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ABSTRACT

Under any medical circumstance, the first and foremost requirement is to monitor physiological factors such as heart rate, blood pressure and oxygen 
level. Any breakdown in their coupling has been linked to ageing or illness. These physiological signals are nonstationary, and this paper analyses the 
transfer functions of nonstationary multidimensional time series of physiological signals. In this work, a method that integrates physiological model-
ling and functional elements into the smart bed for patients is proposed. This work includes experimentation on 10 smart bed patients. The proposed 
idea is validated and analysed to automatically capture any changes in the physiological signals due to postural changes, any impact of ageing or any 
requirement of a medical emergency. Next, it is demonstrated that the proposed method can be used to identify transient changes linked to medical 
emergencies for the given time-series data. These findings show the value of the proposed method in predicting the complicated vital-sign processes 
where conventional manual autoregulatory systems may fail in both healthy and pathological situations. The relation between the time series of phys-
iological signals is an essential study field. A reliable time-varying model is presented to account for the possible nonstationarity of physiological data 
to determine the possibility of emergency care for patients. The suggested approach can identify variations and relations between signals because it 
is built as a dynamic model based on time-varying parameters. The technique used in this research includes readings of heart rate, blood pressure and 
oxygen level connected to the patient’s smart bed. The paper includes transient analysis and parametric evaluation as part of this work.
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INTRODUCTION

In Brandão and Porta Nova (2009), a technique that is built 
on traditional time-series approaches was suggested for eval-
uating continuous-time computer reactions under various 
nonstationary circumstances. There, methods for develop-
ing Meta models are presented, as are confidence ranges for 
nonstationary answers that are time-persistent, such as the 
quantity of entities in queues or the overall quantity stored 
in a system (Guo et al., 2022; Ilhan et al., 2023). These pro-
cesses, however, did not apply to nonstationary time perfor-
mance metrics, i.e. those available in physiological signals. 
The ensuing time series of physiological indicators, includ-
ing heart rate, blood pressure and breathing rate, can display 
complicated fluctuation patterns over a range of time periods 
(Camm et al., 1996; Costa et al., 2002; Ivanov et al., 2002). 
The aim of this work is to analyse physiological signals in 
order to develop a mechanical system embedded with the 
patient’s smart bed for physiological control systems that 

are affected by health and illness by numerically tracking 
the changing dynamics and interactions among multimodal 
physiological signals. The heart rate variability multi-
modal cardiovascular coupling studies (Cohen and Taylor, 
2002; Voss et al., 2009; Schulz et al., 2013) and the nonlin-
ear dynamics of heart rate (Akselrod et al., 1981; Malliani 
et  al., 1991; Iyengar et  al., 1996; Goldberger et  al., 2002) 
have been used to evaluate autoregulation. The frequency-
dependent connections between fluctuations in heart rate, 
blood pressure and breathing rate have also been studied 
using cross-spectral methods (deBoer et  al., 1985; Baselli 
et  al., 1986). Multivariate arterial time-series coupling has 
been studied using nonlinear model detection methods, such 
as nonlinear autoregressive models (Faes et al., 2008; Riedl 
et al., 2010). However, their use in patient healthcare services 
has been constrained due to the nonstationary characteristics 
(Sharma et al., 2020; Wang et al., 2022) of the time-series 
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model, which records noise and abnormalities, as well as the 
difficulty of measuring clinical circumstances and therapies.

Due to the complicated connections and observable pat-
terns in the data collected without the need for specialized 
models, data-driven methods increasingly outperform model-
based methods in the field of health management (Akaike, 
1974; Hyndman and Khandakar, 2008). This study proposes 
a model for nonstationary time-series analysis for the signals 
received from a patient smart bed. Today, health management 
is crucial for determining how well engineering systems 
are performing. Numerous model-based approaches, such 
as those based on lifetime distribution models and Markov 
models, have been used to predict dependability and lifespan 
under hypotheses that may or may not be true in reality (Box 
et  al., 1994). However, system-capable methods frequently 
encounter complicated mathematical formulae that have 
a significant bearing on the adjustment of their parameters 
and the accomplishment of their numerical solution. These 
variables have led to the development of data-driven, obser-
vational methods as a potent substitute for real-world, non-
linear dependability forecasting (Shen et  al., 2021; Wang 
et al., 2021). Recent years have seen the emergence of novel 
dependability modelling approaches based on observational 
time-series methods (Ljung and Box, 1978). Conventional 
methods rely on the time-series stationarity assumption, which 
makes it impossible to accurately describe fleeting events or 
follow changing dynamics. The connection between various 
factors in nonstationary physiological time series can now be 
quantified using time-changing autoregressive and point pro-
cess-based methods, which can also be used to derive spec-
trum markers of autonomic regulation (Barbieri and Brown, 
2008; Gederi et al., 2014). It is unclear how these methods 
can be used to determine the trait-like dynamic behaviours 
displayed across a patient group because they analyse each 
time series separately.

