially designed to enhance the
CNN method on which we based. We proposed a novel
hybrid CNN model by incorporating standard features into
CNN, considering complementary characteristics of the
conventional texture method and CNN. This hybrid model’s
complex distinguishable higher-level features are made up of
one-of-a-kind combinations of low-level features. The CNN
filters have this hierarchy of simple elements to complex
features: the first layer filters mostly have structures that look
like Gabor. In contrast, the deep layer filters in the network
have features that can be identified as objects. In this study,
we combine CNN with texture features like LBP and HOG to
improve the first layer filters, which are analogous to the
human visual system’s ability to decompose images into
their oriented spatial frequencies. The data input layer,
convolution layer, pooling layer, entire connection layer,
and output layer are typically included in the structure of a
CNN network. By combining data, our hybrid CNN model
aims to make the data input layer easier. In contrast, the

primary objective of the training is to discover the optimal
model parameters by minimizing a loss function. It has been
found that HOG features and LBP features are fused with
CNN in a specific way due to the significant differences in
shape and texture between the benign and malignant
nodules. However, CNN is believed to be able to extract lung
nodules with possible distinguishing features.

9.5. Transfer Learning. Transfer learning refers to a meth-
odology wherein the put-away information came about.
Learning a model while settling a particular errand can address
alternate undertaking of a related issue. Deep convolutional
neural networks have accomplished amazing feats in normal
picture examination. In any case, such incredible feats are
exceptionally subject to the dataset. Transfer learning is a
difficult substitute for examining nodules in clinical images
using DCNN models, with the only aim of regulating deep
CNN terrifying exposure due to the limited amount of clinical
images. Some authors used transfer learning in their research
[155, 159, 240, 241, 303, 309, 344, 345]. The basic framework of
transfer learning is shown in Figure 9.

10. Performance Evaluation

It is hard to choose which metrics to use for various issues, and
observational studies have shown yet assessed graphic ele-
ments to gauge different parts of the calculations [346]. It is
often difficult to say which measurements are most appro-
priate for evaluating the analysis due to the frequent weight
gain errors between the expected and actual values [347]. The
interpretation of ML estimations is reviewed depending upon
critical accuracy, which is routinely improper, assuming that
there ought to emerge an occurrence of unequaled infor-
mation and error cost shift strikingly [175]. ML execution
evaluations include a degree of compromise between the true
positive and accurate negative rate and between recall and
precision. The receiver operating characteristic (ROC) curve
depicts the compromise between the false negative and false
positive rates for each possible cutoff.
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FIGURE 8: Brief overview of hybrid structure of CNN. Each yellow box is to train the machine with data, blue boxes have layers and
parameters for individual machines, and purple boxes have layers for one to nth hybrid models.

10.1. Generally Used Evaluation Metrics. Evaluation metrics
are considered a way of quantifying the effectiveness of a
predictive model. Evaluation metrics are used to ensure the
quality of a statistical or ML model. When evaluating your
model, it is essential to use a variety of different evaluation
metrics [348].

(i) True positive (TP): TP is the correct classification of
the positive class. For instance, if an image contains
destructive cells and the model fragments the dis-
eased part effectively, the result classifies cancer.

(ii) True negative (TN): TN is the correct classification
of the negative class, for example, when there is no
malignant growth in the image. The model after
classification declares that the cancer is absent.

(iii) False positive (FP): FP is the erroneous prediction of
the positives; for instance, the picture has carci-
nogenic cells, but the model classifies that the image
does not contain cancer.

(iv) False negative (FN): FN is the false expectation of
the negatives. For instance, there is no malignancy
in the picture except for the model that says an
image is a carcinogenic one [349].

The effectiveness of any ML model is still up in the air
utilizing measures like TP rate, FP rate, TN rate, and FN rate
[350]. The sensitivity and specificity measures are commonly
used to clarify demonstrative clinical tests as well as to assess how
excellent and predictable the diagnostic test is [37]. The TP rate
or positive class accuracy is the sensitivity measurement, while
the TN rate or negative class accuracy refers to the specificity
measurement [351]. There is frequently a compromise between
the four measurements in “real-world” applications.

