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Over the last few decades, there have been significant developments in theoretical, experimental, and clinical approaches to
understand the dynamics of cancer cells and their interactions with the immune system. )ese have led to the development of
important methods for cancer therapy including virotherapy, immunotherapy, chemotherapy, targeted drug therapy, and many
others. Along with this, there have also been some developments on analytical and computational models to help provide insights
into clinical observations. )is work develops a new mathematical model that combines important interactions between tumor
cells and cells in the immune systems including natural killer cells, dendritic cells, and cytotoxic CD8+ Tcells combined with drug
delivery to these cell sites. )ese interactions are described via a system of ordinary differential equations that are solved
numerically. A stability analysis of this model is also performed to determine conditions for tumor-free equilibrium to be stable.
We also study the influence of proliferation rates and drug interventions in the dynamics of all the cells involved. Another
contribution is the development of a novel parameter estimation methodology to determine optimal parameters in the model that
can reproduce a given dataset. Our results seem to suggest that the model employed is a robust candidate for studying the
dynamics of tumor cells and it helps to provide the dynamic interactions between the tumor cells, immune system, and drug-
response systems.

1. Introduction

Cancer is one of the leading causes of death in the world
today. By 2030, over 13 million are estimated to harbor some
form of the disease. While there have been many de-
velopments in cancer therapies including surgery, chemo-
therapy, immunotherapy, and radiotherapy, there is still a lot
that is unknown about the dynamics of how cancer cells are
created, propagated, and destroyed.

Over the past few decades, there have been several ex-
perimental approaches and interventions developed that
have helped us to understand the dynamics of tumor growth
and its interactions with the immune system [1, 2]. )is has
also helped to inform how specific interventions such as
immunotherapy can help strengthen our own ability to fight
cancer by improving the effectiveness of the immune system

[3–5]. While these developments have helped enhance our
understanding about cancer dynamics, there are still several
challenges in these experimental approaches to fully un-
derstand the interactions with the immune system.

In the last two decades, there have also been several
experimental advances in developing interventional thera-
pies for cancer such as immunotherapy, virotherapy, tar-
geted drug therapies, and chemotherapy. Along with these
experimental developments, there have been some advances
in scientific and engineering solutions to capture the dy-
namics of cancer. One of the promising approaches includes
mathematical modeling [6, 7], which involves identifying the
cells that play a role in cancer propagation, interactions
between these bodies, and description of the dynamics of
this interaction that has helped estimate parameters, per-
form stability analysis, and predict tumor dynamics [8–13].
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)ese models have been able to demonstrate the importance
of the presence of immune components for explaining
clinically observed phenomena such as tumor dormancy
[14], tumor size oscillations and regressions [15–18], non-
spatial models of tumor and immune system interactions
[19, 20], and tumor growth coupled with immunotherapy
[8, 9, 12, 13, 21, 22].

)ese mathematical models are often coupled system
of governing differential equations that describe the dy-
namics of each of the interacting component cells. Spe-
cifically, the interactions between tumor growth and the
immune system are often described using a system of
coupled differential equations with prescribed initial
conditions. )ese equations include nonlinear in-
teractions and do not often admit an exact solution and
therefore require computational methods to solve them.
While these mathematical models have provided useful
information regarding the importance of the immune
system in controlling tumor growth, there is still a great
need to continue to enhance existing models to in-
corporate new clinical developments and biological dis-
coveries. For example, there have been studies suggesting
the effectiveness of chemotherapy with immunotherapy
and vaccine therapies [1, 13, 23]. )e focus of this paper is
to enhance existing models of tumor growth that in-
corporate tumor dynamics in conjunction with the im-
mune system response and also study the effect of
additional interventions including antitumor vaccination
and immunotherapies along with chemotherapy.

