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ABSTRACT

Mass spectrometry imaging (MSI) has been shown to be a valuable tool through nearly every stage of the 
preclinical drug research and development (R&D) pipeline, and even to the early phase of clinical pharmaceutical 
evaluation. MSI can specifically resolve distributions of a parent drug and its metabolic products across dosed 
specimens without loss of spatial information, thus facilitating the direct observation of a drug’s pharmacokinetic 
processes, such as absorption, distribution, metabolism, and excretion. MSI can simultaneously visualize hundreds 
of phenotype molecules, including proteins, glycans, metabolites, and lipids, which have unique distribution 
patterns and biofunctions across different physiologic regions. This featured specificity in the chemical and 
physical spaces empowers MSI as an ideal analytical technique in exploring a drug’s pharmacodynamic properties, 
including in vitro/in vivo efficacy, safety, potential toxicity, and possible molecular mechanism. The application of 
MSI in pharmaceutical research has also been expanded from the conventional dosed tissue analysis to the front 
end of the preclinical drug R&D pipeline, such as investigating the structure-activity relationship, high-throughput 
in vitro screening, and ex vivo studies on single cells, organoids, or tumor spheroids. This review summarizes MSI 
application in pharmaceutical research accompanied by its technical and methodologic advances serving this 
central demand.

Keywords: mass spectrometry imaging, drug metabolism and pharmacokinetics, toxicology, in vitro efficacy 
evaluation, pharmaceutical research and development

1. INTRODUCTION

Mass spectrometry imaging (MSI) is not only the sub-
ject of extensive studies in academics, but also of wide 
interest in the pharmaceutical industry [1, 2]. MSI can 
directly acquire the molecular profile and visualize the 
spatial distribution of each ionized compound across 
a sample, particularly biological tissues. As one of the 
most promising and developing techniques in exploring 
spatial multi-omics, MSI is able to locate the drug and 
metabolite distribution but also provides insight into 
the phenotype changes underlying disease progression 
and drug intervention. In this article basic MSI workflow 
and technical advances will be introduced. Thereafter, 
the application of MSI in pharmaceutical research and 
future directions will be further elaborated and pro-
spectively discussed.

2. GENERAL WORKFLOW OF MSI

The general MSI workflow for a preclinical pharma-
ceutical study is shown in Figure 1. Using a whole-body 
section from a dosed rat as an example, the test rat 
will be euthanized at the setup time point after drug 
administration. The body will be immediately har-
vested, frozen, and fixed into embedding gel for the 
follow-up cryo-sectioning process. After sufficient dehy-
dration, the cryo-sectioned whole-body sample will be 
mounted on a 2D moving stage and hit by an in situ 
ionization probe either in spot-by-spot scanning with a 
pulsed laser/ion beam or in line-by-line scanning with 
continuous electrospray/plasma. The exogenous drug 
along with endogenous components located in each 
impact region can be instantly desorbed, ionized, and 
transported into an MS system for MSI data acquisition. 
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Thereafter, the MSI software will reconstruct any mole
cular image according to the ion intensity from each 
physical location, given a defined mass bin centered at 
the exact m/z of the target ion with a specified mass 
tolerance.

3. TECHNICAL ADVANTAGES OF MSI

The use of mass spectrometry for signal readout out-
performed whole-body autoradiography (WBA) in drug 
distribution studies because MSI easily differentiates the 
parent drug and its metabolic product due to the m/z 
difference [3, 4]. In addition, MSI has thousands of avail-
able m/z channels for molecular profile recording com-
pared to fluorescence or infrared-based spectroscopic 

imaging. Moreover, fluorescence or infrared-based spec-
troscopic imaging usually have very limited wavelength 
choices for multiplex display because of the bandwidth 
overlap. Liquid chromatography-mass spectrometry 
(LC-MS) continues to be the gold standard method to 
investigate the pharmacokinetic properties of a drug, 
including absorption, distribution, metabolism, and 
excretion (ADME); however, LC-MS is time- and labor-in-
tensive with respect to sample pre-processing, includ-
ing extraction, purification, and enrichment. This bulk 
measurement only reflects average levels of the drug 
and its metabolites in each organ or tissue region. More 
detailed spatial information associated with the effi-
cacy or toxicity will be inevitably sacrificed because of 
the vigorous tissue disruption process. In contrast, MSI 

(a)

(d) (e) (f)

(b) (c)

