
1

Journal of Disability Research
2024 | Volume 3 | Pages: 1–15 | e-location ID: e20240003
DOI: 10.57197/JDR-2024-0003

EASDM: Explainable Autism Spectrum Disorder 
Model Based on Deep Learning
El-Sayed Atlam1,2,* , Mehedi Masud3, Mahmoud Rokaya2,4, Hossam Meshref3, Ibrahim Gad2,* and Abdulqader M. Almars1

1Department of Computer Science, College of Computer Science and Engineering, Taibah University, Yanbu 966144, Saudi Arabia
2Computer Science Department, Faculty of Science, University of Tanta, Tanta, Gharbia, Egypt
3Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia
4Department of Information Technology, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia

Correspondence to: 
El-Sayed Atlam*, e-mail: satlam@yahoo.com, satlam@taibahu.edu.sa
Ibrahim Gad*, e-mail: ibrahim.gad@science.tanta.edu.eg

Received: September 5 2023; Revised: November 27 2023; Accepted: October 4 2023; Published Online: February 3 2024

ABSTRACT

A neuro-developmental disorder known as autism spectrum disorder (ASD) affects a significant portion of the global population. Those with ASD 
frequently struggle to interact and communicate with others and may engage in restricted or repetitive behaviors or interests. The symptoms of autism 
begin early in childhood and can continue into adulthood. Machine learning and deep learning (DL) models are employed in clinical research for the 
early identification and diagnosis of ASD. However, the majority of the existing models lack interpretability in their results for ASD diagnosis. The 
explainable artificial intelligence (XAI) concepts can be used to provide transparent and understandable explanations for models’ decisions. In this 
work, we present an explainable autism spectrum disorder model based on DL for autism disorder detection in toddlers and children. The primary 
objective of this study is to better understand and interpret the classification process and to discern the significant features that contribute to the pre-
diction of ASD. The proposed model is divided into two distinct components. The first component employs a DL model for autism disorder detection. 
The second uses an XAI technique known as shapley additive explanations (SHAP) to emphasis key characteristics and explain the model’s outcomes. 
The model showed perfect performance on the training set, with an accuracy of 1 and a receiver operating characteristic score of 1. On the test set, the 
model achieved an accuracy score of 0.9886, indicating that it performed nearly as well as on the training set. The experimental results demonstrate 
that the proposed model has the capability to accurately predict and diagnose ASD while also providing explanatory insights into the obtained results. 
Furthermore, the results indicate that the proposed model performs competitively compared to the state-of-the-art models in terms of accuracy and 
F1-score. The results highlight the efficacy and potential of the proposed model in accurately predicting ASD in binary classification tasks.
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INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex condition 
that affects millions of people worldwide. According to the 
WHO, ASD affects 1 in 160 children at any given time world-
wide (Mahmud et al., 2018). The symptoms of ASD include 
persistent difficulties in social communication, limited inter-
ests, and repetitive behavior (Tuchman et al., 2009; Maenner 
et al., 2021). In addition, people with ASD can exhibit several 
other characteristics such as delayed language skills, delayed 
movement skills, anxiety, stress, excessive worry, unusual 
mood or emotional reactions, etc. Early symptoms of this 
condition may appear at 3 years of age and may persist for the 
remainder of the person’s life (Raj and Masood, 2020). Early 
diagnosis of ASD can be critical and beneficial for a patient’s 
treatment. According to Ramana and Paolucci (Anirudh and 

Thiagarajan, 2021; Claudio et al., 2023), the diagnosis of 
ASD early in childhood can facilitate the development of 
social skills in children. Furthermore, children who receive 
medical care prior to turning two exhibit higher intelligence 
quotient (IQs) than those who do not receive it until later in 
life (Alkahtani et al., 2023; Georgoula et al., 2023).

The use of deep learning (DL) and machine learning tech-
nology has proven to be exceptionally effective in support-
ing the early diagnosis of ASD (Adilakshmi et al., 2023). 
In order to gain a better understanding of ASD, a vari-
ety of studies have been proposed, encompassing diverse 
approaches such as facial-feature extraction (Guillon et al., 
2014; Aldhyani et al., 2022), eye-tracking techniques 
(Kanhirakadavath and Chandran, 2022), facial expression 
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identification (Akter et al., 2017; Mujeeb Rahman and 
Subashini, 2022; Alkahtani et al., 2023), biomedical imag-
ing processing (Jiang and Chen, 2008), and voice identifi-
cation (Schelinski et al., 2016). For example, Yolcu et al. 
introduced a convolutional neural network (CNN) model 
designed for automated facial expression recognition and 
the detection of neurological disorders (Yolcu et al., 2019). 
Another suggested approach involves leveraging machine 
learning and DL technologies to develop an eye-tracking 
system, specifically designed to assist in the early screening 
of autism in children (Haq et al., 2022; Kanhirakadavath and 
Chandran, 2022). A novel temporal voice recognition system 
was proposed by Schelinski, which uses functional magnetic 
resonance imaging in order to investigate the neural mecha-
nisms involved in voice recognition (Schelinski et al., 2016).