Source Target
Dataset P Dataset R
{Xp, Yp} {Xg, Y}
Model P Knowledge Model R
Transfer
Task P Task R

FIGURE 9: Basic structure of transfer learning.

10.2. Classification Measurements. There are a lot of
methods used for the classification of lung nodule and lung
cancer. The widely used metrics for classification problems
are as follows.

10.2.1. Precision. Precision is the number of relevant reports
recovered by a search isolated by the number of pieces
retrieved. In short, precision is the number of pieces re-
covered that are important. It checks how exactly the model
functions by actually taking a look at the correct, true
positives from the anticipated ones [249].

Prec. = ————. (15)
+
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10.2.2. Recall/Sensitivity. Recall/sensitivity is the number of
pertinent records recovered by a search isolated by existing
significant archives. Sensitivity is another name for recall.
The test’s sensitivity reflects the likelihood that the screening
test will be positive among unhealthy people. The number of
applicable archives recovered is referred to as recall. It
computes the number of true positives detected by the model
and marks them as positives [352]. Finally, it estimates the
capacity of a test to be positive when the condition is present.
It is otherwise called false negative rate, review, Type Il error,
B error, error or oversight, or elective theory [69].

TP

Recall = —— .
T TP EN

(16)

10.2.3. Accuracy. Accuracy is the level of closeness to
ground truth. For example, the accuracy of an estimation is a
proportion of how close the deliberate worth is to the actual
value of the amount. The estimation accuracy might rely
upon a few factors, including the breaking point or the goal
of the estimating instrument [353].

TP + TN

A - , 17
CHrACY = TP+ TN + FP + EN (17)

where TP, TN, FP, and FN mean true positive, true negative,
false positive, and false positive, respectively.

Aside from this, there are other types of accuracy, such as
predictive accuracy and average accuracy. Predictive accu-
racy should be estimated based on the difference between
observed and predicted values [354, 355]. Average accuracy
is the average of every accuracy per class (amount of ac-
curacy for each class anticipated/number of classes) [356].

10.2.4. F1-Score. F-Measure or Fl-score combines both
precision and recall into a binary measure that catches the
two properties, giving each similar weighting. The arithmetic
mean of the two proportions is precision and recall [357].
The F-measure is used to fine-tune precision and recall. It is
frequently used for evaluating data recovery frameworks,
such as search engines, as well as some types of ML models,
particularly in natural language processing [358]. F1-score is
the function of precision and recall. It is evaluated when a
balance between precision and recall is needed [359].

precision x recall

F1 (18)

precision + recall *

10.2.5. Specificity. Specificity is the capacity of a test to
distinguish individuals without illness effectively. The test’s
specificity reflects the likelihood that the screening test will
be negative among people who do not have the illness. It
estimates a test’s ability to be harmful when the condition is
not present. It is otherwise called FP rate, precision, Type 1
error, « error, error of commission, or null hypothesis [278].

TN
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10.2.6. Receiver Operating Characteristic Curve (ROC Curve)
and Area under the ROC Curve (AUC). A ROC curve is a
graphical plot that outlines the symptomatic capacity of a
twofold classifier framework as its separation edge is fluc-
tuated [360]. ROC analysis provides methods for selecting
ideal models and automatically removing imperfect ones
from the expense setting or class conveyance. ROC analysis
is directly and naturally linked to cost/benefit analysis of
demonstrative dynamics [361]. ROC curves are considered a
fantastic asset as an accurate display measure in location/
characterization hypothesis and speculation testing. For a
variety of reasons, AUC is often preferred over accuracy
[362]. Indeed, since it is probably the most widely used
performance metric, it is very uncomfortable to adjust how
AUC works [363] properly.

10.2.7. ROC Curve. The ROC curve addresses the perfor-
mance of the proposed model at all characterization limits
[364]. The ROC curve summarizes classifier execution over a
range of TP and FP error rates. It is a graph of the true
positive rate versus the false positive rate (TPR versus FPR).
A point on the ROC curve between (0, 100) would be ideal
[365]. ROC helps investigate the compromises among
various classifiers over a scope of situations, which is not
great for circumstances with realized error costs [366-369].