Figure 1  |  Diagram illustration of the general MSI workflow in pharmaceutical research.
(a) The model mouse was euthanized, frozen, and fixed in the embedding medium after being dosed with the test drug; (b) A cryosection was 
prepared and transferred onto a loading slide and dehydrated before use; (c) The cryosection was mounted on a 2D moving stage and scanned 
by the in situ ionization probe that uses electrospray solvent, a laser beam, or ion beam; The local components were ionized and transported 
into a mass spectrometer for data acquisition; (d) Distribution of the drug and its metabolites across the whole-body section were imaged in 
available MSI software; (e) The precise localization of the drug was obtained by the guidance of optimal image or spatial segmentation by 
multivariate analysis based on region-specific molecular profile patterns; (f) The spatiotemporally-resolved ADME process was evaluated based 
on the relative abundance of the drug and its metabolites across different organs.
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achieves direct desorption and ionization of analytes 
from the biological tissue sample surface. More precise 
drug localization information can be preserved at the 
sub-organ, tissue microcompartment, or cellular level 
depending on the physical size of the impact region by 
an ionization probe.

4. AVAILABLE CHOICES FOR IN SITU IONIZATION

The development of in situ ionization, as the core of 
MSI, is always the central task to drive the progress of 
MSI advances both in sensitivity and spatial resolution. 
Nevertheless, in most situations, sensitivity and spatial 
resolution are a pair of trade-off metrics when choos-
ing a suitable in situ ionization method. Higher spatial 
resolution means less impact area and desorbed sample 
amount for feeding the follow-up detection. In turn, an 
increase in the impact area may help to raise the detec-
tion sensitivity, but at the cost of poor spatial resolution. 
Extensive efforts are still urgently needed to pursue an 
in-depth coverage of chemical species and precise obser-
vation of a drug’s process within intricate physiologic 

structures or organelles at a few microns and even 
nanometer scale.

To date, various in situ ionization methods have been 
extensively developed; representative in situ ionization 
methods are shown in Table 1. According to the types of 
desorption and ionization source, major impact probes 
include laser (e.g., matrix-assisted laser desorption/ion-
ization [MALDI]), ion beam (e.g., secondary ion mass 
spectrometer [SIMS]), plasma (e.g., dielectric barrier 
discharge ionization [DBDI]), and charged microdroplet 
spray (e.g., desorption electrospray ionization [DESI]), 
The former two typically work in a closed, vacuum envi-
ronment. The desorbed and ionized species have less 
of a chance to collide with the air and introduce the 
external interfering components during the travel from 
the sample surface into the MS inlet. Intricate instru-
mentation design and relatively higher cost are needed 
for laser/ion beam focusing, transmission, and vacuum 
maintenance. Development of the DESI was an evolu-
tionary breakthrough and opened a new era of ambient 
ionization [5]. Ambient ionization-based MSI liberates 
the sample analysis from the vacuum condition, avoids 

Table 1  |  In situ ionization methods for mass spectrometry imaging experiment in pharmacy.

Ionization   Matrix   Vacuum  Typical resolution   Chemical species   Ref.

MALDI
(Matrix-assisted laser desorption 
ionization)

  Y   Y   25-50 μm   Proteins, organic drugs   [134]

MALDI-II   Y   Y   <10 μm
extreme: 200 nm

  Proteins, small organic drugs   [11]

AP-MALDI
(Atmospheric pressure-MALDI)

  Y   N   10-30 μm
extreme: 1.4 μm

  Proteins, small organic drugs   [135]

LA-ICP
(Laser ablation-inductively coupled 
plasma)

  N   Y   5-200 μm   Metal-labels on antibody or 
organometallic drug; <200 Da

  [136]

LAESI
(Laser ablation electrospray 
ionization)

  N   N   150-400 μm
extreme: 5 μm

  Small organic drugs   [137, 138]

IR-MALDESI
(Infrared matrix-assisted laser 
desorption electrospray ionization)

  Y   Y   45-200 μm   Proteins, small organic drugs   [139, 140]

DESI
(desorption electrospray ionization)

  N   N   100-200 μm   Small organic drugs   [5, 6, 141]

AFA-DESI
(air flow-assisted DESI)

  N   N   100-200 μm
extreme: 50 μm

  Small organic drugs   [21]

Nano-DESI   N   N   10-25 μm   Proteins, small organic drugs   [142]

LESA
(Liquid extraction surface analysis)

  N   N   >200 μm   Proteins, small organic drugs   [143, 144]

SIMS
(secondary ionization mass 
spectrometry)

  N   Y   50 nm   Metal-based organic drugs
<500 Da

  [145]

nanoSIMS   N   Y   <50 nm   Metal-based drugs   [146]
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the use of a matrix, and greatly lowers the technical 
barrier and analytical cost for an MSI experiment [6]. 
Versatile ambient ionization methods are under explo-
sive development in the past decade [7].

