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Introduction

Currently, the worldwide prevalence of diabetes in 
adults is approximately 382 million, and this num-
ber is anticipated to surge to 592 million by the year 
2035 [1]. This alarming escalation in prevalence, 
accompanied by substantial morbidity and mortality, 
serves as a stark reminder of the pressing need for 
thorough understanding and effective management 
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Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels resulting from im-
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of this condition. Although diabetes has long been 
acknowledged for its well-documented complica-
tions, notably neuropathy and retinopathy, recent 
research has revealed a compelling revelation in 
which a nuanced interplay exists between disrupted 
fatty acid metabolism and the intricacies of vascular 
microcirculatory impairments [2].

Fatty acids play critical roles in energy metabo-
lism and serve as essential building blocks for 
various cellular components [3]. Under normal 
physiological conditions, fatty acid metabolism is 
tightly regulated, thereby ensuring a balanced sup-
ply of energy and lipid homeostasis [4]. However, 
in diabetes, this regulation falters, thus resulting in 
altered fatty acid profiles, abnormal lipid buildup, 
and heightened oxidative stress.

The microvasculature, consisting of small arte-
rioles, capillaries, and veins, plays crucial roles 
in delivering oxygen and nutrients to tissues and 
facilitating waste removal [5, 6]. Understanding the 
intricate link between altered fatty acid metabolism 
and microcirculatory issues in diabetes is critical. 
Dysregulated fatty acid metabolism in diabetes 
disrupts microvascular function through various 
means, including increased production of harm-
ful lipid byproducts, such as reactive oxygen spe-
cies (ROS) and lipid peroxides. These disturbances 

foster endothelial dysfunction and disrupt vascular 
equilibrium [7–9]. Moreover, changes in fatty acid 
composition and metabolism impair endothelial 
cells, thus decreasing nitric oxide availability and 
increasing inflammation [10].

This review is aimed at investigating the intri-
cate link between altered fatty acid metabolism and 
microcirculatory impairments in diabetes, to ulti-
mately enhance the quality of life of people living 
with diabetes (Figure 1).

Mechanisms of Fatty Acid 
Metabolism Disorders in Diabetes 
Mellitus

Diabetes mellitus involves complex mechanisms 
leading to dysfunctional fatty acid metabolism, 
encompassing multiple interconnected factors 
[11, 12]. A critical element is the disruption of 
fatty acid oxidative metabolism. Impaired insu-
lin signaling and decreased insulin sensitivity 
diminish cellular uptake and utilization of fatty 
acids, thus resulting in their accumulation in the 
bloodstream [13]. This dysregulation of fatty acid 
oxidation contributes to the elevated levels of 
saturated fatty acids, lipid peroxidation products, 

Figure 1  Overview of the Relationships Among Microvascular Dysfunction, Fatty Acid Metabolism, and Diabetes.
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and fatty acid peroxidation products observed in 
people with diabetes [14].

Insulin resistance, another substantial contribu-
tor to impaired fatty acid metabolism in diabetes, 
decreases the responsiveness of target tissues to 
insulin’s actions, including glucose uptake and lipid 
metabolism regulation. In insulin-resistant states, 
adipose tissue becomes resistant to insulin’s inhibi-
tory effect on lipolysis, and release of free fatty acids 
from adipocytes increases [15]. The excessive influx 
of fatty acids into non-adipose tissues, such as the 
liver and skeletal muscle, overwhelms the capacity 
for oxidation, and contributes to lipid accumulation 
and impaired metabolic homeostasis [16].

Alterations in adipogenesis are also involved in 
dysfunctional fatty acid metabolism in diabetes 
[17]. Dysfunctional adipose tissue, with enlarged 
adipocytes, inflammation, and altered adipokine 
secretion, disrupts lipid metabolism [18, 19]. 
Visceral adipocytes contribute to insulin resist-
ance and metabolic disturbances. Increased lipoly-
sis in visceral adipose tissue releases more fatty 
acids into circulation, and consequently exacer-
bates lipid accumulation in non-adipose tissues 
and impairs insulin action. Although less active, 
subcutaneous adipose tissue acts as a reservoir for 
excess fatty acids and aids in maintaining meta-
bolic balance [20]. Insulin promotes lipogenesis, 
in which glucose is converted into fatty acids, and 
triglyceride hydrolysis increases; consequently, 
an imbalance between lipogenesis and lipolysis 
causes fatty acid buildup in the bloodstream and 
peripheral tissues.