Although current studies have shown a notable capability 
in identifying ASD, it is noteworthy to mention that these 
studies often fall short in providing explicit explanations 
for the observed results. The interpretation of results holds 
significant value for clinicians as it facilitates their under-
standing of the decision-making process and enhances their 
 diagnostic capabilities. Explainable artificial intelligence 
(XAI) is critical in bridging the gap between the complex 
internal operations of AI models and the critical need for 
human comprehension. It is accomplished through the devel-
opment of approaches and strategies targeted at increasing 
the transparency and comprehension of AI models. By mak-
ing AI models more explainable, clinicians can understand 
why AI models generate predictions, promoting meaningful 
interpretation and building trust (Haq et al., 2020).

This paper introduces a novel approach called the explain-
able autism spectrum disorder model (EASDM) for the 
detection of ASD in toddlers and children. The structure of 
the proposed EASDM model is divided into two distinct 
components. The first component incorporates a DL model 
for detecting ASD. The second component utilizes the XAI 
technique known as shapley additive explanations (SHAP) 
to highlight crucial characteristics and provide explanations 
for the model’s predictions. The primary objective of this 
study is to develop a model capable of accurately identify-
ing ASD while simultaneously offering interpretability and 
transparency in its outcomes. Incorporating explainable tech-
niques into DL frameworks allows clinicians and researchers 
to gain insight into the underlying mechanisms contributing 
to the detection results of ASD, as well as into the important 
features and patterns used by the model to identify it. We 
used a publicly available dataset to evaluate the proposed 
model (Thabtah, 2017, 2018; Thabtah et al., 2018). The 
experimental results demonstrate that the model can identify 
ASDs and explain their outcomes. The main summarized 
points of this article are as follows:
•	 The EASDM model is proposed for the prediction of 

ASDs at an early stage.
•	 The SHAP technique is used to visually interpret individ-

ual predictions generated by the EASDM model, empha-
size important features, and provide explanations for the 
model’s predictions.

•	 A comparative case study was conducted using publically 
available datasets, and the results demonstrated the effec-
tiveness of the proposed model.

•	 Comparison of the proposed model with state-of-the-art 
models in terms of accuracy and F1-score for comparative 
performance analysis); the results highlight the efficacy 
and potential of the proposed model in accurately predict-
ing ASD in binary classification tasks.

The paper is organized as follows: The next section presents 
and discusses the related work on ASD. In the Explainable 
Autism Spectrum Disorder Model section, the proposed 
model for ASD classification is thoroughly explained. 
The ASD Data Collection section discusses ASD dataset 
description. The Experimental Evaluation section presents 
the experimental results and performance metrics. Finally, 
the Conclusion section provides the conclusion and outlines 
future directions.

RELATED WORK

In recent years, at an early stage, there has been a lot of focus 
on the analysis and classification of ASD detection. Machine 
learning, especially DL technologies, has shown remarkable 
performance in assisting in the early identification of ASD. 
A number of studies have been proposed for ASD detec-
tion that employ various techniques such as facial-feature 
extraction (Guillon et al., 2014), eye-tracking techniques 
(Kanhirakadavath and Chandran, 2022), facial expression 
identification (Mujeeb Rahman and Subashini, 2022), bio-
medical imaging processing (Jiang and Chen, 2008), and 
voice identification (Schelinski et al., 2016).

Thabtah and Peebles (2020) propose a novel machine 
learning model that utilizes induction rules for autism 
detection. The technique offers users knowledge bases and 
rules that provide insights into the model’s classification 
decisions. In other articles, the variable analysis method 
is applied that identifies a small number of features for 
robust ASD classification (Howlader et al., 2018; Thabtah, 
2018; Hossain et al., 2019). Decision trees (DTs) and logis-
tic regression (LR), two machine learning techniques, are 
used to illustrate the efficacy of the suggested model. Akter 
et al. (2021) employed a combination of ML and ensemble 
techniques, along with feature transformation methods like 
standardization and normalization, to achieve more accurate 
autism detection. Their study’s dataset was obtained from 
University of California, Irvine and Kaggle, and the findings 
showed that LR performed better than other classifiers.

Moreover, Erkan and Thanh (2019) conducted a study on 
similar datasets and explored the effectiveness of several ML 
methods such as k-nearest neighbours and random forest 
(RF) in identifying ASDs. In Bangladesh, Satu et al. (2019) 
employed tree-based classifiers to analyze and identify the 
key characteristics of “normal” or “autistic” patients. Duda 
et al. (2016) applied 6 ML classifiers on 65 items to examine 
ASD and attention deficit hyperactivity disorder. However, 
the dataset used in this study is limited and small.

Today, DL (Atlam et al., 2003; Malki et al., 2020a,b, 
2021; Farsi et al., 2021) algorithms play a significant role 
in the classification of ASD. In several studies, it has been 
shown that DL is more effective in classifying ASD than 
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ML (Almars et al., 2021; Alwateer et al., 2021; Badawy 
et al., 2023). Raj and Masood (2020) demonstrated that DL 
methods, specifically CNNs, outperformed traditional ML 
methods for ASD detection in adults, children, and adoles-
cents. The suggested model achieved impressive scores of 
99.53, 98.30, and 96.88%, respectively. The long short-term 
memory-recurrent Neural Network model is proposed for 
automated ASD detection (Carette et al., 2018; Atlam et al., 
2022; Noor et al., 2022). The dataset used in their study con-
sists of prerecorded videos of children aged 8 to 10 years. 
According to the experimental results, the model achieved 
an impressive average accuracy and a maximum accuracy 
of 98%. However, the main limitation of the model is the 
possibility of overfitting due to the small dataset. Heinsfeld 
et al. (2018) investigated the functional brain patterns that 
aid in the diagnosis of ASD using the DL approach. The pro-
posed model is evaluated and tested on resting-state func-
tional magnetic resonance imaging data. Deep neural net-
works (DNNs) have also been proposed in several studies 
to comprehend the brain states of patients with ASD (Plis 
et al., 2014; Koyamada et al., 2015; Abraham et al., 2017). 
However, the aforementioned models achieved low accu-
racy scores in ASD classification.