TP
TPR=—,
TP + FN
(20)
FP
FPR=—— .
FP + TN

10.2.8. AUC. AUC coordinates the region under the ROC
curve from (0, 0) to (1, 1). It gives the total proportion of all
conceivable characterization edges [370]. AUC has a range of
0to 1. The AUC esteem for a correctly classified version will be
1.0, while it will be 0.0 in the case of a completely incorrect
classification [371]. It is amazing for two reasons: first, it is
scale-invariant, which means it examines how well the model
is anticipated rather than the overall qualities; and second, it is
grouping limit invariant, which means it examines the model’s
exhibition regardless of the chosen edge [372]. The region
under the curve (AUC) is most favored because the bigger the
region, the better the model. The AUC additionally has a
decent translation as the likelihood that the classifier positions
an arbitrarily picked positive occasion over a haphazardly
picked negative one [373]. The AUC is a useful measurement
for classifier execution because it is independent of the chosen
standard and earlier probabilities [374]. AUC can be used to
establish a predominance connection between classifiers. If
the ROC curves cross, the absolute AUC is a normal com-
parison between models [375-380].

10.3. Segmentation Measurements. There are a lot of
methods used for the segmentation of lung nodule and lung
cancer. The widely used metrics for segmentation problems
are as follows.
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10.4. Jaccard Index. The Jaccard index, otherwise called the
Jaccard similarity coeflicient, is a measurement that checks
the closeness and variety of test sets. It is defined as the width
of the crossing point divided by the width of the association
of two name sets. It is a proportion of comparability for the
two information arrangements, ranging from 0% to 100%
[382]. The higher the rate, the more comparable the two
populaces.

TP

TP + FP + FN

J ACigx

10.5. Dice Coefficient. The Dice similarity coefficient, oth-
erwise called the Sorensen-Dice list or Dice coefficient, is a
factual instrument that estimates the comparability between
two arrangements of information [383]. The Dice coefficient
should not be more noteworthy than 1. A Dice coefficient,
for the most part, goes from 0 to 1 [384]. If the coefficient
result is greater than 1, the execution may need to be
rechecked [385]. It was used as a measurable approval metric
to evaluate the reproducibility of manual divisions as well as
the spatial crossover precision of robotized probabilistic
partial division of MR images, as represented on two clinical
models [386-388]. It is a substantial proportion of the
comparability rate between two example sets:

2xTP
Dice®f =

e — (22)
2x TP+ FP + FN

10.6. Error Calculation. The term “error” refers to a devi-
ation from accuracy or correctness. Errors are considered a
significant issue when anyone wants to evaluate the system’s
performance. When the performance is evaluated, only the
system’s efficiency is calculated. But the errors must be
measured while calculating the performance. Many tech-
niques are available to calculate the errors in lung cancer
detection.

10.6.1. Mean Absolute Error (MAE). MAE is a model as-
sessment metric utilized with relapse models. The mean
outright error regarding a test set is the mean of the absolute
values of the individual prediction errors on all examples in
the test set. In insights, MAE is a proportion of errors be-
tween combined perceptions communicating a similar
wonder [389, 390].

|p1—a1|+...+|pn—an|) (23)
n

MAE =

where p represents predicted target values (p;, py,---> Py
while a represents actual value: ay, a,, ..., a,, in which n
represents total number of data points.

10.6.2. Root Mean Square Error (RMSE). RMSE is the square
root of the mean of the square of the entirety of the error.
RMSE is a good proportion of accuracy, but it should only be
used to analyze and compare prediction errors of different
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models or model setups for a single variable, not between
factors because it is scale-dependent [249].

sk < (L)t (Baa)
n

where p represents predicted target values (p;, py,--.> Py
while a represents actual value: a,,a,,...,a,, in which n
represents total number of data points.