Microcirculation and Fatty Acid 
Metabolism Dysfunction in Diabetes

The microcirculation refers to the intricate net-
work of small blood vessels, including microar-
teries and veins, where crucial exchanges occur 
between the bloodstream and tissues [21]. The 
microcirculation plays a critical role in matching 
blood flow to diverse tissue metabolic demands, 
thus ensuring proper perfusion and venous return 
regulation. Microcirculatory disturbances, such as 
altered blood properties, can lead to issues includ-
ing vessel constriction, diminished blood flow, or 
clot formation. Consequently, local tissues may 

have inadequate blood supply, which may result in 
ischemia, hypoxia, and even tissue necrosis.

Elevated levels of saturated fatty acids (SFAs), 
lipid peroxidation products (LPPs), and fatty acid 
peroxidation products (FAPPs) in diabetes directly 
harm microvascular function [22]. These metabo-
lites affect endothelial cells, by causing oxidative 
stress, inflammation, and apoptosis [23]. They also 
hinder endothelial nitric oxide synthase activity; 
decrease nitric oxide levels; and lead to vasocon-
striction, platelet aggregation, and leukocyte adhe-
sion [24]. Moreover, they activate pro-inflammatory 
pathways, such as NF-κB, that produce cytokines 
and adhesion molecules, and consequently further 
damage the endothelium [25].

Fatty acid metabolism disorders affect pericytes, 
disrupting their function and survival through mito-
chondrial dysfunction and oxidative stress [26]. 
Pericyte loss leads to increased microvascular 
permeability, impaired blood flow regulation, and 
decreased capillary density, thereby contributing to 
microcirculatory disorders in diabetes [27–30].

Additionally, these metabolic disorders affect red 
blood cells (RBCs), by altering their membrane 
properties, deformability, and promoting aggrega-
tion. In diabetes, RBCs are exposed to elevated 
SFAs and oxidative stress [31, 32]. Oxidative stress 
caused by lipid peroxidation products can damage 
RBCs by causing hemolysis and release of free 
hemoglobin, thus further impairing vascular func-
tion and causing inflammation [33].

This bidirectional relationship between abnormal 
fatty acid metabolism and microcirculatory disor-
ders in diabetes disrupts microvascular perfusion, 
oxygen delivery, and metabolic homeostasis; con-
sequently leads to tissue hypoxia and activating 
hypoxia-inducible factors; and hinders fatty acid 
oxidation processes [34].

Diabetic Fatty Acid Metabolism 
Disorders, Toxic End Products, and 
Microvascular Dysfunction

Disruptions in fatty acid metabolism in people with 
diabetes result in generation of a range of peroxi-
dized lipids, predominantly LPPs and FAPPs. LPPs 
consist of malondialdehyde (MDA), formalde-
hyde, and pyruvic acid, whereas FAPPs encompass 
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4-hydroxy-2-nonenal (4-HNE), hydroperoxyoc-
tadecadienoic acid (HPODE), malondialdehyde-
acetaldehyde (MAA), and lipid peroxide (LPO), 
among others [35]. These metabolically toxic 
byproducts disturb cellular equilibrium, impair cel-
lular structure and function, trigger inflammatory 
responses, and contribute to the initiation and pro-
gression of microcirculatory disorders.

High blood glucose and insulin levels in diabetes 
can lead to excess production and buildup of satu-
rated fatty acids (SFAs), such as palmitic acid (PA), 
stearic acid (SA), and myristic acid. These SFAs 
induce oxidative stress and free radical generation in 
endothelial and vascular smooth muscle cells, thus 
worsening inflammation, cellular dysfunction, and 
damage [36]. Consequently, these effects can lead 
to abnormal microvascular dilation and increased 
permeability, which further compromise the normal 
functioning of the microvasculature.

Lipid Peroxidation Products

LPPs, a diverse group of hydroxyl compounds gen-
erated during the hyperoxidation of lipids, are dis-
tinctive toxic metabolites associated with fatty acid 
metabolism disorders in diabetes mellitus [37]. The 
primary LPPs in people with diabetes are MDA, 
pyruvate, and formaldehyde. The presence of these 
LPPs elicits oxidative stress and triggers localized 
inflammatory responses, thereby accelerating cel-
lular injury to vascular endothelial cells, smooth 
muscle cells, and platelets, and contributing to the 
development of microcirculatory disorders [38].