Furthermore, in the realm of e-healthcare, recent studies 
have utilized clinical data in tandem with intelligent sys-
tems to identify various disease types. In a notable study, 
Haq et al. deployed two ensemble learning algorithms, 
namely Ada Boost and Random Forest, to perform feature 
selection (Haq et al., 2020). Additionally, the performance 
of these classifiers was scrutinized in comparison to wrap-
per-based feature selection algorithms. Subsequently, the 
classification of diseases was undertaken leveraging the DT 
methodology. Another investigation focused on the develop-
ment of a diagnosis method for an early-stage disease using 
a CNN (Haq et al., 2022). This method improved the CNN 
model’s predictive power by integrating data augmentation 
(DA) and transfer learning (TL) methods. The study sought 
to increase the model’s accuracy in identifying early illness 
indications by applying these techniques. The Internet of 
Medical Things was also applied by Sultan Ahmad et al. to 
obtain high quality patient data (Ahmad et al., 2022). The 
study then  introduces a hybridized methodology that lever-
ages a combination of Gated Recurrent Unit and CNN as a 
classification model for disease diagnosis. In 2023, Almars 
et al. presented an intelligent system that employs the arti-
ficial gorilla troops optimizer in conjunction with DL and 
machine learning for the detection of ASD (Almars et al., 
2023). While the experimental results of the aforementioned 
research demonstrate a promising application for deploy-
ment in the e-healthcare landscape, the algorithms lack 
explainability regarding model decisions.

Previous investigations focused on demonstrating a con-
siderable competence in diagnosing ASD; nonetheless, it is 
worth noting that these studies frequently fell short in offering 
precise reasons for the observed results. The interpretability 
of algorithmic outcomes is a crucial consideration, particu-
larly in healthcare, where transparency in  decision-making 
is essential for building trust and fostering collaboration 
between medical professionals and advanced computational 
models. In other words, providing interpretations can assist 

them in understanding the decision-making process, thereby 
enhancing their diagnostic abilities XAI is crucial for 
 bridging the gap between AI models’ complex internal oper-
ations and the critical need for human comprehension. In the 
literature, only a few studies have been proposed to provide 
explanations of the model’s outcomes (Kaiser et al., 2020; 
Payrovnaziri et al., 2020; Biswas et al., 2021). However, 
there is still space for improvement in this area. In this paper, 
we introduce a new approach called the Explainable Autism 
Spectrum Disorder model, which utilizes a DL model and 
explainable techniques for the detection of ASD in children.

EXPLAINABLE AUTISM SPECTRUM 
DISORDER MODEL

The purpose of this research is to identify ASD and pro-
vide an interpretation of model outcomes. To achieve that, 
the suggested model employs a DL model to detect ASD, 
and the XAI technique was used to identify the significant 
characteristics that aid the model in detecting ASD. Figure 1 
shows the essential steps of the proposed model. It has three 
main components: (1) ASD data collection and preparation, 
(2) AI model building and training, and (3) model interpreta-
tion (performance analysis and interpretation).

ASD data collection

The ASD screening dataset was employed in this study for 
model construction, training, and evaluation. Therefor, two 
distinct datasets are collected from a public database main-
tained by Thabtah (2018) and Thabtah et al. (2018) that 
includes almost 1758 children and toddlers who were seen 
and reported. We have selected 15 relevant features from the 
21 available in the datasets, 14 of these features have been 
utilized as inputs and one as output.

This toddler ASD screening dataset has significant fea-
tures that can be used to improve the detection of ASD cases 
and identify autistic symptoms (Ribeiro and Guestrin, 2016; 
Alarifi and Young, 2018; Anirudh and Thiagarajan, 2021). 
In order to accurately differentiate between individuals with 
ASD and those without, Thabtah conducted a study in the 
field of behavioral science. In this study, Thabtah identi-
fied and recorded 10 distinct qualities (A1-A10) that were 
derived from an individual’s behavior and other related 
characteristics.

We took into account this particular dataset and chose suit-
able characteristics because it was predominantly used by 
various researchers for their ASD investigations and because 
the most promising and necessary features needed to clas-
sify the data were taken into account (Ribeiro and Guestrin, 
2016). In order to choose the most promising aspects that 
contribute to the prediction results, the explainable approach 
has also been used.

The data in Table 1 present information about individuals 
who have been assessed for ASD using the Autism Spectrum 
Quotient (AQ) questionnaire. The AQ questionnaire consists 
of 50 statements that assess different aspects of social and 
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communication skills, as well as restricted and repetitive 
behaviors and interests.

The data include scores for each of the 10 questions on 
the AQ questionnaire (columns A1 through A10), as well as 
information about the individual’s gender, ethnicity, whether 
they were born with jaundice, whether they have been diag-
nosed with autism, their country of residence, whether they 
have used an autism-related app before, their age group, 
their relationship to the person who completed the question-
naire, and whether they were diagnosed with ASD (the final 
column).