Of the many clinical approaches that are tested for
cancer therapy, one of the popular approaches includes
drug therapy to the tumor microenvironment. To un-
derstand the impact of the drugs delivered to the tumor cell
site, it is important to include the effect of these drugs into
the models as well. Towards this end, we develop a
mathematical model that will combine essential in-
teractions between growing tumor cells and cells of the
innate and specific immune system coupled with models
for drug delivery to these cell sites. Our goal is to use these
models developed to study the effectiveness of anticancer
drugs to reduce tumor growth.

)e growth of tumors has also been attributed to the
dynamics of the cellular immune system within the human
host. Two principal components of this immune system
include the natural killer cells and cytotoxic CD8+ T cells
which are known to kill tumor cells. Besides these, other
important antigen-presenting cells include the dendritic
cells that help stimulate, recruit, and activate the immune
system. While research has been growing to discover po-
tential mechanisms to describe immune system interactions
with growing tumors, there is enough evidence that the
dynamics of natural kills cells, cytotoxic CD8+ T-cells, and
dendritic cells influence tumor dynamics. )e model pre-
sented in this work will account for the influence of these as
well.

Over the years, there has been a lot of development in
mathematical modeling of cancer. However, the mecha-
nisms that are involved in the interactions of tumor cells
with the immune system are still not clear. )is paper

attempts to make a new contribution in this direction by
developing a coupled mathematical model that incorporates
tumor dynamics and interactions between the dendritic
cells, natural killer cells, and CD8+ T cells. Additionally, the
model incorporates and studies the influence of various drug
therapies including immunotherapy and chemotherapy.
Finally, a new parameter estimation technique is proposed
that helps to estimate parameters optimally for a given
extrapolated dataset.

2. Models and Background

In this work, we will consider a model that consists of four
main cell populations including tumor cells (T(t)), natural
killer cells (N(t)), dendritic cells (D(t)), and cytotoxic
CD8+ Tcells denoted by (L(t)). )e dynamics of these cells
will include interactions between each other as well as
dynamics generated by interaction with chemotherapy as
well immunotherapy drug concentrations in the blood
stream.

For developing the model for each of the cell pop-
ulations, a standard approach is to begin with applying
conservation of mass with diffusion and activation. )is
would often yield the following equation for the dynamics of
the various types of cells:

z[·]

zt
+ ∇ · ( u

→
[·]) − δD∇

2
[·] � f(·) − g(·) − K[·]z(M)[·].

(1)

Here, the functions f(·) and g(·) will be based on
proliferation rates, competition terms, and inhibition terms
based on the respective roles of each type of cell.

Also, note that, in all the models, we will consider the
effect of a chemotherapy drug (dynamics described later) kill
term through K[·]z(M)[·]. )e term z(M) � 1 − e− M is used
to denote the fact that chemotherapeutic drugs (for example,
doxorubicin) are only effective during certain phases of the
cell cycle and pharmacokinetics. )e values of the kill pa-
rameters K[·] for the four cell population considered here are
based on their ability to disrupt the process of division and
growth [24, 25]. Note that if K[·] � 0, the equation is not
impacted by the drug kill term.

While equation (1) includes both the diffusion term and
the advection term due to blood velocity u

→, we will consider
only the temporal dynamics in this work and hence the
associated ordinary differential equation:

d[·]

dt
� f(·) − g(·) − K[·]z(M)[·]. (2)

2.1. Modeling Tumor Cells. We begin with modeling tumor
cells T which are assumed to have a proliferation rate that
can be modeled by a logistic growth law aT(1 − bT), with
parameters a and b denoting the per capita growth rates
and reciprocal carrying capacities of the tumor cells
[8, 9, 26]. Also, it is known that the growth of the tumor
cells is impacted by three different competitive interactions
including interactions between tumor cells and dendritic
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cells, interactions between tumor cells and natural killer
cells, and interactions between tumor cells and CD8+ Tcells
[26–28]. Denoting the corresponding competition rates as
j, c1, k, respectively, introduces the competition term as
− (c1N + j D + kL)T. )e dynamics of tumor cells can then
be described by the following ordinary differential
equation:
dT

dt
� aT(1 − bT) − c1N + j D + kL( T − KTz(M)T. (3)