10.6.3. Relative Absolute Error. RAE is a way of estimating
the performance of a proactive model. RAE is a metric
contrasting genuine figure error with the estimated error of a
shortsighted (naive) model. A sensible model (which pro-
duces results that are superior to a trivial model) will bring
about a proportion short of one [391, 392].

10.6.4. Root Relative Squared Error (RRSE). The RRSE is
comparable with what it would have been if a straightfor-
ward indicator had been utilized. To put it bluntly, this
specific indicator is only the average of the actual values. In
this way, the relative squared error standardizes the total
squared error by partitioning it by the absolute squared error
of the forward indicators. By taking the square root of the
relative squared error, one decreases the error to similar
measurements as the amount being anticipated [393, 394].

(pl_a)2+"'+(pn_an)2 (25)

|a1—5|2+...+|an—6|2 ’

where p represents predicted target values (p;, p,, ..., P,
while a represents actual value: a,,a,,...,a,.

11. Challenges and Research Direction

Lung cancer detection techniques are improving day by day.
Currently, available lung cancer detection techniques are
quite good in terms of performance, but there are many
more limitations that researchers have encountered. Many
issues have been resolved, but some remain.

Some of them are mentioned below.

11.1. Insufficient Number of Annotated Medical Datasets with
Cases. Most of the significant successes of deep learning
techniques in general, and convolutional neural networks in
particular, have been achieved using large amounts of data.
Large annotated datasets of lung CT images are in high
demand, but obtaining such datasets in medical imaging
remains challenging due to various factors, such as the time-
consuming nature of clinician annotation tasks, the need for
privacy, and ethical considerations, among others. Expert
radiologists must construct and annotate large datasets,
which is costly and time consuming. As a result, the in-
sufficiency of datasets with a large number of samples is a
significant barrier to the application of deep learning to the
study of medical data [17].
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11.2. Accurate Segmentation. Accurate segmentation of the
lung fields is necessary to efficiently reduce the search space
for lung nodules. Due to inhomogeneities within the lung
region and similar density pulmonary components such as
arteries, veins, bronchi, and bronchioles, technical issues
concerning lung segmentation techniques should be
researched further. These technical difficulties include the
technique’s automation level, sensitivity to scanning pa-
rameters, an algorithm’s ability to work with multiple image
modalities (e.g., CT, LDCT, or CE-CT), and the algorithm’s
ability to provide proper lung segmentation.

11.3. Nodule Types. Most nodules are harmless, indicating a
more severe health issue. Among other tissues, parenchymal
tissues are distinct and difficult to segment. On the other
hand, solitary and large solid nodules are easy for seg-
mentation. But the problem occurs when these types of
nodules are targeted.

11.3.1. Small Nodules. Small-nodule segmentation is critical
for the early identification of lung cancer [395]. Thin-slice
high-resolution computed tomography (HRCT) has enabled
the visibility of tiny nodules less than 5mm in diameter,
which was previously invisible using previous-generation
CT technology. Accurate segmentation of such small nod-
ules is required to assess the malignancy of the lesions. A
partial-volume effect is the primary technical concern when
dealing with tiny nodules (PVE). The spatial discrimination
used in CT imaging allows a single voxel to represent
multiple tissue types by averaging their intensity values. This
induces PVE and picture blur, particularly near lesion
margins, challenging segmentation. When dealing with
smaller lesions, PVE becomes more pronounced since the
fraction of mistakes over the lesion volume increases. This
makes measuring the area/volume of tiny nodules more
difficult. The partial-volume approach (PVM) [396] is
presented for calculating nodule volume based on the
consistency of the average attenuation quantities. PVM
outperforms other thresholding algorithms in volumetric
accuracy, according to their phantom study. SPVA (seg-
mentation-based partial-volume analysis) [397] is proposed
to extend the PVM approach to include VOI segmentation
into the nodule core, parenchyma area, and partial-volume
region. A histogram from the partial volume region was used
to estimate the volume of the nodule near its boundary.
Finally, the proposed RAGF [398] yields an elliptical ap-
proximation of the lesion boundary.