Each ionization method has unique advantages and 
limitations in suitable chemical species, spatial res-
olution, matrix use, or ambient/vacuum operation. 
Selecting a suitable ionization source should system-
atically consider the physiochemical properties of the 
drug, the specific physical size of the sample, and the 
physiologic structure of interest. Generally, MALDI, 
DESI, and SIMS, as three major ionization sources in MSI, 
are top choices for imaging biotherapeutics, low mole-
cular weight organic synthesis drugs, and metal-based 
drugs, respectively. DESI has a typical lateral resolution 
of 50-100 μm, whereas MALDI has a typical resolution of 
20-50 μm. Therefore, DESI and MALDI can be used for 
conventional analyses of whole-body animals, organs, 
or tissues at the mm scale. Recent reports showed that 
DESI resolution had substantial improvement and robust 
performance by modifying the co-axial spraying capil-
lary setup or introducing a ring-electrode for focusing 
highly-dispersed spraying [8, 9]. Introducing a well-de-
signed optical pathway and a focusing system could 
also sharpen the impact laser point to a few microns 
or even a sub-micron scale, thus enabling laser-based 
MSI (e.g., MALDI and laser ablation-inductively cou-
pled plasma-mass spectrometry [LA-ICP-MS]) collect the 
cellular-resolved images [10, 11]. SIMS has the highest 
spatial sub-micron resolution (approximately 300 nm) 
compared to the above-mentioned sources. This advan-
tage makes SIM the first choice for observing cellular or 
sub-cellular biological process for in vitro drug research 
[12, 13]. Considering that this review emphasizes phar-
maceutical applications, more details in ionization prin-
ciples, instrumentation, and underlying mechanisms 
will not be exhaustively elaborated, which can be refer-
enced to the corresponding literature according to the 
reader’s special interests [14-16].

5. MSI SENSITIVITY

Sensitivity is another challenging issue facing MSI prac-
tical use in pharmaceutical analysis. For technical rea-
sons, the MSI advantage in free-of-sample pretreatment 
is built on the in situ ionization of drug molecules from 
the biological sample. Thus, the complex composition of 
a biomatrix will inevitably compete with the drug mole-
cule and suppress ionization efficiency, which is known 
as the matrix effect [17]. From a pharmacology perspec-
tive, an effective drug candidate with a higher potency 
means a lower dose to reach the minimum therapeutic 
level, which may also cause false-negative detection by 
MSI. From the pharmacokinetic perspective, first-pass 
elimination lowers the effective concentration of a drug 
administered through the non-intravenous route, par-
ticularly the oral pathway. Given these reasons, drug dis-
tribution results acquired using the MSI technique need 

to be carefully validated via conventional liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS)-based 
drug measurement as the complementary reference to 
avoid false-negative results, especially when the single 
dose is less than the mg/kg level.

Enormous effort has been expended in instrumenta-
tion and the MSI methodology to overcome limited sen-
sitivity. Photon-based post-ionization (UVPD) or second-
ary ionization (MALDI-2) techniques were developed to 
fully ionize non-polar, neutral molecules [11, 18, 19]. For 
ambient ionization, the DESI prototype configuration 
has undergone innovative improvement (air-flow-as-
sisted DESI [AFA-DESI]). A local vacuum chamber is cou-
pled with the MS inlet and connected with the transport 
tube from the sampling end in this set-up. The gas pres-
sure gradient focuses and directs random airflow to pick 
up additional molecules splashed from the tissue into 
the MS system for detection [20, 21].

New functional matrices have been developed for 
MALDI to avoid severe interference at the lower mass 
range and facilitate laser desorption ionization of chem-
ical species [22]. Various nanomaterials are fabricated 
as the sample loading/imprinting substrate or energy 
absorption/transfer medium to enhance the target 
detection [23]. On-tissue chemical derivatization gains 
increasing attention for those species which have low 
abundance, less stability, weak polarity, or poor ioniza-
tion efficiency, such as steroids, thiols aldehydes, and 
alkenes [24, 25]. Derivatization reagent can be intro-
duced through matrix spraying, vaporization, or photon 
irradiation in a closed chamber [26-28]. Solvent immer-
sion can be a cleanup process to remove those unwanted 
species and enhance the target analyte’s sensitivity [29, 
30]. Alternatively, the hydrogel has also been proven to 
be a biocompatible and tissue-friendly medium to con-
duct in situ desalting, digestion, cleavage, and derivati-
zation with no severe tissue disruption [31].