The first row of Table 1 shows the scores of the first indi-
vidual, who is a female of White-European ethnicity living 
in the United States. She did not have jaundice at birth, has 
not been diagnosed with ASD, and has not used an autism- 
related app before. Her age group is “18 and more” and she 
completed the questionnaire herself. Her scores on the AQ 
questionnaire ranged from 0 (for A6 and A10) to 1 (for A2, 
A3, A4, A5, A7, A8, and A9).

The second row shows the scores of a male of Latino eth-
nicity living in Brazil. He did not have jaundice at birth, has 
been diagnosed with ASD, and has used an autism-related 
app before. His age group and relationship to the person who 
completed the questionnaire are the same as those of the first 

individual. His scores on the AQ questionnaire ranged from 
0 (for A4, A6, and A10) to 1 (for A1, A2, A3, A5, and A9).

The third row shows the scores for a male of Latino eth-
nicity living in Spain. He was born with jaundice, has been 
diagnosed with ASD, and has not used an autism-related app 
before. His age group and relationship to the person who com-
pleted the questionnaire are the same as those of the first two 
individuals. His scores on the AQ questionnaire ranged from 
0 (for A4 and A6) to 1 (for A1, A2, A3, A5, A7, A8, and A9).

The final column indicates whether each individual was 
diagnosed with ASD based on their scores on the AQ ques-
tionnaire. The first two individuals were not diagnosed with 
ASD, while the third individual was diagnosed with ASD.

The data of Table 2 present the frequency of categorical 
variables in a dataset. Each row of the table corresponds 
to a different variable, and the columns of the table pro-
vide information about that variable. The first column, 
labeled “Unique”, shows the number of unique values 
that the variable can take on. For example, the “Ethnicity” 
variable has 11 unique values, meaning that there are 11 
different ethnicities in the dataset. The second column, 
labeled “Top”, shows the most frequently occurring value 
of the variable. For example, the most frequent ethnicity 
in the dataset is “White-European”, occurring 233 times. 

Table 1: ASD data.

A1_score  A2_score  …  Gender  Ethnicity  Jaundice  Autism  Contry_of_res  …  Relation  Class/ASD

0  1  …  F  White-European  No  No  United States  …  Self  No

1  1  …  M  Latino  No  Yes  Brazil  …  Self  No

2  1  …  M  Latino  Yes  Yes  Spain  …  Parent  Yes

Abbreviation: ASD, autism spectrum disorder.

ASD Data

Feature Selection

Step 1: Data Collection and Preparation

Testing dataset

Hyperparameter Tuning

Step 2: AI Model Building and Training

Deep Learning Model

Testing the Model
Explainable AI
(SHAP Values)

Performance Evaluation

Step 3: Model Interpretation

Data Preprocessing

Data Splitting

Training Dataset

Figure 1: Framework for three sequential stages: (1) data collection and preparation (2) AI model building and training; and 
(3) model interpretation. Abbreviation: ASD, autism spectrum disorder.
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The third column, labeled “Freq”, shows the frequency of 
the most frequently occurring value of the variable. For 
 example, the value “no” occurs most frequently for both 
the “ jaundice” and “autism” variables, occurring 635 and 
613 times, respectively.

The data also reveal other interesting information, such 
as the fact that all individuals in the dataset are 18 years or 
older (age_desc = 1, 18 and more, 704 occurrences) and 
that most individuals have not used an autism-related app 
before (used_app_before = 2, no, 692 occurrences). Finally, 
the data show that the dataset contains individuals from 67 
different countries, with the majority of individuals residing 
in the United States (contry_of_res = 67, United States, 113 
occurrences).

Data preparation

These steps include three main phases: (1) data preprocess-
ing, (2) feature selection/extraction, and (3) data splitting. In 
the following, we describe each phase in detail
•	 Data preprocessing: This step involves identifying and 

handling any inconsistencies, errors, or missing values 
present in the collected data. Techniques such as remov-
ing duplicates, imputing missing values, or correcting 
inconsistencies may be employed to ensure data integ-
rity. Moreover, this step involves transforming the data to 
ensure compatibility with the chosen AI model. This step 
includes scaling numerical features and encoding categor-
ical variables. Before using a DL model, it is essential to 
normalize the data because different attributes have differ-
ent scales and values. All attribute data were normalized 
in the range [-1, 1] using the Z normalization approach, 

which removes the mean and scales the data to unit vari-
ance, as represented in Equation 1.

 
Mean

Normalized Value =
Standard Deviation

X −
 (1)

•	 Feature selection/extraction: This step involves identi-
fying the most relevant features that are crucial for the 
analysis. Statistical techniques, domain expertise, or 
feature importance methods may be utilized to select or 
extract informative features that contribute significantly 
to the study objectives.

•	 Data splitting: The preprocessed dataset is divided into 
subsets for training, testing, and validation. Common 
approaches include random splitting or stratified sam-
pling to ensure representative subsets for each phase. The 
dataset was split into training and testing sets, with a ratio 
of approximately 70% training data and 30% testing data.

AI model building and training

In this step, a DL model is employed as the primary approach 
for classifying ASDs. The proposed model in this study is 
specifically designed to leverage the power of neural net-
works and learn intricate patterns and relationships within 
the ASD-related data. The details of the building and training 
steps are presented in the following sections.