MDA

MDA levels have emerged as a valuable indicator for 
evaluating alterations in microcirculatory function 
and the progression of disorders, as demonstrated by 
studies emphasizing the strong correlation between 
MDA and microvascular dysfunction [39]. Vascular 
endothelial cells are directly impaired by MDA, 
thus leading to aberrant endothelial function and 
apoptosis. Additionally, MDA prompts macrophage 
infiltration into the microvasculature, and trig-
gers the release of inflammatory factors, including 
interleukin-1β (IL-1β) and tumor necrosis factor-α 
(TNF-α) [40]. These factors further contribute to 
the injury of endothelial cells and vascular smooth 

muscle cells, and ultimately result in microvascular 
vasodilation. Importantly, the interaction between 
MDA and proteins or amino acids yields unstable 
carboxylation products known as advanced gly-
cation end products, which induce oxidation and 
structural damage to cell membrane lipids, and 
negatively affect the normal functioning of the 
microvasculature [41]. Furthermore, studies have 
indicated that MDA promotes platelet aggregation, 
as well as the synthesis and release of thrombox-
ane A2, and consequently stimulates platelet activa-
tion and thrombosis [42, 43]. Promising prospects 
include inhibiting malondialdehyde production and 
metabolism to enhance microvascular function and 
alleviate complications in people with diabetes.

Pyruvate

Pyruvic acid, an LPP derived from the breakdown of 
fatty acids and carbohydrates, is elevated in diabe-
tes, and negatively affects vascular microcirculation. 
Pyruvic acid induces oxidative stress and inflamma-
tion in endothelial cells, thus leading to cell dam-
age and diminished vascular dilation, and causing 
microcirculatory disturbances [44]. Additionally, 
PA inhibits the electron transport chain, thereby 
affecting energy metabolism and causing endothe-
lial dysfunction and ischemia, and consequently 
vascular endothelial function [45]. Moreover, it 
influences platelet function, by increasing the risk 
of thrombus formation and potentially contributing 
to microcirculatory disorders [46].

Formaldehyde

Lipid peroxidation can lead to the oxidative degra-
dation of fatty acids, phospholipids, and cholesterol, 
and the subsequent formation of a series of ROS and 
reactive metabolites including formaldehyde [39, 
47]. Formaldehyde undergoes condensation reac-
tions with biomolecules such as amino acids and 
nucleic acids and forms stable adducts, thus causing  
base and protein adducts, NA-interstrand crosslinks 
(ICLs), or DNA-protein crosslinks (DPCs) [48]. 
These adducts activate inflammatory responses, 
promote oxidative stress, and induce processes, such 
as cell apoptosis, and may lead to endothelial cell 
damage, vasoconstriction, and ultimately micro-
circulatory disorders. Additionally, formaldehyde 
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inhibits important metabolic enzymes such as pyru-
vate dehydrogenase and glutathione transferase, 
and consequently disrupts energy metabolism and 
redox balance. These may can result in endothelial 
cell dysfunction and apoptosis, and further affect 
vascular function and microcirculation [49].

FAPPs

Under hyperglycemia, excess glucose is oxidized 
in the mitochondria, which release large amounts 
of oxygen radicals that act on fatty acid molecules 
and eventually produce FAPPs. This class of very 
reactive oxidants causes microcirculatory disorders 
through a variety of mechanisms, including dam-
age to membrane lipids, influence on cell signaling, 
and inhibition of enzyme activity. Typical FAPPs 
include 4-HNE, HPODE, MAA, and LPO [50, 51].

4-HNE

As a result of oxidative stress on fatty acids, the 
reactive metabolite 4-HNE is created. A major rea-
son for 4-HNE generation is the diabetes condition 
[52]. Microvascular dysfunction can result from 
4-HNE’s effects on vascular endothelial cell func-
tion, including inhibition of nitric oxide generation 
and release from endothelial cells [53]. Second, 
4-HNE directly affects smooth muscle cells, and 
may lead to vasoconstriction and exacerbation of 
the severity of microcirculatory disorders. In addi-
tion, 4-HNE triggers apoptosis and inflammatory 
reactions that increase the permeability of the vas-
cular wall by producing and releasing a variety of 
inflammatory cytokines, thus causing tissue edema 
and microvascular leakage, as well as participating 
in the pathophysiological process of the emergence 
of microcirculatory disorders [54]. Inflammatory 
factors such as IL-6 and TNF-α further promote 
the generation of ROS and cytotoxic LPO products, 
which affect normal cellular function.