6. MSI DATA ACQUISITION

The peak capacity of an MSI method relies heavily on 
the performance of a mass analyzer. Currently, to fulfill 
the task of collecting increasing data volume in spatial 
omics research, a high-resolution mass spectrometer 
(HR-MS) has become the mainstream device with an 
orbitrap, quadrupole time-of-flight (QTOF), and Fourier-
transform ion cyclotron resonance (FTICR) as three rep-
resentative types. A full scan is the default mode to 
acquire as much abundant phenotype information as 
possible to present untargeted metabolic or proteomic 
profiles. HR-MS also provides the exact m/z value for a 
more convincing annotation of the ion identity. A more 
authentic spatial information specific to a relatively 
“pure” ion can be achieved by filtering the interfering 
ions that m/z are extremely close to the target [21].

The triple quadrupole and linear ion trap are 
low-resolution tandem mass analyzers that are mainly 
used for quantitative and qualitative analyses of drug 
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concentration and metabolism in an LC-MS/MS system. 
The triple quadrupole and linear ion trap can also be 
used to conduct MSI studies in special situations. Selected 
reaction monitoring (SRM) has become the alternative 
choice for targeting drugs and the active/toxic meta-
bolic products if the drug exists in a low concentration 
and is too weak to be detected by the full scan or the 
target ion has severe isobaric ion interference [32, 33]. 
An MS(n) scan performed by a linear ion trap is mainly 
used for identifying those region-specific marker ions.

Additionally, ion mobility mass spectrometry (IMS) 
has gained popularity among MSI users in recent years 
because of unique technical features in isomer separa-
tion [34]. These isomers sharing the identical m/z can be 
differentiated to achieve a separate spatial distribution. 
Interfering components will also be filtered out of the 
expected traveling time window to increase the target 
ion intensity. Coupling in the front end of an MS system 
creates a new dimension for molecular profiling and 
broadens the scope of observable species by MSI [35].

7. MSI DATA ANALYSIS

An MSI experiment generates gigabytes of big data that 
contains thousands of ion information for follow-up 
data processing. The collected MSI data relies heavily on 
the software or a self-written code to be translated into 
spatially-resolved molecular information. There is more 
than one choice of available MSI software developed for 
reader reference and practice (Table 2). Basic MSI data 
pre-processing includes mass peak picking, alignment, 
and normalization. The basic function of MSI software 
includes ion image construction, region of interest (ROI) 
delineation, and average mass spectrum generation. 
Commercial and open-access software is a user-friendly 
choice to researcher convenience [36].

Apart from the graphic user interface (GUI)-based soft-
ware, self-programing is another choice for developers 
who are engaged in the new MSI function and com-
putation method [37]. The new MSI data computation 
method can be promptly translated into real practice 
when implemented in environments, such as RStudio, 
Python, MATLAB, and Delphi. Multivariate analytic 
methods, machine learning, and deep learning models 
are introduced into the MSI data processing tasks, such 
as automatic spatial segmentation [38, 39], discrimina-
tive ion picking and latent feature extraction [40-42], 
region-specific matrix effect normalization [43], 3D 
image construction [44, 45], high-quality image recov-
ery by over- or sparse-sampling [46, 47], co-localization 
(co-registration) among multi-modal images [48, 49], and 
spatial multi-omics imaging data integration [50, 51].

8. QUANTITATIVE MSI

MSI presents the relative abundance of a drug accord-
ing to the normalized ion intensity across the tissue sec-
tion. Unfortunately, tissue structural and compositional 

heterogeneity causes severe variance in the ionization 
efficiency of the drug. This region-specific matrix effect 
may distort the linear response of a drug ion intensity 
with the local concentration [43, 52, 53], thus biasing the 
comparison of drug distribution across different regions. 
The quantitative MSI method (QMSI) has been well-de-
veloped to overcome this issue and obtain an accurate 
spatially-resolved content difference of the drug. The 
tissue-specific ion suppression can be well-compen-
sated by deuterated internal standards, chemometric 
calibration [54], or external evaluation of the tissue 
signal extinction coefficient [55]. A dilution series of 
drug and internal standards can be incorporated into a 
blank tissue to serve as the simulative dose one by sev-
eral strategies, including the on dry tissue method (the 
most frequently used) [56], under wet tissue method 
[57], in-tissue homogenate [58], and in biomimetic 3D 
tissue [59]. Another alternative strategy is to introduce 
laser-capture microdissection (LCM) to harvest numer-
ous tiny tissue regions of interest for follow-up LC-MS/
MS measurement [60, 61]. The drug content is reported 
as the molar amount per area (i.e., pmol/mm2) or the 
weight percentage (i.e., μg/g). Although each strat-
egy cannot guarantee completely identical ionization 
behavior with a native drug, the LC-MS/MS cross-valida-
tion result reveals a system error that is usually within an 
acceptable range (±15%) for drug quantitation in the 
drug metabolism and pharmacokinetics (DMPK) study.