11.3.2. Nodules Attached to Vessels. Lung nodules are
frequently connected to other pulmonary structures such
as the airways, blood vessels, parenchymal walls, and di-
aphragm. Because the CT values of nodules and these non-
target objects are frequently extremely similar, deter-
mining the extent of the nodule from these structures
becomes a difficult technical issue. Juxta-vascular nodules
are nodules that connect to blood vessels. Morphological
filtering is a systematic strategy for this purpose
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[397, 399-403]. Because the proportion of nodules that
attach to vessels/airways is often minimal compared to the
entire extent of the 3D nodule surface, basic MOs such as
erosion, dilatation, and opening are frequently effective in
most juxta-vascular situations [400, 402]. These funda-
mental operators were combined with convex-hull oper-
ations [397, 404] and 3D moment analysis [405] to refine
the segmentation process after it was completed. Geo-
metric/shape constrained segmentation is another prom-
inent strategy in this context [398, 403, 406-408]. This
method incorporates shape-based prior information into
the segmentation process to bias the results toward a
spherical/nodular shape. It suppresses elongated non-
target components linked to the target.

11.3.3. Nodules Attached to Parenchymal Wall and
Diaphragm. Juxta-pleural nodules are cases that are at-
tached to the parenchymal wall or the diaphragm. These
nodules are connected to the chest wall and pleural surface.
Many automated measurement algorithms struggle with
these nodules because they need to determine where the
nodule ends and the chest wall begins. Solitary nodules, on
the other hand, that do not border any other structures, such
as airways or blood arteries, are much easier to segment
[409].

11.3.4. Ground-Glass Opacity Nodules. The ground-glass
opacity (GGO) nodule is a nodule with subsolid CT values
that are much lower than usual solid nodules. They are
classified into two types based on whether or not solid
components are present: non-solid/pure and partially solid/
mixed. GGO nodule segmentation is a technological issue
because it is difficult to distinguish their tiny boundaries and
model their uneven appearances. In clinical practice,
modern CT technology’s more excellent picture resolution
has enabled the investigation of small GGO nodules. Al-
though their growth is frequently slow [410], such GGO
nodules, particularly mixed ones, have been linked to a high
risk of malignancy [411]. Recent clinical studies are part of
the histological spectrum of peripheral adenocarcinomas,
which encompass premalignant atypical adenomatous hy-
perplasia (AAH) and malignant bronchioloalveolar carci-
noma (BAC) [412]. Over ten years, a tiny non-solid GGO
representing AAH or BAC can gradually grow into an in-
vasive lung adenocarcinoma [410]. In this method, seg-
mentation is accomplished by labeling each voxel with a
nodule/background label based on a probabilistic decision
rule established from training data.

11.4. Article Selection Bias. A measurement of association,
such as a risk ratio, that is distorted as a result of sample
selection that does not accurately reflect the target pop-
ulation is known as selection bias. The selection of indi-
viduals, groups, or data for analysis in such a way that proper
randomization is not achieved, failing to ensure that the
obtained sample is representative of the intended pop-
ulation, is known as selection bias. On the other hand,
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TABLE 13: Best articles and their details.