HPODE

HPODE is a common FAPP and an important 
cause of microcirculatory disorder shown to cause 
platelet aggregation and lead to microvascular 
thrombosis [55]. In addition, HPODE harms the 
endothelium layer and hastens the development 

of microcirculatory disorders by causing vascu-
lar endothelial cell apoptosis and increasing the 
inflammatory response [56]. Arachidonic acid, a 
polyunsaturated fatty acid, is a crucial part of the 
phospholipids that make up cell membranes. A 
variety of enzymes catalyze arachidonic acid oxi-
dation into several bioactive compounds, including 
HPODE. In people with diabetes, HPODE increases 
the production of ROS clusters in macrophages and 
endothelial cells by activating NADPH oxidase 
and causing oxidative damage to endothelial cell 
mitochondria. Consequently, the oxidative stress 
response is enhanced, and vascular wall damage 
causes the development of microcirculatory disor-
ders [57]. Therefore, the genesis and progression of 
microcirculatory disorders are significantly influ-
enced by the abnormal production and accumula-
tion of HOPDE in people with diabetes.

MAA

The complex known as MAA, the complex formed 
through the interaction of byproducts from fatty 
acid peroxidation with aldehydes such as acetone or 
malondialdehyde, plays a pivotal role in the devel-
opment of complications associated with diabetes 
[58]. MAA causes structural damage to the micro-
vasculature in animal models of cardiovascular dis-
ease by inducing several inflammatory responses in 
endothelial, smooth muscle, and macrophage cells. 
Additionally, MAA prompts oxidative stress, inflam-
mation, and responses and activation of the NF-κB 
signaling pathway; consequently, abnormal endothe-
lial function and microvascular disorders may result 
[59]. Protection of the arteries is lost when MAA 
binds high-density lipoprotein, thus exacerbating 
endothelial cell damage and vascular disease [60].

LPO

LPO is a class of oxidation products generated in 
fatty acid peroxidation reactions. Excess free fatty 
acids are absorbed into cells during the insulin-
resistant stage of diabetes, in which fatty acid 
metabolism is disrupted, and peroxidation reactions 
increase. These reactions lead to the generation of 
LPO and other lipid peroxidation products [61]. LPO 
is believed to be a major cause of diabetic microcir-
culatory disorders. LPO has a variety of biological 
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effects, including altering the physicochemical char-
acteristics of cell membranes, disturbing the integ-
rity of membrane lipids, increasing the generation 
of free radicals, and accelerating the oxidative stress 
response [62]. Additionally, vasoconstriction and 
higher blood flow resistance can result from LPO’s 
direct effects on the contractile activity of vascular 
smooth muscle cells [63]. The incidence of micro-
vascular disorders in people with diabetes is highly 
correlated with LPO levels [64]. Therefore, decreas-
ing LPO levels may enhance microcirculatory func-
tion in people with diabetes. LPO, a byproduct of 
oxidative stress and altered fatty acid metabolism in 
diabetes, plays a critical role in the emergence and 
advancement of microcirculatory disorders as well 
as the development of microvascular complications 
in people with diabetes.

SFA

People with diabetes exhibit significantly elevated 
levels of SFA, which are associated with insulin 
resistance, malnutrition, and chronic inflammatory 
responses. Insulin resistance disrupts the storage of 
fatty acids within adipocytes, thus leading to their 
release into the blood. Malnutrition, a common con-
current symptom of diabetes, accelerates protein 
catabolism and causes abnormal fatty acid metabo-
lism, thereby resulting in increased levels of  cer-
tain substances in the body [65]. Chronic low-grade 
inflammation is frequently observed in people with 
diabetes and stimulates adipocytes to release fatty 
acids [66].

Palmitic Acid

Several studies have found a significant elevation 
in PA levels in the serum in people with diabetes, a 
response closely associated with the occurrence of 
microvascular complications [67–69]. Additionally, 
PA induces endothelial dysfunction, increases leu-
kocyte adhesion to endothelial cells, promotes 
inflammatory responses, and contributes to the 
development of microcirculatory disturbances. PA 
may also contribute to microcirculatory dysfunction 
by inducing oxidative stress. People with diabetes 
often experience oxidative stress, and excessive 
intake of PA may exacerbate oxidative stress and 
lead to microcirculatory dysfunction [70].

SA

In people with a high-fat diet or diabetes, SA affects 
microcirculatory function by increasing oxidative 
stress and inflammatory responses in endothelial 
cells [71]. SA induces apoptosis of circulating vas-
cular progenitor cells, which play a crucial role in 
microvascular formation [72]. Additionally, SA 
activates NLRP3 and consequently triggers inflam-
matory responses that impair endothelial cells and 
contribute to microcirculatory disturbances [73].