Building step

In this study, a DNN is employed as the DL model for clas-
sifying ASDs. DNNs, also known as feedforward neural net-
works, are widely recognized for their effectiveness in various 
tasks, including classification and regression. The DNN archi-
tecture consists of multiple layers, which include an initial 
input layer, one or more intermediate hidden layers, and a final 
output layer. Every layer is composed of a collection of inter-
connected artificial neurons or nodes. In a DNN, information 
flows in a unidirectional manner from the input layer through 
the hidden layers to the output layer as shown in Figure 2.

The hidden layers of the DNN play a crucial role in learn-
ing and capturing complex patterns and representations 

Table 2: Frequency of categorical variables.

 Unique  Top  Freq
Ethnicity  11  White-European  233

Jaundice  2  No  635

Autism  2  No  613

Contry_of_res  67  United States  113

Used_app_before  2  No  692

Age_desc  1  18 and more  704

Relation  5  Self  617

ASD dataset

Yes

No

Input
Layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Output
Layer

Prediction
Class

W1 W2 W3 W4

Figure 2: A DNN model for ASD classification. Abbreviations: ASD, autism spectrum disorder; DNN, Deep Neural Network.
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within the input data. Every hidden layer neuron receives 
weighted inputs from the previous layer, processes them 
using an activation function, and passes the transformed 
information to the subsequent layer. This process allows the 
DNN to progressively extract higher-level features and rep-
resentations as the data propagate through the network.

The implementation of the DNN model is typically facil-
itated by DL frameworks like TensorFlow or Keras. These 
frameworks provide a rich set of tools, functions, and libraries 
for constructing, training, and evaluating DNN models effi-
ciently. The DNN model is a sequential neural network with 
six layers, including four hidden layers with 10 nodes each and 
a rectified linear unit (ReLU) activation function, followed by 
a fifth hidden layer with five nodes and a ReLU activation 
function, and finally an output layer with a single node and 
a sigmoid activation function. The ReLU activation function 
is commonly used in neural networks because of its ability 
to introduce nonlinearity into the model, which can improve 
its performance in classifying complex patterns in the data. 
The sigmoid activation function, on the other hand, is used to 
produce a probability output for the binary classification task.

The Adam optimizer is used for optimization, which is a 
popular optimization algorithm used for DL models. In this 
study, the binary cross-entropy loss function is employed for 
ASD classification task, which is a commonly used loss func-
tion in classification tasks. In addition, the accuracy metric, 
which is a commonly used statistic for classification tasks, is 
used to evaluate the model’s performance. The “compile()” 
function in the Keras library is utilized to specify the optim-
izer, loss function, and evaluation metric for the model.

Training step

To train the proposed model, a diverse and representative 
dataset of individuals with and without ASD is utilized. 
This dataset comprises a comprehensive range of relevant 
 features, such as demographic information, behavioral 
assessments, and neuroimaging data, which are essential for 
accurate classification.

The model is trained using a well-established optimization 
algorithm, such as stochastic gradient descent, to reduce the 
classification error and fine-tune the model’s parameters. To 
train a model on the training data using a custom number of 
epochs and batch size, the “fit()” function in Keras is used. The 
model is evaluated on the validation data after each epoch to 
monitor its performance during training. The number of epochs 
and batch size are adjusted to improve the model’s perfor-
mance. Evaluation of the DNN’s performance involves various 
metrics such as accuracy, recall, precision, and F1-score. The 
model’s generalization ability and robustness may be assessed 
using techniques like cross-validation, where the dataset is split 
into multiple subsets for training and validation.

Model interpretation

The XAI framework is utilized to identify ASD and provide 
meaningful interpretations of the outcomes generated by the 
model. The framework leverages advanced AI techniques 

to analyze and interpret complex data patterns associated 
with ASD.

During the training phase, the model learns to recognize 
patterns and relationships within the data that are indicative 
of ASD. This process involves optimizing the model’s param-
eters in order to reduce the difference between its predictions 
and the actual labels of ASD. Once the model is trained, the 
XAI framework focuses on providing interpretability of the 
model’s outcomes. This is achieved through various tech-
niques designed to shed light on the decision-making pro-
cess of the model and the factors driving its predictions.

Feature importance analysis is a common interpretability 
technique in XAI. This analysis aims to identify the features 
that have the most significant impact on the model’s pre-
dictions. By quantifying the contribution of each feature, 
researchers and clinicians can gain insights into the factors 
that are most relevant for identifying ASD. Additionally, the 
XAI framework may use visualization methods to provide a 
more intuitive understanding of the model’s outcomes. This 
can include visual representations of the model’s internal 
workings, such as heat maps highlighting regions of impor-
tance in neuroimaging data or DTs illustrating the decision 
rules employed by the model.

In this study, SHAP (shapley additive explanations) force 
plot is the technique used to visually interpret individual pre-
dictions generated by the EASDM model. It is designed to 
provide a detailed explanation of the factors contributing to a 
specific prediction for a given instance. The SHAP force plot 
displays the features that influence the prediction and their 
corresponding SHAP values, which represent the contribu-
tion of each feature to the prediction. The SHAP force plot 
also includes a reference value, which represents the average 
prediction for the entire dataset. In the next section, we visu-
alize the interpretation of the model’s predictions.

EXPERIMENTAL EVALUATION

This section aims to determine the effectiveness of EASDM 
in detecting autism disorder in toddlers and children, utiliz-
ing the dataset that was collected. The Python programming 
language was used to carry out the actual implementation of 
the proposed framework. The model’s performance test was 
conducted on the Google Colab cloud computing platform. 
This platform is equipped with a central processing unit 
operating at a frequency of 2.6 GHz and a memory capacity 
of 32 GB.