2.2. Modeling Natural Killer Cells. To model natural killer
(NK) cells, we will assume that these cells have a constant
source s1 as well as a NK cell recruitment term that can be
represented through a modified Michaelis–Menten term
(commonly used to govern cell-cell interactions):

g1 ·
T2

h1 + T2 · N, (4)

where g1 denotes the maximum NK cell recruitment rate by
tumor cells and h1 denotes the steepness coefficient of the
NK cell recruitment curve [8].

Next, the growth of NK cells will be impacted by two
different interactions, namely, the interaction between NK
cells and tumor cells [29] and the interaction between NK
cells and dendritic cells [30–33]. We also introduce pa-
rameters c2, d1 to be the rates of killing (due to tumor cells)
and proliferation (due to dendritic cells) of NK cells, re-
spectively. )e governing differential equation for the dy-
namics of NK cells then can be described as
dN

dt
� s1 +

g1NT2

h1 + T2 − c2T − d1D( N − KNz(M)N − eN.

(5)

Note that we have also included a natural death of NK
cells through − eN.

2.3. Modeling Dendritic Cells. Dendritic cells play an im-
portant role in the immune system response and in
controlling tumor growth. Also known as antigen-pre-
senting cells, they update and present antigens to CD8+

T cells. Some of the earlier models [8, 13] in the literature
have not incorporated the dynamics of dendritic cells in
directly suppressing tumor growth, stimulating resting
NK cells, and impacting the dynamics of CD8+ T cells.
)ere is, however, experimental evidence that dendritic
cells play an important role in modeling tumor immu-
notherapy [28].

To study the dynamics of dendritic cells, we will assume
s2 to be a constant source of dendritic cells, d2 to be the rate
at which NK cells kill dendritic cells, d3 to be a proliferation
rate of dendritic cells due to tumor cells, f1 to be the rate
corresponding to the interaction of dendritic cells with
CD8+ T cells, and g to be the natural death rate of dendritic
cells. We then have

dD

dt
� s2 − f1L + d2N − d3T( D − KDz(M)D − gD. (6)

2.4. Modeling Cytotoxic CD8+ T Cells. Among many factors
that impact the growth of tumor cells, it is well known that
CD8+ T cells are an important component of the immune
system that kills tumor cells. It has been seen that active
tumor-specific CD8+ T cells are only present in large
numbers when tumor cells are present [16, 34], and after
some interactions with tumor cells, they become inactive
[29]. It has been observed that mature CD8+ T cells can
remove dendritic cells [35, 36].

In our model, to describe the dynamics of the CD8+

T-cells, we will consider f2 to be the rate of interaction
between dendritic cells and tumor cells to activate CD8+

T cells; − hLT denotes the form of competition between
CD8+ T cells and tumor cells, and − iL denotes the natural
death rate of CD8+ T cells.

It has also been seen that CD8+ T cells may be recruited
by the debris from tumor cells lysed by NK cells [37]. To
include this effect, we will incorporate in our model a re-
cruitment term that is proportional to the number of cells
killed, which is denoted as r1NT. We will also need an
additional term that helps describe the regulation and
suppression of CD8+ T-cell activity when there are high
levels of activated CD8+ T cells without responsiveness to
cytokines in the system [38, 39]. )is term is denoted by
uNL2. We also include CD8+ T activation by IL-2 immu-
notherapy which is in the form of a drug that influences the
immune system’s efficacy and described via a Michaelis–
Menten interaction term [16]:

pILI

gI + I
. (7)

Here, I refers to the immunotherapy drug concentration
in the bloodstream. )e model for the dynamics for the
CD8+ T cell growth population becomes

dL

dt
� f2DT − hLT − uNL

2
+ r1NT +

pILI

gI + I
− KLz(M)L − iL.