In this article, a novel technique is suggested to evalu-
ate the performance of the transient behaviour of various 
physiological signals using transfer function analysis of 
physiological time series. The proposed system is modelled 
in such a way that the physiological dynamics of a patient 
can be easily collected from the connected bed. In order to 
capture the transient changes in response to any change in 
the signal values, each of these dynamic modes can be used 
to generate directional transfer functions of multivariate time 
series as well as generate the indices of variability (compara-
ble to heart rate variability analysis, blood pressure variabil-
ity and oxygen level variability).

Individual time series can be split into roughly stable 
dynamic areas while also learning a shared set of dynamic 
modes, thanks to the proposed method. The proposed method 
recognizes comparable dynamic behaviours across numer-
ous multivariate nonstationary time series by simultaneously 
modelling them in a probability framework. Additionally, 
it makes it possible to understand how different dynamic 
behaviours relate to one another in a specific therapeutic 
setting. In this paper, a model is proposed based on the time-
series analysis using transient response in relation to the 
identified nonstationary dynamic modes that can be useful to 
provide suitable measures for heart rate, blood pressure and 
oxygen level variability by capturing any significant change 

that is present in each individual time series. Additionally, 
one can use the proposed dynamic model to determine the 
degree of relationship between various nonstationary tran-
sient modes and the directed transfer functions of the physio-
logical signals, which have been modelled in the form of 
magnitude plots, phase plots and transient plots.

The current focus of this research is on understanding the 
mechanistic basis for smart beds to observe the time-varying 
dynamics of physiological signals such as heart rate meas-
urement, blood pressure measurement and oxygen level 
measurement in patients. The bodily signs that are immedi-
ately connected to patient monitoring from the smart bed are 
used in the suggested time-series model.

The coherence function (Carter, 1987), partial coherence 
(Bendat and Piersol, 2011) or methods based on nonstation-
ary, transient versions of the coherence function (Muma 
et al., 2010; Orini et al., 2012) are standard methods for ana-
lysing the relationship between multidimensional biological 
data. The coherence function, however, is unable to provide 
the direction of the information movement because it is not 
a directional metric.

With the help of the proposed model, nonlinear relation-
ships can be uncovered between multidimensional time 
series of the heart rate, blood pressure and oxygen level 
signals. The proposed approach is analysed for the transient 
analysis of physiological signals.

The paper is structured as follows: the first section is 
Introduction, the next section is The Proposed Model fol-
lowed by the Relationship Between the Transfer Functions 
and Physiological Signals, the Data Collection and 
Evaluation of This Study, Results and Discussion and finally, 
the Conclusion.

THE PROPOSED MODEL

Analogous to the method used for their continuous-time 
equivalents, this work suggests a method for studying 
time-verifying and nonstationary signals. The first stage of 
the process, which involves creating aggregated time series, 
differs significantly from the second and third steps. The 
output is sampled at normal time periods, but this does not 
result in a legitimate time-series dynamic analysis. Figure 1 
shows the proposed nonstationary model for smart beds.

One of the crucial stages of the process is to get approx-
imations of the anticipated value of the nonstationary tran-
sient problem for each recorded physiological signal that is 
evenly separated. To guarantee that each interval includes 
at least one sample, an appropriate time period should be 
chosen. The anticipated value of the answer for each time 
interval is calculated by dividing its (defined) total by the 
duration of the interval.