Examination Methods

Microvascular complications associated with dia-
betes affect multiple organs throughout the body, 
including the kidneys, heart, brain, and eyes. The 
study of the correlation between cardiac and renal 
microvascular diseases relies on renal function tests, 
such as creatinine, glomerular filtration rate, and 
proteinuria, to quantify renal microvascular disease 
[74]. Positron emission tomography is considered 
the gold standard for non-invasive diagnostic imag-
ing of cardiac microvascular disease. However, 
this method has several limitations, including high 
cost, radiation exposure, equipment requirements, 
restricted availability of isotopes, and relatively 
low spatial resolution [75]. Retinal lesions can be 
assessed with optical coherence tomography (OCT) 
to examine the condition of the retina [76]. OCT 
excels in imaging superficial structures, but has 
limited effectiveness in visualizing deep microvas-
cular structures. Despite its high resolution capa-
bilities, OCT may not capture the minute details of 
very small microvascular changes. Achieving opti-
mal OCT imaging requires skilled operators with 
experience to ensure image quality and accuracy, 
thus rendering it operator-dependent. Conditions 
such as cataracts can diminish eye transparency, 
and consequently impair the quality of OCT imag-
ing. Additionally, magnetocardiography (MCG) is 
a recent clinical examination method that can aid 
in the diagnosis of cardiac microvascular disor-
ders [77]. MCG technology currently faces several 
limitations. Fist, it is not widely accessible in many 
healthcare institutions, because of its limited use. 
The high costs associated with acquiring and main-
taining MCG equipment further hinder its use, par-
ticularly in resource-constrained regions. Similarly 
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to OCT, MCG has depth limitations that make it 
more suitable for evaluating superficial aspects of 
cardiac microvascular diseases but less effective 
for deeper structures. Although MCG holds prom-
ise, additional research is needed to validate its 
accuracy and clinical utility in diagnosing cardiac 
microvascular diseases. This method may not yet be 
a fully mature alternative to traditional diagnostic 
methods at this stage.

Therapeutic Advances

The development of microcirculatory dysfunc-
tion in people with diabetes is closely associ-
ated with disturbances in fatty acid metabolism. 
Therefore, decreasing the production and effects of 
toxic metabolites derived from fatty acids is a cru-
cial approach in preventing and treating diabetes-
associated microcirculatory impairments. One 
strategy is to target the production and metabolism 
of LPPs and FAPPs, such as by using antioxidants, 
scavenging free radicals, and decreasing the for-
mation of lipid peroxidation products. For exam-
ple, ginsenoside protects against renal failure in 
diabetes through decreasing oxidative stress bio-
markers (GPX, MDA, and SOD) [40]. Selenium 
and resveratrol reverse the decreases in GSH and 
GSH-Px levels, the decline in optic nerve activity, 
the decrease in vitamin A levels, and the occurrence 
of lipid peroxidation and apoptosis induced by STZ 
[78]. Another strategy is controlling the levels of 
SFA, for example, through modification of the die-
tary composition, physical exercise, or medication. 
Nevertheless, most of these therapeutic approaches 
remain in preclinical research stages and require 
further clinical validation to establish their efficacy. 
However, they provide promising novel avenues for 
the prevention and management of microcirculatory 
impairments induced by diabetes.

Summary

The intricate relationship between disrupted fatty 
acid metabolism and microcirculatory disorders in 
diabetes highlights the need for further research 
to advance understanding of the underlying 
mechanisms and to develop more effective thera-
peutic approaches. Targeting the production and 

metabolism of lipid peroxidation products and fatty 
acid peroxidation products through interventions 
such as antioxidant therapy and inhibition of lipid 
peroxidation product formation holds promise as a 
potential therapeutic strategy. Regulating the levels 
of saturated fatty acids through dietary modifica-
tions, exercise regimens, or pharmacological inter-
ventions may also be a viable approach. Moreover, 
recent advancements in identifying therapeutic 
agents offer hope for improved treatment outcomes. 
Comprehensive investigations of the effects of dis-
rupted fatty acid metabolism on the microvascula-
ture in diabetes will be critical to pave the way to 
the development of novel therapeutic strategies that 
enhance the quality of life and prognosis of patients 
with diabetes. These endeavors are expected to con-
tribute to addressing the major challenges in man-
aging fatty acid metabolism disorders in diabetes 
mellitus and their critical implications on microcir-
culatory health.
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