(8)

2.5. Modeling Drug and Vaccine Interventions. In this study,
we incorporate a variety of external intervention treatment
options including tumor-infiltrating lymphocyte (TIL) in-
jections as well as chemotherapy and immunotherapy drugs.
TIL drug intervention may be thought of as an immuno-
therapy approach in which the CD8+ T-cells are promoted
through antigen-specific cytolytic immune cells. We do this
by adding the term vL � vL(t) in equation (8) and we have
dL

dt
� f2DT − hLT − uNL

2
+ r1NT +

pILI

gI + I
− KLz(M)L − iL + vL.

(9)
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To include the chemotherapy and immunotherapy
drugs, we describe the dynamics of the respective concen-
trations in the blood stream as follows:

dM

dt
� vM(t) − d4M,

dI

dt
� vI(t) − d5I.

(10)

)e drug intervention terms in these equations reflect
the amount of chemotherapy and immunotherapy drug
given over time. Note that we assume that the chemotherapy
and immunotherapy drugs will be eliminated from the body
over time at a rate proportional to its concentration, and
these are given by d4M and d5I, respectively.

2.6. Overall Model. From Sections 2.1–2.5, we have the
following overall model:

_T � aT(1 − bT) − c1N + jD + kL( T − KTz(M)T,

_N � s1 +
g1NT2

h1 + T2 − c2T − d1D( N − KNz(M)N − eN,

_D � s2 − f1L + d2N − d3T( D − KDz(M)D − gD,

_L � f2DT − hLT − uNL
2

+ r1NT +
pILI

gI + I

− KLz(M)L − iL + vL(t),

_M � vM(t) − d4M,

_I � vI(t) − d5I.

(11)

Figure 1 illustrates the network of the dynamics for
system (11). Sharp arrows represent reproduction or acti-
vation, and blocked arrows represent inhibition or killing.
)e blocked arrow in red represents the nonlinear in-
teraction. Note that the suppressing effects of the drug are
not shown explicitly in the figure but included in the model.

3. Stability Analysis

In this section, we employ mathematical analysis to identify
conditions that can help eliminate tumor cells. Also, we will
determine conditions for when tumor-free equilibrium is
unstable and the tumor grows without bound.

We now consider the system of (11) in the absence of
treatment. When we eliminate chemotherapy and immu-
notherapy, the system reduces to a four-population system
of ODEs. Let E(T∗, N∗, D∗, L∗) be an equilibrium point of
the system described by the system without drug
intervention.

At an equilibrium point, we have
dT

dt
�
dN

dt
�
dD

dt
�
dL

dt
� 0. (12)

Since we assume there is constant recruitment through
source terms s1 and s2, both not equal to zero, there is no
trivial equilibrium which implies

E T
∗
, N
∗
, D
∗
, L
∗

( ≠ (0, 0, 0, 0). (13)

For tumor-free equilibrium, at an equilibrium point, we
have dN/dt � 0 which yields

s1 + d1D
∗
N
∗

− eN
∗

� 0, (14)

which yields

N
∗

�
s1

e − d1D
∗. (15)

Similarly, setting dD/dt � 0 at an equilibrium point
yields

s2 − d2N
∗
D
∗

− gD
∗

� 0. (16)

Substituting (15) in (16), we get

gd1D
∗2

− s2d1 + d2s1 + eg( D
∗

+ es2 � 0. (17)

Solving the quadratic equation yields

D
∗
1,2 �

d1s2 + d2s1 + eg(  ±
����������������������

d1s2 + d2s1 + eg( 
2

− 4ges2



2gd1
.

(18)

Hence, we have 2 tumor-free equilibrium given by
E1(0, N∗, D∗1 , 0) and E2(0, N∗, D∗2 , 0).