9. SPATIAL CO-LOCALIZATION

Precise localization of drug molecules in a physiologic 
structure is a prerequisite to learn about the distribu-
tion in targeted and non-targeted regions. The drug ion 
image cannot provide an accurate map of intact tissue 
outlines and structural microregions. A guiding map 
of the region can be accessed from three strategies: (1) 
region-specific endogenous metabolite as the marker, 
such as heme, which can delineate the blood vessels [62, 
63]; (2) MSI data-driven spatial segmentation, which can 
be performed with the aid of a machine learning or deep 
learning method to split all biological image pixels into 
several groups of micro-regions according to the mole-
cular profile patterns; frequently used methods include 
principal component analysis (PCA), partial least square 
discriminant analysis (PLS-DA), t-stochastic neighbor 
embedding (t-SNE), KMeans clustering, uniform mani-
fold approximation and projection (UMAP), and convo-
lutional neural network [64]; (3) a complementary image 
that can be acquired from an optical microscopy image 
of a biological sample hematoxylin and eosin stain (the 
most frequently used) [65, 66], bright-field polarime-
try [67, 68], immunohistochemistry (IHC) [69], molecu-
lar imaging, such as fluorescence microscopy [70], and 
Fourier transfer infrared microscopy [71], nuclear medic-
inal imaging technique, such as magnetic resonance 
imaging (MRI) [72], and positron emission tomography/
computer tomography (PET/CT) [73].
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10. DRUG METABOLISM AND PHARMACOKINETICS

In preclinical drug research and development (R&D), the 
assessment of the drug candidate’s distribution is a cen-
tral concern for a better understanding of its efficacy 

and possible toxicity at the early stage of in vivo inves-
tigation. DMPK testing became the first in vivo study to 
decide whether a drug candidate deserves further inves-
tigation or suspension. Although drug concentrations in 
plasma/serum are indicative of DMPK properties, it has 

Table 2  |  Available software, package, or platform for mass spectrometry imaging data analysis.

Software   Availability   Ionization 
dependence

  Data format   Featured functions apart from basic 
visualization**

  Ref.

M2aia   Open-source   NS*   imzML   Prep; MIO; Seg; manual alignment 
feature extraction; dimension reduction

  [147]

MSiReader   Open source   NS*   imzML   QMSI; MIO; ROI, Mass Measurement 
Accuracy Heatmap and Histograms; 
Multiple sample loading

  [148, 149]

BioMap   Open-source   MALDI   Analyze 7.5, TIF, 
DICOM, PNP

  MIO; 3D; ROI   [150]

omniSpect   Open-source   DESI, MALDI   Analyze 7.5, 
mzXML, cdf

  MVA   [151]

Mirion   Open-source   NS*   imzML   Automatic processing; Automatic image 
generation; MIO

  [152]

msIQuant   Open-source   MALDI     QMSI; BDP; MIO   [153]

Cardinal   Open-source   DESI, MALDI   imzML   Seg; Stata   [154]

Pew2   Open source   LA-ICP   Agilent Batch;
PerkinElmer XL;
Thermo Qtegra

  MIO; ROI; QMSI   [155]

DataCube Explorer   Open source   NS*   imzML   Prep; 3D; ROI   [156]

OpenMSI   Open source   NS*   xml   Web-based API for remote access and 
processing,
URL-based data analysis sharing; BDP

  [129]

MITICS   Open-source   MALDI   xml   MSI; AVG; ROI   [157]

rMSIannotation   Open source   NS*   imzML   Peak annotation; isotopic peak removal; 
adduct ion recognition

  [119]

SpectralAnalysis   Open source   DESI, MALDI   imzML   Prep; MVA   [158]

LipostarMSI   Open source   NS*   imzML   Prep; ROI; Stata; MVA; MIO; automated 
identification

  [118]

MassExplorer   Open source   DESI   csv   Prep; Stata; ML; FS   [159]

Massimager   Commercial   NS*   cdf, mzXML   Prep; ROI; AVG; MIO; FS; MVA; I/E   [160, 161]

FlexImaging   Commercial   MALDI   imzML   Prep; ROI; AVG; MVA   [162]

SCiLS Lab   Commercial   MALDI   imzML   Prep; ROI; AVG, Seg; MIO; 3D; I/E; 
Extensive API

  [163]