By multiplying the interval duration by the average of 
the data gathered for each type of signal that came during 
the time interval, the anticipated value of the time-varying 
transient response is calculated using the proposed model. 
As a consequence, the value of the transient response that is 
produced represents the average of the measurements made 
during the same time period across 100 samples.
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The suggested method is based on dynamic transient 
model analysis in a nonstationary situation, i.e. time-de-
pendent physiological signals. This paper uses time-varying 
responses to simulate physiological time-series groups of 
signals collected from the smart bed by using basic linear 
dynamical systems. Let y(n, t) be a function of the observed 
physiological sign readings at time t(t = 1….T(n)). It is 
assumed that there exists a variable number, D, of potential 
dynamic modes for heart rate (H(t)), blood pressure (B(t)) 
and oxygen level (O(t)), monitoring which is specified by D = 
{H(t), B(t), O(t)}, where P P

p p 1 p p 1H(t) {H t } ,  ( ) (B(t) {B t)}    
and P

p p 1( )O(t) {O t }   are a collection of multivariate models 
which a coefficient of matrices of size M×M, with the max-
imum time latency P.

Assume that s(n, t) is a switching variable that represents 
the nth case being a highly active dynamic mode at time t 
and changes in accordance with a dynamic distribution and 
transition matrix. These criteria lead to the formulation of 
the proposed model for the nth case such that

	

P

p p
p 1

p

y(n, t) H s(n, t) y(n, t p) B s(n, t) y(n, t p)

O s(n, t) y(n, t p) (s(n, t

( ) ( )

( ) ,) )


   

  


ε

� (1)

where ε is the volatility term and is supposed to be Gaussian 
distributed.

These dynamic modes can be used to explain how col-
lections of nonstationary multidimensional time series 
change over time, with each mode giving a locally dura-
ble linear model. This study finds a significant basis from 
the inference which was used in Murphy (1998) to dis-
cover the set of variables (i.e. time-series segmentation) 
and the modes (i.e. the parameters). Using expectation-
maximization (EM), the maximum-likelihood set of model 
parameters and a derived estimate of the probability dis-
tribution over the hidden switching variables were discov-
ered (Murphy, 1998) It was possible to share the dynamics 
across the entire group by merging all calculated and esti-
mated data from every person to obtain a shared collection 
of modes in the M phase. The EM method was iterated 
through several stages, and the end result was the learning 
of a collection of all dynamic modes for each smart bed. 
The amount of time the patient spends in the jth mode is 
what is referred to as the mode proportion, i.e. mp

j
(n, t). 

It is assumed that 
 T n

j
t 1

1
mp n, t Pr(s(n, t) j)

T(
(

n)
)


  , where 

Pr(.) indicates the probability and the entire amount inside 
the accumulation is inferred as the marginal probabili-
ties, which are computed for the jth mode from the EM 
algorithm.

Create aggregate
time series

Estimation from
non-stationary

transient signals

Heart
rate

Blood
pressure

Oxygen
level

Each interval
includes at
least one
sample

Signal value is
anticipated to

make
comparison
with normal

values

×

Dynamic
time-

varying
analysis

Physiological time
series groups of

signals

• Heart rate variability
• Blood pressure variability
• Oxygen level variability

Smart bed

Signals
from

sensors

Figure 1:  Block diagram of the proposed nonstationary model for smart bed.
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RELATIONSHIP BETWEEN THE 
TRANSFER FUNCTIONS AND 
PHYSIOLOGICAL SIGNALS

The characteristic of transfer functions in terms of magni-
tude and its transient behaviour between any of the variables 
can be driven using the dynamic mode coefficients, i.e. H(t), 
B(t), O(t) at time t. And the parametric power spectra of each 
variable can be extracted. The magnitude and phase depend-
ency can be measured for any one variable on other variables 
using the transfer function analysis. It is proven that the tran-
sient analysis is the measure for the stability criteria of any 
model as well, for instance, the transfer function between 
blood pressure and heart rate (denoted as T(B → H)) which 
explains the impact of variations in blood pressure on the 
heart rate. The block transfer function can be defined as a 
function of dynamic mode coefficients (Nemati et al., 2011) 

such that 
P

2 1fp
p

p 1

( )H(t) H t .e . 