To construct the classification model, the preprocessed 
data were split into training and testing sets in an 80:20 
ratio. Specifically, 80% of the data were assigned for model 
training, while the remaining 20% was used to evaluate the 
model’s performance. The present study employs a variety 
of hyperparametric classifiers, such as random trees, LR, 
and a DL model. The classifiers were utilized to construct 
the classification model using the training data, and subse-
quently, the model’s performance was evaluated using the 
test data. The suggested model’s efficiency was evaluated 
using a variety of criteria, including accuracy, recall, preci-
sion, and F1-score.
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The following subsections provide a comprehensive 
exposition of the evaluation metrics employed in the study. 
The ASD Data Collection section explains the dataset used 
in this study. The Performance Evaluation section provides 
a comprehensive analysis of the evaluation metrics utilized. 
The experimental findings are then presented in the sections 
LR Performance, XGB Classifier, and DL model and XAI, 
which demonstrate the results in both simulated and tabular 
forms.

Performance evaluation

The classification metrics should be used to evaluate the pro-
posed model’s performance. While classification accuracy 
is a commonly used metric, it may not be the most appro-
priate one when dealing with imbalanced datasets where 
one class has a much larger representation than the others. 
Therefore, several other performance metrics have been 
developed, including precision, recall (also known as sen-
sitivity), F1-score, and the receiver operating characteristic 
(ROC) curve. The ROC curve is typically plotted on a graph 
with the sensitivity (y-axis) and specificity (x-axis) of each 
parameter. The best classifier should have a curve that passes 
through the graph’s top-left corner, showing high sensitivity 
and specificity. These performance metrics, which are com-
monly used in the field of machine learning, give an in-depth 
assessment of the classification model’s performance. This 
confusion matrix shows the number of predictions generated 
by a classifier that are true positives (TPs), true negatives 
(TN), false negatives (FN), and false positives (FP). The 
diagonal cells represent accurately classified observations, 
while the off-diagonal cells represent misclassified obser-
vations. Finally, the calculation of accuracy, precision, and 
recall metrics involves the utilization of mathematical equa-
tions (2, 4, 5) that rely on the values of TP, FP, FN, and TN 
(Gad and Hosahalli, 2020).

 
TP + TN

Accuracy =
TP + FP + FN + TN (2)

 
precision recall

F1-score = 2
precision + recall

� 
 (3)

 
TP

Recall=
TP + FP  (4)

 
TP

Precision=
TP + FN  (5)

Machine learning and XAI

This section examines the performance of machine learn-
ing models and XAI approaches in detail. Specifically, the 
development and evaluation of an LR model is discussed 
in the LR Performance section, while an XGBoost (XGB) 
model is elaborated on in the XGB Classifier section. Both 
models are analyzed thoroughly using quantitative metrics 
and visualizations to provide insights into their predictive 

capabilities on the given dataset. The explanations produced 
by XAI techniques for each model are also evaluated to 
determine their effectiveness in representing the models’ 
reasoning and decision-making processes.

LR performance

Table 3 represents the evaluation of the efficiency of the LR 
model on both the training and validation sets. The table has 
two rows for each metric: one for the training set and one 
for the validation set. The two columns for each set show 
the accuracy and ROC score of the model. In this case, the 
model performs perfectly on both the training and validation 
datasets, as demonstrated by accuracy and ROC scores of 1.

Table 4 represents the classification report of the LR model 
and provides information about the model’s performance. 
The table’s first two rows provide the precision, recall, and 
F1-score metrics for classes 0 and 1, as well as the support, 
which indicates the number of occurrences in each class. In 
this particular scenario, the model demonstrates perfect pre-
cision, recall, and F1-score for both classes, demonstrating 
its accurate classification of all cases.

According to the table, the fourth row represents the 
overall accuracy of the model, representing the proportion 
of instances that can be classified correctly. In this case, 
the model has an accuracy of 1, indicating that it correctly 
classified all instances. In the table’s final rows, the preci-
sion, recall, and F1-score metrics are shown in macro and 
weighted averages. The macro average is a statistical meas-
ure that computes the average performance across all classes, 
whereas the weighted average incorporates the level of sup-
port for each individual class. In this particular instance, it 
can be observed that both the macro and weighted average 
performance metrics have a value of 1. This means that the 
model performed perfectly across both classes.

In a binary classification problem, the confusion matrix 
shows the true and false predictions of the two classes 
(ASD and nonASD) in the rows and columns of Figure 
3. The rows of the matrix display the actual class labels, 
while the columns display the predicted class labels. The 
main diagonal elements of the matrix indicate successfully 

Table 3: Logistic regression model performance.

 Training set  Validation set
Metric  Accuracy  ROC  Accuracy  ROC
Value  1.0  1.0  1.0  1.0

Abbreviation: ROC, receiver operating characteristic.

Table 4: Classification report of the logistic regression 
model.

 Precision  Recall  F1-score  Support
0  1.00  1.00  1.00  127

1  1.00  1.00  1.00  49

Accuracy  1.00  176

Macro average  1.00  1.00  1.00  176

Weighted average  1.00  1.00  1.00  176
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categorized cases, while the off-diagonal members reflect 
erroneously classified examples. In this case, the model 
correctly predicted all instances of both classes, with 127 

TPs and 49 TNs. There were no FPs or FNs in the predic-
tions, indicating that the model performed perfectly on the 
given dataset.