TissueView   Commercial   MALDI   imzML   AVG; ROI; MIO   —

HDImaging   Commercial   DESI, MALDI   imzML   MIO; Streamline processing   —

*NS: not specified.
**3D:3D imaging; QMSI: quantitative MSI; AVG: average mass spectrum generation; BDP: big data processing; ROI: 
region of interest selection; Pre: spectral pre-processing steps including peak picking, baseline smoothing, data trans-
form; MIO: Multimodular images overlay; Seg: spatial segmentation; Stat: statistical description and feature extrac-
tion; ML: machine learning; I/E: import and export; FS: feature selection; API: application programming interface.
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been argued whether the plasma/serum concentrations 
alone can accurately reflect the localized drug concen-
tration in tissue. Drug enrichment located in the target 
region may indicate the potential efficacy, whereas the 
unexpected accumulation in non-target tissue proba-
bly causes adverse effects or even toxicity. For conven-
tional drug distribution measurement by LC-MS, blood-
letting is a necessary step to diminish the influence of 
vascularization and the amount of blood infused. The 
unique advantage of MSI in spatially-resolving ability 
cannot only differentiate the drug and metabolites, 
but also the blood vessel and non-vessel regions, mak-
ing MSI well-suited for the demands of DMPK studies, 
although MSI still depends on how well an MSI system 
can achieve spatial resolution. Currently, an MSI marker, 
such as heme (m/z 616), has been introduced to localize 
the blood vessel distribution or differentiate the blood 
vessel distribution from non-blood vessel regions within 
an organ [62]. Other imaging methods, such as immuno-
histochemical vessel staining, can also help to co-locate 
blood vessels and rule out their influence on blood ves-
sel distribution [74].

Currently, MSI has been extensively applied to visual-
ize the spatial distribution of a drug in animal models 
(Table 3). The distribution of a drug and its metabolites 
within intricate sub-organ structures or micro-com-
partments can be well-discerned. The MSI-observable 
object has a huge expansion that varies from mm to 
sub-microns in physical size, including in vivo samples, 
such as whole-bodies of rats or zebrafish, organs, tum-
ors, tissues, and ex vivo samples, such as organoids and 
cultured cells (Figure 2). The Dome and Marko-Varga 
groups collaboratively characterized the distribution 
and metabolism of sunitinib in solid tumors, as well 
as kidney and liver by MALDI-MSI. Drug content was 
quantified, and the three metabolites were found to 
have close distribution patterns with the administrated 
parent drug (Figure 3a-b). Tumor growth and intra-tu-
mor VEGF receptor-2 expression were significantly 
inhibited by sunitinib-treatment. There were intra-tu-
mor areas where the signal intensity of sunitinib corre-
lated with expression of VEGF receptor-2 [75]. Prideaux 
et  al. used MALDI-MSI to investigate the targeting 
efficiency of the anti-tuberculosis (TB) drug, moxiflox-
acin, in TB-infected rabbit lungs. The drug was shown 
to accumulate granulomatous lesions at levels higher 
than the surrounding lung tissue from 1.5 h post-ad-
ministration, which was quantitatively validated by 
LC-MS/MS (Figure 3c) [76].

The Zeper and He groups presented the use of 
air flow-assisted desorption electrospray ionization 
(AFA-DESI) in accurately quantifying the distribution 
of paclitaxel (PTX) and its prodrug (PTX-R) in whole-
body sections of xenografted mice based on a previ-
ously developed virtual calibration quantitative MSI 
method (VC-QMSI) [43, 77]. Based on the machine 
learning-based spatial segmentation and signal cali-
bration, the drug distribution in each organ and tumor 

micro-region was accurately discerned and quantified. 
AFA-DESI-MSI indicated that PTX is widely distributed in 
multiple organs throughout the dosed body in the PTX 
group, both in the form of through direct injection and 
liposome. In contrast, the PTX prodrug was enriched in 
the tumor tissue and catabolized to release more active 
PTX for anti-tumor action, particularly in the poorly 
differentiated intratumor and necrotic areas (Figure 
4a). The relative targeting efficiency of PTX-R was  