 π

Similarly, 
P

2 1fp
p

p 1

(B(t) B t .e)  


 π  and 

P

p
p 1

O(t) O



2 1fp(t e).  π , where f is the indicator of frequency. The fol-

lowing equations can be used to illustrate the connection 
between the other variables in terms of transfer function 
(Nemati et al., 2011):

	

H 1
y n, t H(t)y(n, t) (s(n, t))

1 H(t)
( )  


ε

�
(2a)

	

B 1
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
ε
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O 1
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1 O(t)
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
ε
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As an illustration, this work uses the Windkessel func-
tion (Cohen and Taylor, 2002) or circulation dynamics 
(Khoo, 2008) to define a transfer function. Let us consider 

a situation where the transfer function 
B(t)

T(B H)
1 H(t)

 


  

denotes the effect of heart rate variability on blood pressure 
in accordance with the value of one index. On the other 
hand, let us consider a situation where the transfer function 

H(t)
T(H B)

1 B(t)
 

  denotes the effect of blood pressure  

variability on heart rate. Similarly, the effect of oxygen level 
variability can be monitored. Next, consider a situation where 

the transfer function 
B(t)

T(B O)
1 O(t)

 


 denotes the effect  

of oxygen level variability on blood pressure. On the other 
hand, let us consider the situation where the transfer function 

O(t)
T(O B)

1 B(t)
 

  denotes the effect of blood pressure var-

iability on the oxygen level. Next, consider a situation where 

the transfer function 
H(t)

T(H O)
1 O(t)

 


 denotes the effect 

of oxygen level variability on the heart rate. On the other 

hand, let us consider the situation where the transfer function 
O(t)

T(O H)
1 H(t)

 
  denotes the effect of heart rate varia-

bility on the oxygen level. The gain value associated with 
the transfer function, which gauges the breathing regulation 
of heart rate, can be determined similarly in the study com-
bining blood pressure and oxygen levels. The mode propor-

tioned transfer function can be calculated using 
P

p 1

T T


α , 

where α is the associated transfer function gain. A weighted 

mix of the related variables for each of the distinct modes 
can also be used to calculate the immediate transfer func-
tion gains where the weights are determined by the value of 
marginal state probabilities which is written as Pr(s (n,t) = j).

DATA COLLECTION AND EVALUA-
TION OF THIS STUDY

The experiments include heart rate measurement, blood 
pressure measurement and oxygen level measurements 
from 10 smart beds. Patients were initially positioned flat. 
The body was tilted from a horizontal to a perpendicu-
lar posture before returning to the normal lying position. 
Every reading was captured at a sampling rate of 250 Hz 
for roughly 60 minutes (ranging from 55 to 74 minutes) per 
smart bed. Using an automatic beat recognition method, 
each pulse was noted, and time-series samples of blood 
pressure were taken for the suggested time intervals at the 
moments of the wave maxima. Any variation in the steady 
state time-series behaviour that is slower than 100 beats per 
cycle was removed from the heart rate measurement and 
the blood pressure measurement. From the freely accessible 
PhysioNet (Goldberger et al., 2000) database, time series of 
heart rate values and breathing values were taken for 100 
recorded samples [as shown in Figures 2-4, which plot the 
95% confidence interval (CI) for 100 simulations for heart 
rate, blood pressure and oxygen level, respectively]. The 
experiments were made at a sampling frequency of 250 Hz. 
To create time sequences of peak-to-peak (RR) periods, they 
were automatically identified, visibly confirmed and peak 
value adjusted, and the transient (magnitude, phase and step 
response) was studied, as shown in Figure 5. Figure 5 plots 
the transient response of (a) the function yH(n, t), (b) the 
function yB(n, t), (c) the function yO(n, t), (d) the transfer 
function T(B → H), (e) the transfer function T(H → B), 
(f) the transfer function T(H→O), (g) the transfer function 
T(O → H), (h) the transfer function T(B → O) and (i) the 
transfer function T(O → B). The transient response model, 
which includes both linear and nonlinear analyses, is taken 
into consideration for nonlinearity evaluation. This work 
considers the magnitude, phase and step responses that 
depict the relationships between heart rate, blood pressure 
and oxygen level and are anticipated to be expressed by the 
variation patterns accordingly. The nonlinear variation of 
these parameters can also produce some leftover linear pat-
terns, and the variation is only anticipated to manifest in the 
linear dependency patterns.
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RESULTS AND DISCUSSION