Author info Patient group Outcomes Key results Comments
37 patients identified with 34% in the adrenalectomy group The selection process for
isolated adrenal metastases versus 0% in the non-operative group  operative and non-operative
from NSCLC (P =0.002) management was inconsistent
20 underwent surgical 83% for ipsilateral tumors versus 0% Adrenalectomy patients were
resection for contralateral tumors (P = 0.003) on average 10 years younger
50% of patients in the
0,
Raz et al. [417](USA) 67% in case of lower lobe NSCLC :.adrenalectomy group (and 70%
. 17 underwent non- 5-year . in the non-operated group) had
(retrospective cohort . . versus 27% in cases of upper lobe .
operative management survival N2 or T4 diseases; therefore,
study (level 4, good)) tumors (P = 0.29) .
the adrenal metastasis was not
truly isolated
27% synchronous metastasis versus
. . 41% metachronous metastases Significant variability in
Maximum follow-up period ith ch h
of 16 years (P =0.81) treatment with chemotherapy
52% with NO or N1 disease versus 0% and radiotherapy
with N2 diseases (P = 0.008)
. I Medium survival of 8.5 months in the
14 patients with isolated L
chemotherapy alone group versus 31 Small study, but no significant
synchronous adrenal - . .
- months in the differences were seen in
metastasis from NSCLC ) L
chemotherapy + surgery group preoperative characteristics,
Luketich and Burt 8 patients had neoadjuvant . tumor size, or cell type to
chemotherapy followed by . In the surgically resected group, the otherwise explain the improved
[418] (USA) . . Medium . . .
. concomitant lung resection . 3-year actuarial survival was 38% survival
(retrospective cohort survival
study (level 4, good)) and adrenalectomy
’ 6 patients had only 3 cycles The authors recommend that
. of ch'e mtheraPy Longest survivor at end of follow-up surgery shO-uId be advoca.ted
(mitomycin, cisplatin, and after ensuring that curative
. . was 61 months . .
vinblastine) resection of the lung primary
5-year follow-up can be achieved
9 patients with isolated
adrenal metastases from All patients in the palliative
icall \ . h i -fi
surgically resected_ ung Adrenalectomy group: 2/5 alive at 24 | group had a disease ree
cancer (4 non-curative and . interval of 7 months. This
; and 40 months, respectively, and 3/5 . . .

L 5 curative) . selection bias may explain some
Higashiyama et al. d with died at 9, 17, and 20 months, f the ob 4 diff .
[416] (retrospective 5 treated wit respectively of the observed difference in

adrenalectomy followed by  Survival survival in addition to the

cohort study (level 4,

good)) adjuvant chemo or

radiotherapy
4 treated with palliative
chemo or radiotherapy
Maximum follow-up of 40
months

Palliative group: all died within 6

influence of treatment strategy.

The authors concluded that
short FDIs are probably due to
lymphatic spread and probably
signify a more aggressive tumor

months

selection bias might be an issue: the sociodemographic
profile of DLCST participants was better. They had greater
psychological fortitude than the general population of
people who smoked a lot [413]. As a result, selection bias
could lead to underestimating the actual psychosocial effects
[413]. According to a psychometric analysis of survey data
and qualitative focus group interviews, abnormal and false
positive LCS results can have a wide range of psychosocial
effects that can be adequately quantified with PROMs
[414, 415]. The finest articles and specifics of each are de-
scribed in Table 13.

11.5. Efficient CADe System. Developing an efficient com-
puter-aided detection (CADe) system for detecting lung

nodules is a difficult task. The level of automation, speed, and
ability to recognize nodules of varying shapes, such as ir-
regularly shaped nodules rather than only spherical ones, as
well as the CADe system’s ability to detect cavity nodules,
nodules attached to the lung borders, and small nodules, are
all critical considerations to consider (e.g., less than 3 mm).

11.6. Volumetric Measurements. Volumetric measurements
are essential because various sizes in different situations
make the system more accurate. When calculating the
growth rate in the volumetric unit, the global movement of
patients caused by their actions and the local activity of the
entire lung tissue caused by respiration and heartbeat should
be considered. It is impossible to distinguish between
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TaBLE 14: Challenges and research directions for lung nodule and cancer diagnosis.

Name Challenges

Research direction

Insufficient number of

annotated medical datasets with ~All datasets are not publicly available

cases

Accurate segmentation
executed

Nodule size and types detected more efficiently

Efficient CADe system

Volumetric measurements

Segmentation models are not properly

Small nodules are needed to be

Nodules and cancer detection need to
be more accurate using all architectures

All lung image shapes are not the same.
So, all datasets need to be extracted.

All datasets need to be available openly. Additionally, research
should be conducted utilizing such imaging modalities using
unpublished datasets. All datasets should be disclosed for
future research works and implementations.

All segmentation models need to be implementing in various
modalities which may uplift the lung nodule and cancer
detection results
All kinds of nodules need to be investigated. Implementing
feature extraction and selection can detect most of the nodules.
Nodules can be identified by feature and classifier selection.
Random forest, SVM, DBN with RM, and CNNs are mostly
used for lung cancer diagnosis. ML and DL networks of other
kinds should be analyzed in this field.