Figure 2  |  Span in the physical size for biological samples 
tested by MSI in pharmaceutical research.
(a) The AFA-DESI-MS image of a drug candidate, LXY6006, across a 
whole-body mouse section [31]; copyright 2017 American Chemical 
Society. (b) MALDI-MS image of Fosdevirine cysteine conjugate 
distribution across the rabbit brain sagittal section [95]; copyright 
2020 American Chemical Society. (c) AFA-DESI MS image of a pacl-
itaxel derivative prodrug heterogenous enrichment in a xenograft 
tumor section [77]; (d) Penetration of lidocaine across the human 
skin visualized by DESI-MSI [79]; copyright 2014 American Chemical 
Society. (e) Time-dependent penetration of irinotecan in tumor 
spheroids analyzed by MALDI-IMS [130]; copyright 2013 American 
Chemical Society. (f) Image of single cells cultured with acriflavine 
detected by micro-lensed fiber laser desorption mass spectrometry 
imaging [131].
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Figure 3  |  Typical cases of MSI in the preclinical DMPK study.
(a) On-tissue strategy to construct simulated tissues for quantitation of sunitinib; (b) Sunitinib and three metabolic product distributions across 
the tumor, liver, and kidney [132]; (c) Spatiotemporal distributions of moxifloxacin within the rabbit lungs at different times after dosing [76]. 
copyright 2011 American Chemical Society.



Acta  
Materia  
MedicaReview Article

Acta Materia Medica 2022, Volume 1, Issue 4, p. 507-533      517 
© 2022 The Authors. Creative Commons Attribution 4.0 International License

increased approximately 50-fold compared to the plain 
PTX injection [41]. The Ro﻿̈mpp group developed a new 
MALDI-MSI method with excellent performance in mass 
(240k @ m/z 200 full width at half maximum [FWHM]) 

and spatial resolution (10 μm pixel size). Thereafter, 
four first-line anti-tuberculosis drugs (pyrazinamide, 
rifampicin, ethambutol, and isoniazid) and two sec-
ond-line drugs (moxifloxacin and clofazimine) in murine 

Figure 4  |  Representative MSI cases in the preclinical and clinical pharmaceutical research for mapping drug penetration and 
enrichment in the target tissue.
(a) Images of H&E staining, data-driven spatial segmentation, and paclitaxel derivative prodrug within heterogenous xenograft tumor section 
and the overlay image [77]; (b) Overlay of the H&E stain with the ion images of ethambutol and clofazimine in the mouse lung lobe measured 
at 10-μm pixel size. H&E stain of the measurement field of view showing blood vessels and bronchioles. Adipocyte clusters are highlighted in 
green; Copyright 2020 American Society for Mass Spectrometry. Adapted with permission from reference [78]. (c) Penetration of aconitine and 
lidocaine across the human skin visualized by DESI-MSI [79]; copyright 2014 American Chemical Society. (d) Histologic images of tumor sections 
harvested from patients, and xevinapant distribution images overlayed with the H&E staining. Cancerous regions were delineated in green dash 
line. Copyright 2022 American Chemical Society. Adapted with permission from reference [81].
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lungs were successfully visualized in the expected action 
site of necrotizing granulomas. For the first time, clo-
fazimine was imaged and revealed to be accumulated in 
lipid deposits around airways (Figure 4b) [78].

Apart from preclinical pharmaceutical studies, MSI has 
also been successfully translated into clinical drug trials 
and therapeutic drug monitoring for a better prognostic 
evaluation. Eberlin et al. used DESI-MSI to visualize the 
transverse distribution of several sodium modulators on 
the harvested human skin. The transdermal permeation 
process can be spatially resolved from the drug amount 
across the epidermis, dermis, and hypodermis (Figure 
4c). Then, the skin structure-specific lipid compositions 
were characterized and further used to evaluate the 
compound protection and healing effects on the skin 
impairment after long-term ultraviolet exposure [79]. 
The Lobinski group combined LA-ICP-MSI and MALDI-
MSI to evaluate the penetration of cisplatin and oxalip-
latin in tumors resected from patients with colorectal 
or ovarian peritoneal carcinomatosis. The behavioral 
differences between oxaliplatin and cisplatin were con-
firmed by LA-ICP MSI. Oxaliplatin was enriched at the 
tumor periphery, whereas cisplatin penetrated deeper 
into the tumor core region [80]. Menetrey et  al. used 
MALDI-QMSI to quantitatively evaluate the penetration 
and concentration of an apoptosis protein antagonist, 
xevinapant, in tumors resected from squamous cell 
carcinoma of head and neck (SCCHN) patients in a pre-
operative window-of-opportunity (WoO). The overall 
tumor-to-plasma ratio of 25 was determined, indicating 
a tumor penetration for xevinapant in the treatment of 
SCCHN patients (Figure 4d) [81].