For these to have biological meaning, we need

e − d1D
∗ > 0, (19)

d1s2 + d2s1 + eg≥ 2 ����
ges2

√
. (20)

)ese conditions suggest critical values for the death rate
and the source term for NK cells to be

e � d1D
∗
,

s1 �
2 ����

ges2
√

− d1s2 + eg( 

d2
,

(21)

in order for the tumor-free equilibrium point to be positive
for biological significance.

NK

CD8+ T

T

Chemotherapy Immunotherapy

D

Figure 1: Network of the dynamics for system (11).
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)e Jacobian matrix for linearization of system (11)
without drug intervention is given by

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

where

a11 � a − 2abT
∗

− c1N
∗

− jD
∗

− kL
∗
,

a12 � − c1T
∗
,

a13 � − jT
∗
,

a14 � − kT
∗
,

a21 �
2g1N

∗h1T
∗

h1 + T( 
2 − c2N

∗
,

a22 � − c2T
∗

+ d1D
∗

− e,

a23 � d1N
∗
,

a24 � 0,

a31 � d3D
∗
,

a32 � − d2D
∗
,

a33 � − f1L
∗

+ d2N
∗

− d3T
∗

+ g( ,

a34 � − f1D
∗
,

a41 � f2D
∗

− hL
∗

+ r1N
∗
,

a42 � − uL
∗2

+ r1T
∗
,

a43 � f2T
∗
,

a44 � − hT
∗

+ 2uN
∗
L
∗

+ i( .

(23)

Evaluating these terms at the general tumor-free equi-
librium point gives

A �

a − c1N
∗ − jD∗ 0 0 0

2g1N
∗h1T
∗

h1 + T( 
2 − c2N

∗
d1D
∗ − e d1N

∗ 0

d3D
∗ − d2D

∗ − d2N
∗ + g(  − f1D

∗

f2D
∗ + r1N

∗ 0 0 − i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

To solve for the eigenvalues λ, we solve the equation
det(A − λI) � 0 or

det

a − c1N
∗ − jD∗ − λ 0 0 0

2g1N
∗h1T
∗

h1 + T( 
2 − c2N

∗
d1D
∗ − e − λ d1N

∗ 0

d3D
∗ − d2D

∗ − d2N
∗ + g(  − λ − f1D

∗

f2D
∗ + r1N

∗ 0 0 − i − λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0,

(25)
which yields

a − c1N
∗

− jD
∗

− λ( (− i − λ)det(B − λI) � 0, (26)

where matrix B is given by

B �
d1D
∗ − e d1N

∗

− d2D
∗ − d2N

∗ + g( 
 . (27)

It may be noted that trace and determinant for matrix B
can be computed to be

tr(B) � d1D
∗

− e(  − d2N
∗

+ g( , (28)

det(B) � d1d2N
∗
D
∗

− d1D
∗

− e(  d2N
∗

+ g( . (29)

Solving (26), we compute the eigenvalues to be

λ1 � a − c1N
∗

− jD
∗
,

λ2 � − i,
(30)

and λ3 and λ4 to be the roots of the equation:

λ2 − λ d1D
∗

− e(  − d2N
∗

+ g(   + d1d2N
∗
D
∗

− d1D
∗

− e(  d2N
∗

+ g(  � 0.
(31)

From (28) and (29), this can be rewritten as

λ2 − tr(B)λ + det(B) � 0. (32)

Using (19) in equations (28) and (29), we can conclude
that

tr(B)< 0,

det(B)> 0.
(33)

)is implies that the eigenvalues λ3 and λ4 that are the
roots of equation (32) have negative real parts.

In order for the tumor-free equilibrium to be stable, we
require λ1 < 0, which implies that if the tumor growth rate a
is lesser than the critical value given by c1N

∗ + JD∗, then the
tumor population can be eliminated.

4. Computational Experiments

In this section, we will consider the system of (11) which will
be solved via the Runge–Kutta methods. )e parameter
values, their units, and their estimated value are itemized
next, which we use in our computations.