A summary plot is a graphical representation of the fea-
ture importance scores generated by a machine learning 
model. It is frequently used to discover the most important 
elements in deciding the outcome variable and to compre-
hend the relative importance of each item on the model’s 
predictions. The summary plot typically displays the feature 
importance scores in the descending order, with the most 
significant features at the top of the plot. Additionally, the 
plot may highlight features that have a significant impact on 
the outcome variable for specific individuals, even if they 
are not the most significant features on the average. The 
summary plot is a useful tool for interpreting the results of a 
machine learning model and identifying areas where further 
investigation may be necessary.

The summary plot of the LR model is presented in 
Figure 4. The plot indicates that, on average, A5_Score_0 is 
the most significant feature in determining the outcome var-
iable. However, it is also observed that other features, such 
as A9_Score_1, may have a greater impact on the outcome 
variable for specific individuals.

Figure 3: The confusion matrix for the logistic regression 
model.

Figure 4: The summary plot for the logistic regression model.
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The bar plot in Figure 5 displays the cohort analysis results 
for the LR model. The plot is generated by utilizing a dic-
tionary of explanation objects. This dictionary is then used 
to create a multiple-bar plot, where each bar type represents 
one of the cohorts represented by the explanation objects. In 
the following analysis, we utilize this methodology to gener-
ate a comprehensive overview of feature importance, distin-
guishing between male and female individuals. The number 
within the brackets represents the frequency of occurrences 
in each cohort. Additionally, the feature importance values 
are displayed in red on the right side of the feature names 
for each cohort.

Figure 6 shows the summary plot for the LR model. The 
bar plot displays the SHAP values linked to a local feature’s 
importance. The default setting for the bar plot limits the dis-
play to a maximum of 10 bars. In this plot, each bar repre-
sents the SHAP value associated with a specific feature. The 
feature importance values are displayed in red on the right 
side of the feature names. Finally, it is clear that the feature 
A5_Score_0 holds the highest level of significance in deter-
mining the outcome variable on average.

XGB classifier

The force plot of the XGB model is shown in Figure 7. It is 
clear that, in this plot, higher values indicate a greater like-
lihood of negative outcomes. As a result, the features rep-
resented by the red bars in the plot contribute positively to 
the likelihood of a positive outcome (i.e. have a value of 1), 

whereas the features represented by the negatively valued 
bars have a negative impact on the outcome variable, lower-
ing the likelihood of a positive result.

The summary plot of the XGB model is presented in 
Figure 8. The plot indicates that, on average, A5_Score_0 is 
the most significant feature in determining the outcome var-
iable. However, it is also observed that other features, such 
as contry_of_res, may have a greater impact on the outcome 
variable for specific individuals.

A SHAP-based heat map is a graphical representation 
of the feature effects generated by a machine learning 
model, particularly in the context of XGB models for the 
prediction of ASD. It is commonly utilized to illustrate the 
relationship between the features and the outcome varia-
ble and to identify patterns in the data. In particular, the 
SHAP-based heat map depicts the shapley additive expla-
nations (SHAP) values of each feature, which denote the 
contributions of that feature to the prediction of ASD by 
the XGB model. The SHAP values are derived by taking 
into account all possible feature subsets and their projected 
ASD probability, which are then utilized to quantify the 
feature significance values.

The SHAP-based heat map typically displays the fea-
ture effects in a color-coded format, where warmer colors 
indicate a positive effect and cooler colors indicate a nega-
tive effect as shown in Figure 9. Furthermore, the heat map 
may highlight features that have a significant effect on the 
outcome variable for specific individuals or under specific 
conditions, as well as interactions between features that may 
affect the prediction of ASD.

Figure 5: The Cohort bar plot for the logistic regression model.
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DL model and XAI

Table 5 displays the accuracy and ROC scores of the DNN 
model for different sets. The sets include the training set, 
the test set, and the validation set. Accuracy measures how 

many predictions were correct, while the ROC score eval-
uates the ability of the model to distinguish between “Yes” 
and “No” samples. The model showed perfect performance 
on the training set, with an accuracy of 1 and an ROC score 
of 1. On the test set, the model achieved an accuracy score of 

Figure 6: The summary plot for the logistic regression model.

Figure 7: The force plot of the XGB model. XGB, XGBoost.
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0.9886, indicating that it performed nearly as well as on the 
training set. The accuracy score of the model on the valida-
tion set was 0.9829, which was slightly lower than the accu-
racy score on the test set. The validation set’s ROC score 
is 0.976, indicating that the model’s ability to differentiate 
between “Yes” and “No” samples is slightly lower than on 
the training and testing sets.

The confusion matrix gives a concise representation of the 
accuracy of predictions for each class (ASD and nonASD) 

Figure 8: The summary plot the XGB model. XGB, XGBoost.

Figure 9: Heat map of the XGB model. XGB, XGBoost.

Table 5: Accuracy and ROC scores for different sets.

Set Accuracy ROC
Train 1.0000 1.0000

Test 0.9886 0.9786

Validation 0.9829 0.9760

Abbreviation: ROC, receiver operating characteristic.

in a binary classification task. Figure 10 assigns a distinct 
row and column to each of the four possible results: TP, TN, 
FP, and FN. The figure displays accurately labeled examples 
through its diagonal elements, while misclassified examples 
are represented by the nondiagonal elements.