When patients are breathing, their lung shape changes and it
varies from patient to patient. We recommend investigating all
datasets and measuring different shapes of lungs.

changes caused by the direct application of global and local
registration to the segmented nodule and changes in the
shape of the nodule caused by breathing and heartbeat.

The research directions that should be inspected to uplift
the lung nodule and cancer detection outcomes are de-
scribed here. Through profound investigation on this topic,
the recommendations for the study are described below.

Table 14 represents challenges and limitations in lung
nodule and cancer diagnosis, as well as research directions in
terms of the dataset, architectures, and so on.

(i) Datasets focused on CT scans are available openly.
Ultrasound, PET scans, and SPECT datasets, on the
other hand, are not publicly available. Furthermore,
studies utilizing such imaging modalities use un-
published datasets. These datasets should be made
public for future research and implementations.

(ii) Like U-Net and SegNet, segmentation models have
provided sophisticated segmentation results across
various image datasets. Furthermore, implementing
these techniques involving different modalities may
improve lung nodule and cancer detection results.

(iii) All kinds of nodules need to be investigated.
Implementing feature extraction and selection can
detect any nodule. The selection of features and
classifiers can be used to identify nodules. The most
common methods for selecting features are genetic
algorithms, WONN-MLB, and HSOGR. Feature
extraction, on the other hand, is critical for
detecting nodules. Most of the time, radiomic
methods extract features from lung images. HOG,
autoencoders, and wavelets should also be investi-
gated to be more accurate.

(iv) Random forest, SVM, DBN with RM, and CNNs are
primarily used for lung cancer diagnosis. ML
techniques such as boosting, decision trees, and DL
networks of various types such as GANs and
clustering should be analyzed. CNN is widely used
to detect lung nodules and cancer because it can
extract essential features from images. CNN can

identify and classify lung cancer types with greater
accuracy in a shorter period. But as CNN is a DL
model, it needs a massive amount of data, so if the
dataset is insufficient, it will not give benchmark
accuracy. We recommend that strategies based on
different CNN architectures and CNN+ and other
dimensional CNN must be inquired.

(v) When patients are breathing, their lung shape
changes, and it varies from patient to patient. The
patient’s lung cancer cells appeared in large num-
bers, and there were more irregular shapes than in
healthy lungs. Availability of all datasets is needed to
measure all kinds of lungs. We recommend in-
vestigating all datasets and measuring different
shapes of lungs. The authors in [419, 420] have
already started working on this idea.

12. Conclusions

Lung cancer is the most widely recognized disease-related
reason for death among people. Early detection of pulmo-
nary nodules and lung cancer saves lives because it is known
that the chances of surviving cancer are higher if it is found,
diagnosed, and treated quickly. Several methods and systems
have been proposed for analyzing pulmonary nodules in
medical images. Additionally, the domain covers biological,
engineering, computer science, and histological research.
However, this article provides a comprehensive overview of
the lung cancer detection interface. It is intended for novices
interested in learning about the present state of lung cancer
detection methods and technologies. The essential concepts
of lung cancer detection methods are fully explored. The
article focuses on many aspects of the research domain,
including image preprocessing, feature extraction, seg-
mentation, feature selection methodologies, performance
measurements, and challenges and limitations along with
the possible solutions. The article endorses a summary of
current methods to help new researchers quickly understand
the research domain conceptions. The study also looks into
the various types of datasets available to lung cancer
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detection systems. The fundamental principles of lung
cancer detection and nodule classification procedures are
thoroughly explored using CT scan, MR, or X-ray imaging.
Furthermore, the article combines current cancer-detecting
systems, describing a preliminary review based on previous
works. The article also describes the challenges and limi-
tations that will help explore the inconvenience of lung
cancer detection technologies. The majority of lung cancer
detection methods are now in the primary stages of de-
velopment. Still, there are many things that could be
changed to make the system work better. The combined
efforts of scientific researchers and the tech sectors are re-
quired to commercialize this vast area for the benefit of
ordinary people.
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