(i) a: tumor growth rate estimated as
4.31∗10− 1 day− 1 [9]

(ii) b: b− 1 tumor-carrying capacity estimated as
2.17∗10− 8 cells− 1 [9]
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(iii) c1: NK cell tumor cell kill rate estimated as
3.5∗ 10− 6 cells− 1 [12]

(iv) c2: NK cell inactivation rate by tumor cells esti-
mated as 1.0∗ 10− 7 cells− 1 day− 1 [9]

(v) d1: rate of dendritic cell priming NK cells esti-
mated as 1.0∗ 10− 6 cells− 1 [12]

(vi) d2: NK cell dendritic cell kill rate estimated as
4.0∗ 10− 6 cells− 1 [12]

(vii) d3: rate of tumor cells priming dendritic cells
estimated as 1.0∗ 10− 4 Estimate

(viii) e: death rate of NK cell estimated as
4.12∗ 10− 2 day− 1 [12]

(ix) f1: CD8
+ T cell dendritic cells kill rate estimated

as 1.0∗ 10− 8 cells− 1 [12]
(x) f2: rate of dendritic cells priming CD8+ T cell

estimated as 0.01 cells− 1 [12]
(xi) g: death rate of dendritic cells estimated as

2.4∗ 10− 2 cells− 1 [12]
(xii) h: CD8+ T inactivation rate by tumor cells esti-

mated as 3.42∗ 10− 10 cells− 1 day− 1 [12]
(xiii) i: death rate of CD8+ T cells estimated as

2.0∗ 10− 2 day− 1 [9]
(xiv) j: dendritic cell tumor cell kill rate estimated as

1.0∗ 10− 7 cells− 1 [12]
(xv) k: NK cell tumor cell kill rate estimated as

1.0∗ 10− 7 cells− 1 [12]
(xvi) s1: source of NK cells estimated as 1.3∗ 104 cells− 1

[12]
(xvii) s2: source of dendritic cell estimated as

4.8∗ 102 cells− 1 [12]
(xviii) u: regulatory function by Nk cells of CD8+ T cells

estimated as 1.80∗ 10− 8 cell− 2 day− 1 [9]

For the first computation, we will assume there is no
additional recruitment terms for CD8+ T cells and NK cells
(r1 � 0, g1 � 0, h1 � 0), removing some of the regulation,
suppression. and activation of CD8+ T cells
(pI � gI � u � 0), not including the influence of drug kill
terms (KT � KN � KD � KL � 0), no influence of drug and
vaccine interventions (vL � vM � vI � 0) along with the
corresponding death rates (d4 � d5 � 0). We will also as-
sume d3 � 0 which corresponds to the new term that has
been added to the model to indicate the growth of dendritic
cells being impacted by tumor cells. We will also assume for
simplicity and illustration purposes of a weak immune
system that the dynamics start with 100 tumor cells with one
natural killer, one dendritic, and one CD8+ T cell. Figure 2
shows the dynamics of each of these cells. )e tumor cells
initially increase to a peak before a full immune clearance
starts.

Next, we consider the effect of one of the terms in
system (11) corresponding to the dynamics of dendritic
cells. )is is the term d3TD which includes the influence of
tumor growth on the dynamics of dendritic cells that all

the previous studies have not considered. Figure 3 illus-
trates how not only the dendritic cells are impacted but the
CD8+ Tcell dynamics also changes as the proliferation rate
d3 is doubled. For the rest of the simulations, we will
include the effect of d3 and assume the value to be 1 × 10− 4.

Along with d3, we also wanted to study the influence of
the source term s2 on the dynamics of tumor, NK, and CD8+

T cells. Figure 4 illustrates this behavior. When we increase
the source term of dendritic cells, it increases NK cells and
CD8+ Tcells. We also note that these have an effect on tumor
growth as both NK and CD8+ T cells can lyse tumor cells.
)is decrease is also seen in this figure. )is suggests that an
external source term of dendritic cells has the potential to
decrease tumor growth.We also note that dendritic cells play
an important role in recruiting CD8+ T cells earlier in the
tumor growth phase.