In the present case, the model demonstrated outstanding 
efficiency by achieving 126 TPs and 48 FNs. Consequently, 
it accurately predicted all instances within each respective 
group. The presence of only one FP and one FN in the predic-
tions suggests a high level of accuracy in the given dataset.

The force plot illustrates the position of the “output value” 
in relation to the “base value.” Additionally, it is possible to 
observe the features that exert a positive effect on the fore-
cast, denoted by the red color, as well as those that have a 
negative impact, represented by the blue color, as well as the 
magnitude of the impact. The force plot of the DL model is 
presented in Figure 11. The plot indicates that, on average, 
A8_Score_1 is the most significant feature in determining 
the outcome variable. However, it is also observed that other 
features, such as A1_Score_0, may have a greater impact on 
the outcome variable for specific individuals.

Comparative performance analysis

Table 6 summarizes the predictive performance of several 
machine learning models for binary ASD prediction. The 
three columns in the table represent the training set accuracy, 
training set ROC, and validation set accuracy for each model. 
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The LR and DL models achieved perfect training accuracy 
and ROC scores of 1.0. However, the DL model exhibited 
some overfitting with a validation accuracy of 0.983. Among 
the ensemble models, the random trees embedding model 
obtained the best training set metrics, with an accuracy of 
0.982 and an ROC of 0.989. The gradient boosting classifier 
and random forest classifier exhibited the lowest training 
performance but achieved a competitive validation accuracy 
of 0.922. Overall, the results demonstrate strong predictive 
capabilities for multiple modeling techniques on this binary 
classification dataset, with differences emerging in general-
ization performance.

Figure 12 shows the ROC curves for all the classifiers on 
the same plot, making it easy to compare their performance. 
The x-axis displays the FP rate, while the y-axis displays the 
TP rate. The nearer the ROC curve is to the upper left corner 
of the figure, the better the model’s performance. It is clear 
that the gradient boosting (GBDT) classifier has the highest 

ROC value among the models listed. The GBDT classifier 
has a test set ROC of 0.99 and a training set ROC of 0.92, 
compared to the other models that have training set ROC 
values ranging from 0.92 to 0.989. However, it is important 
to note that the ROC value is only one measure for evalu-
ating the effectiveness of a model and should be examined 
with other metrics like as accuracy, precision, and recall.

The suggested model’s accuracy and F1-score are com-
pared with those of the most advanced models as shown 
in Table 7. The models evaluated include LR, DL, support 
vector machine (SVM) (Biswas et al., 2021), and DL (Garg 
et al., 2022).

LR achieved perfect accuracy and an F1-score of 100%, 
indicating its ability to accurately classify individuals with 
and without ASD. DL exhibited an accuracy of 98.86% 
and an F1-score of 99.2%, demonstrating its strong per-
formance in ASD prediction. SVM (Biswas et al., 2021) 
showed comparable accuracy and an F1-score of 98.27%, 

Figure 11: The force plot for deep learning model.

Table 6: Model performance for binary ASD prediction.

Model Train set accuracy Train set ROC Test set accuracy
LR 1.0 1.0 1.0

Deep learning 1.0 1.0 0.988

Random trees embedding 0.982 0.989 0.922

RF embedding 0.973 0.960 0.894

GBDT embedding 0.965 0.944 0.922

Gradient boosting classifier 0.938 0.921 0.922

Random forest classifier 0.929 0.914 0.922

Abbreviations: ASD, autism spectrum disorder; LR, logistic regression; ROC, receiver operating characteristic.

Figure 12: The ROC curves for binary ASD prediction  models. 
Abbreviations: ASD, autism spectrum disorder; LR, logistic 
regression; ROC, receiver operating characteristic.Figure 10: The confusion matrix of the deep learning model.
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further supporting its effectiveness in this domain. Another 
DL model (Garg et al., 2022) achieved an accuracy of 98% 
and an F1-score of 98%.

These results indicate that the proposed model performs 
competitively compared to the state-of-the-art models in 
terms of accuracy and F1-score. Finally, the results highlight 
the efficacy and potential of the proposed model in accu-
rately predicting ASD in binary classification tasks.

CONCLUSION

For the early prediction of ASD, the suggested methodology 
combines two newly applied methodologies, namely DL and 
XAI. This paper’s main goal is to recommend the features that 
will most likely increase the accuracy of ASD prediction in 
children. The findings show that machine learning models 
may accurately identify whether or not a person has ASD when 
they are correctly optimized. The LR and DL models achieved 
perfect training accuracy and ROC scores of 1.0. However, 
the DL model exhibited some overfitting with a validation 
accuracy of 0.9829. The XAI indicates that A8_Score_1 is 
the most significant feature in determining the outcome var-
iable. However, it is also observed that other features, such 
as A1_Score_0, may have a greater impact on the outcome 
variable for specific individuals. It has been found that ML 
models’ explainability can be increased without compromis-
ing the model’s effectiveness. Finally, future research could 
focus on applying the same models to varied and large data-
sets in order to increase the scope of the study. Several steps 

can be taken by researchers to improve the performance of the 
models, such as increasing the size and diversity of the train-
ing data by collecting more samples, employing DA methods 
to generate newer training instances, or employing TL tech-
niques to use pretrained models from comparable domains or 
tasks. Furthermore, other ensemble models can be employed 
to combine the predictions of multiple models with different 
architectures, hyperparameters, or initializations, using tech-
niques such as averaging or stacking to reduce model biases 
and errors and enhance the model’s generalization capabilities.
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