This research work first assesses the dynamic parameter 
estimation’s precision and presents a transfer function-
based approach to show the dependency among the 

studied physiological signals in relation to their stand-
ard values (i.e. normal heart rate, normal blood pressure 
and normal oxygen level). To achieve a similar qual-
ity standard, it is important to calculate the mean square  
error (MSE) of the estimated parameter coefficients  

Figure 2:  (A) 95% CI for heart rate values. (B) Simulated sample distribution of the mean for heart rate values. Abbreviation: 
CI, confidence interval.

Figure 3:  (A) 95% CI for blood pressure values. (B) Simulated sample distribution of the mean for blood pressure values. 
Abbreviation: CI, confidence interval.

Figure 4:  (A) 95% CI for oxygen level values. (B) Simulated sample distribution of the mean for oxygen level values. Abbre-
viation: CI, confidence interval.
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Figure 5:  Continued.
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Figure 5:  Continued.
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which is given as 
P

2
p normal

p 1

(
1

MSE(H) (H s(n, t) H )
T(n)

)


  ,  

P
2

p normal
p 1

(
1

MSE(B) (B s(n, t) B )
T(n)

)


   and MSE(O)  

P
2

p normal
p 1

1
(O s(( n, t) O )

T(
)

n) 
  as a function of the dynamic 

coefficients. Table 1 presents the values of various evalua-
tion metrics for the dynamic parameters (heart rate, blood 
pressure and oxygen level). This is a novel method; there-
fore, the manuscript presents the performance of this method 
in terms of MSE, 95% CI and marginal probabilities values 
for blood pressure, heart rate and oxygen level.

The susceptibility to anomalies or abnormalities in the 
data is a significant issue when determining time series and 
dynamic parameters. Since errors or anomalies frequently 
taint biological signals (Möller et al., 2003; Giannakakis and 
Nikita, 2008; Faes et al., 2010; Varotto et al., 2012; Zoubir 
et al., 2012), researchers frequently exclude polluted obser-
vations, which cause substantial data loss. A robust statistical 
measure has been used, i.e. the maximum bias curve (MBC), 
which is used to assess the findings’ resilience against outli-
ers (Zoubir et al., 2012). This signifies the greatest level of 
exponential bias that can arise from a specific sequence of 
data points. The suggested model cannot be easily applied 
to the traditional meaning of MBC (Maronna et al., 2006) 
because the nonstationarity of the data must be taken into 
consideration which yields MBC(H → B) = max{T (B → H), 
T(H → B)}, MBC(H → O) = max{T(O → H), T(H → O)},  

MBC(B → O) = max{T(O → B), T(B → O)}, is a set of 
nearby points in the space of circulation dynamics, repre-
senting variations in dynamic parameters that are interre-
lated. The MBC thus also catches brief stability brought 
on by variations in the data in the nonstationary situation 
in terms of values recorded. Table 2 presents the values of 
various evaluation metrics.

In reality, the MBC cannot be calculated mathemati-
cally, not even for straightforward (stationary, lower-order) 
dynamic models (Maronna et  al., 2006). Therefore, this 
work used a Monte Carlo method similar to that described 
in Maronna et al. (2006) to estimate at each time step. Over 
all Monte Carlo simulations and temporal occurrences, the 
empirical MBC shows the worst-case bias. The actual MBC 
maintains the meaning of the specification provided in the 
equation by selecting any variation in the outlier-producing 
process for all time instances.

The evaluations of the time-series responses for the param-
eters H, B and O have been observed to be an approximation 
that is marginally closer to the actual parameter value, and 
the precision is very comparable. The outcome of the non-
linear analysis for the proposed model effectively captures 
the time-varying partial connectedness between signals. 
The experiments used 100 simulations of the data to assess 
statistical significance, and the 95% confidence level of the 
empirical distribution under the null hypothesis of nonline-
arity was found to be 0.05.