Next, to study the effect of TIL drug intervention term
only for the CD8+ T-cell population as an immuno-
therapy where the immune cell levels are boosted by the
addition of antigen-specific cytolytic immune cells, we
increase the value of vL from 1 to 106. )e result is shown
in Figure 5, and we notice that the effect of adding the
drug in small doses does not have a big impact on tumor
growth.

Next, we consider the effect of the chemotherapy drug
only that is introduced through the term vM. We set vM � 1
and study the influence of increasing KT in the dynamics of
tumor cells. Figure 6 illustrates how tumor cells can be
reduced through this technique.

We want to point out that we also performed the study
on the influence of immunotherapy drug intervention vI

but noticed that even with inclusion of a CD8+ T
activation described via Michaelis–Menten interaction given
by

pILI

gI + I
, (34)

there was negligible effect on the dynamics of all four cells.
We also noted that there was not much effect in the dy-
namics of NK cells through the recruitment terms involving
g1 and r1.

Next, we turn our attention to the effect of the nonlinear
term introduced as an inactivation term, which describes the
regulation and suppression of CD8+ T-cell activity [38, 39].
Specifically, Figure 7 shows the effect of the nonlinear term
in system (11) for parameters u � 0 and u � 3 × 10− 10, and
the dynamics show that there is a drastic drop in the number
of cytotoxic CD8+ Tcells while a small increase in tumor cell
growth.

In summary, our computations seem to suggest that a
combination of immunotherapy through TIL drug in-
tervention vM along with chemotherapy through vL provides
an optimal way to reduce tumor growth. Taking this into
account and removing terms that had negligible effects, one
can consider the following simplified system that captures
most prominent features:
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Figure 2: Dynamics of (a) tumor, (b) NK, (c) dendritic, and (d) CD8+ T cells.
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Figure 3: Continued.
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Figure 3: Dynamics of (a) tumor, (b) NK, (c) dendritic, and (d) CD8+ T cells as the proliferation rate d3 is doubled.
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Figure 4: Dynamics of (a) tumor, (b) NK, and (c) CD8+ T cells as function of source s2.
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_T � aT(1 − bT) − c1N + jD + kL( T − KTz(M)T,

_N � s1 − c2T − d1D( N − KNz(M)N − eN,

_D � s2 − f1L + d2N − d3T( D − KDz(M)D − gD,

_L � f2DT − hLT − uNL
2

− KLz(M)L − iL + vL(t),

_M � vM(t) − d4M.

(35)

Figure 8 clearly shows that combined chemotherapy and
immunotherapy drug intervention helps reduce the tumor
growth for system (35). We have used KT � 9 × 10− 2, KD �

KN � KL � 6 × 10− 2 with vL � 106 and vM � 1 for our
computations.

5. Parameter Estimation

In this section, we focus on estimating some parameters used
in system (35), based on the measurements of tumor cells.
Our goal is to accurately describe the dynamics of tumor
growth on an individual basis which is very important both
for growth prediction and designing personalized, optimal
therapy schemes (e.g., when using model predictive control).
To demonstrate this, let us consider two of the parameters in
the model, namely, c1 which is the competition rate that
impacts the dynamics of tumor cells due to natural killer
cells and d3 which is the parameter-related proliferation of
dendritic cells due to tumor cells. Recalling the influence of
doubling the latter parameter d3 is illustrated in Figure 3.

)e purpose of parameter estimation is to identify values
of parameters for given experimental data. In this work, we
will demonstrate how to check the reliability of a mathe-
matical model to estimate parameters optimally. For this, we
consider a discrete dataset for tumor dynamics corre-
sponding to the values of c1 � 3.5 × 10− 6 and d3 � 1 × 10− 4

as indicated from the literature (see Figure 9). We then
introduce randomness in the data by adding some Gaussian
noise to each value in the tumor dynamics. We refer to the
latter as the experimental data Tdata (see Figure 10).