Table 1:  Values of various evaluation metrics for the dynamic 
parameters (heart rate, blood pressure and oxygen level).

MSE 95% CI Marginal probabilities 
Pr(s(n,t) = j)

Heart rate 0.001 0.78 0.73
Blood pressure 0.005 0.81 0.78
Oxygen level 0.004 0.84 0.82

Abbreviations: CI, confidence interval; MSE, mean square error.

Table 2:  Values of various evaluation metrics.

Parameter   Recorded 
value

  Nonsevere 
value

  Severe case 
values

Gain   0.04   <0.05   >0.05

  MBC(H→B)   0.001   <0.01   >0.01

  MBC(B→H)   0.012   <0.01   >0.01

  MBC(H→O)   0.015   <0.01   >0.01

  MBC(O→H)   0.011   <0.01   >0.01

  MBC(B→O)   0.013   <0.01   >0.01

  MBC(O→B)   0.011   <0.01   >0.01

I

Figure 5:  (A) Magnitude, phase (left) and step (right) response of the function yH(n, t). (B) Magnitude, phase (left) and step 
(right) response of the function yB(n, t). (C) Magnitude, phase (left) and step (right) response of the function yO(n, t). (D) Mag-
nitude, phase (left) and step (right) response of the transfer function T(B → H). (E) Magnitude, phase (left) and step (right) 
response of the transfer function T(H → B). (F) Magnitude, phase (left) and step (right) response of the transfer function T(H 
→ O). (G) Magnitude, phase (left) and step (right) response of the transfer function T(O → H). (H) Magnitude, phase (left) and 
step (right) response of the transfer function T(B → O). (I) Magnitude, phase (left) and step (right) response of the transfer 
function T(O → B).
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Transfer functions are a useful tool for ensuring more 
accuracy in smart bed monitoring when dealing with vari-
ability across small datasets. Transfer functions are mathe-
matical models that may be used to anticipate the output of 
a system based on the input data. This can be done by trans-
ferring information from one system to another. This work 
develops a model that accounts for the variability present in 
your limited dataset by making use of transfer functions and 
then utilises that model to generate more accurate predic-
tions using the data.

CONCLUSION

The suggested technique is applied to analyse the biological 
time-series signals from patients’ smart beds. Continuous 
tracking of bodily signs, such as heart rate, blood pressure and 
oxygen level, has evolved into the gold standard in intensive 
care facilities for patients. Because the heart rate, blood pres-
sure and oxygen level readings and their interdependencies 
can be analysed using the proposed model from real smart 
bed settings and the instruments are susceptible to patient 
motions and smart bed orientations, for this work, 10 cases 
were taken into account. Three signals—heart rate, blood 
pressure and oxygen level—have been observed. To meas-
ure the linear and nonlinear information transmission among 
HR, BP and oxygen level patients, the proposed method is 
used. For actual information, choosing the best model set-
tings is more complicated than it is for synthetic data. MBC 
evaluation is used as an average optimal option that can be 
identified because this work deals with three types of data. 
The characteristics of a time-varying system and its transient 
behaviour have been plotted. Using the proposed estimate, it 
was possible to predict the ideal values of the dynamic vari-
ability. The proposed method has the advantage that it allows 
researchers to see both linear and nonlinear changes in phys-
iological data at the same time. The observed condition of 
the patient is found to be quite similar to the expected linear 
and nonlinear causes. However, there are situations when a 
lot of nonlinear variability was seen despite there being very 
little linear fluctuation. In other words, no linear variational 

measure can identify the existence of nonlinear correlations 
between physiological data.

The significance of modelling in machine learning (ML) 
and artificial intelligence (AI) technologies cannot be 
overstated. ML, a kind of AI, may automate the creation 
of analytical models using data, thereby contributing to 
the expansion of the economy. Each method has its place, 
whether it is for detecting spam-like emails or for seg-
menting customers for use in marketing or other business 
tactics. The ultimate objective of artificial intelligence is 
to train computers to mimic human intelligence by engag-
ing in “intelligent behaviours.” However, in this paper, the 
mechanistic basis for smart beds to observe the time-varying 
dynamics of physiological signals has been observed and the 
application using AI or ML could be an exciting future work.
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