Next, we make a guess for values of c1 and d3 which are
very different from the values used to create the experi-
mental data and try to solve the ODE system (35) to obtain
the computed values of the tumor dynamics given by
T(c1, d3).

We then set up an error expression E(c1, d3) that is the
sum of the squared differences between the computed values
T(c1, d3) and the experimental data Tdata as shown in
equation (36). Employing an unconstrained nonlinear op-
timization algorithm such as the Nelder–Mead algorithm,
the minimization algorithm searches for a local minimum
using a regression approach. )is direct search method
attempts to minimize a function of real variables using only
function evaluations without any derivatives. If the error
E(c1, d3) is within a user-prescribed tolerance TOL, we stop
and accept the values of c1 and d3 to be the optimal values. If
not, we use the updated values of parameters c1 and d3 as the
new values and iterate them back to solve the ODE system
(35). We continue this until convergence. )is parameter
estimation approach is summarized in Figure 10, and the
minimized objective function is given by

E c1, d3(  � 
N

i− 1
T c1, d3(  − Tdata( 

2
, (36)

where E(c1, d3), the least squared error, denotes the dif-
ferences in the amount of computed tumor cells from the
simulation T(c1, d3) from the observed data Tdata (Figure 9)
over N observations.

Using same initial conditions with poor guesses for c1 �

1 × 10− 8 and d3 � 1 × 10− 2, the optimization algorithm es-
timates the parameters to be c1 � 3.5 × 10− 6 and
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Figure 5: Dynamics of tumor cells as the immunotherapy TIL drug
intervention term vL is varied.
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d3 � 0.45 × 10− 3. Clearly, the algorithm estimates the values
pretty close to the values used originally to create the ex-
perimental dataset, and the predicted dynamics of the tumor
cells for these parameter values along with comparison to the
experimental data is illustrated in Figure 11.

6. Discussion and Conclusion

In this work, we developed a mathematical model that in-
corporated the dynamics of four coupled cell populations
including tumor cells, natural killer cells, dendritic cells, and
cytotoxic CD8+ T cells that influence the growth of tumors.
)e novelty in the model was how it combined important
interactions between growing tumor cells and cells of the
innate and specific immune system coupled with models for
drug delivery to these cell sites. A detailed stability analysis of
the associate ordinary differential equation system was

performed. A variety of computational experiments were
simulated to study the influence of the dynamics of the four
cell populations on various parameters. For example, we
noted a significant effect of the influence of proliferation rate
d3 on the dynamics of the cell populations which was
neglected in past studies. We noted that the dynamics are a
function of the source terms included in the model. )e
effect of TIL drug intervention as an immunotherapy ap-
proach had significant impact on tumor growth. Similar
results were observed for a chemotherapy approach as well.
Clearly, a combined chemotherapy and immunotherapy
drug intervention approach was seen to reduce tumor
growth greatly. Another feature of the work is the appli-
cation of a parameter estimation algorithm to accurately
predict proliferation parameters for a given set of data of
tumor cell growth. Similar algorithms have been used in the
past to characterize properties of soft tissues [40]. We were
not only able to capture the data accurately but also were able
to accurately quantify the parameters related to the data.

While this paper investigates a system of ordinary dif-
ferential equations, one must computationally study the
corresponding partial differential equations (PDES) pre-
sented as we developed the model along with fluid equations
that help the drugs to move towards the cancer cells. )is
will require the use of sophisticated numerical methods like
the finite element methods to solve the associated system of
PDEs. )is will be the focus of a forthcoming paper.

Also, we hope to extend our work to apply the models
and validate them against actual experimental or laboratory
data along with applying machine learning type algorithms
to predict behaviors of the growth of the tumor cells. )ese
predictions can help develop control mechanisms such as
drug therapy. )is will also be a focus of our future work.

Data Availability

All data supporting the results reported have sources pro-
vided in the manuscript through references or generated
during the study.
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