11. IN VIVO DRUG EFFICACY AND MOLECULAR 
MECHANISM

Elucidation of the drug candidate action of mechanism is 
fundamental to evaluate drug efficacy. MSI can simulta-
neously acquire different types of endogenous metabo-
lites apart from drug molecules. These spatially-resolved 
phenotypic changes contain functional molecular infor-
mation associated with disease progression and drug 
action. Pharmacologists can evaluate drug efficacy by 
analyzing downstream metabolites that are regulated 
by the target enzyme or transporter. An untargeted spa-
tial metabolomics study performed using MSI can also 
help to explore potential drug targets, screen the func-
tional metabolite markers, and investigate the possible 
molecular mechanism.

The Agar group conducted a complementary anal-
ysis on the glioblastoma patient-derived xenograft 
(PDX) model. The erlotinib ion image was co-registered 
with the H&E staining, MRI, and immunohistochemis-
try (IHC) results to correlate the targeting distribution 
of the EGFR inhibitor, erlotinib, and resulting tumor 
phenotype changes, including phosphoproteomics, 
for assessing protein signaling response and mRNA 
sequencing for evaluating the transcriptional response. 

This comprehensive multi-omics information provides 
insight into pharmacokinetics/pharmacodynamics (PK/
PD) correlation [82].

A hyperspectral imaging method was proposed to 
simultaneously monitor an anti-insomnia drug can-
didate, NHBA, and endogenous metabolic profile in 
whole-body rat sections by AFA-DESI-MSI [83]. The 
PCA-based hyperspectral imaging spatially revealed 
metabolic perturbation in response to the NHBA stim-
ulation. Six functional metabolites were discovered to 
be significantly changed after drug intervention, includ-
ing neurotransmitters (γ-aminobutyric acid, neurotrans-
mitter precursors choline, and glycerophosphocholine), 
an endogenous sleep factor, adenosine, and creatine, 
which are closely associated with insomnia or other 
neurologic disorders (Figure 5a). These findings provide 
insight into the mechanism underlying NHBA action. It 
has also been shown that the power of MSI-based spa-
tial metabolomics in studying the molecular mechanism 
of drug action, especially for drug candidates with mul-
tiple or undefined targets in the preclinical study stage. 
AFA-DESI-MSI combined with the metabolic network 
mapping method was developed to spatially-resolve the 
metabolic alterations from the micro-region of the rat 
brain. Key functional metabolites involved in the com-
plex regulatory network in the central nervous system 
have been elucidated (Figure 5b) after intervention 
by scopolamine which is a drug candidate for treating 
Alzheimer’s disease [84].

12. IN VITRO ACTIVITY EVALUATION AND HIGH 
THROUGHPUT SCREENING

In the early stage of drug discovery, hundreds of 
compounds were needed to go through in vitro 
high-throughput screening (HTS) to select small mole-
cular hits with binding activity to the biological tar-
get before conducting the hit-to-lead (H2L) structural 
optimization and follow-up in vitro and in vivo DMPK 
studies. A qualified drug candidate should perform an 
ideal IC50 towards the target protein. This step requires 
a robust, and reliable in vitro evaluation method with 
a convenient signal readout system to reflect the com-
pound’s activity with varied chemical structures and 
test concentrations. In addition, the in vitro tested 
object should also be highly consistent among different 
batches to guarantee the comparability in compounds 
and reproducibility of the whole screening process. The 
traditional HTS system relies on the single signal read-
out system. In recent years, the use of MSI has also been 
put into more practice in the high-content HTS process 
because of label-free and multiplex detection.

The 2D media-cultured single cells are frequently used 
testing objects for in vitro activity evaluation and drug 
candidate screening. These cells contain stably- or tran-
siently-expressed target protein (normally an enzyme, 
receptor, or transporter) through transfection. To char-
acterize the cell uptake process, the cutting-edge MSI 
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technique based on a laser or ion beam needs to be used 
to obtain the sub-cellular resolved drug ion image [15]. 
The Winograd group realized subcellular imaging of 
antibiotics in single E. coli. bacteria using time-of-flight 
secondary ion mass spectrometry (ToF-SIMS) with C60 
cation as the ion beam. The spatial resolution reached 
300 nm. The dose-response of ampicillin and tetracy-
cline in E. coli cell aggregates was confirmed [12]. The 
Hang group developed a micro-lensed fiber (MLF) to 
focus the laser desorption post-ionization (LDPI) size to 
the 300 nm level [10]. Furthermore, the 3D distribution 

of two anti-tumor drugs, proflavine and methylthionin-
ium chloride, within a single cell were realized at a voxel 
resolution of 500 × 500 × 500 nm3 using micro-lensed 
fiber laser desorption post-ionization-mass spectro-
metry imaging [MLF-LDPI-MSI] (Figure 6) [85].

Recently, the 3D culturing-based organoids and tumor 
spheroids became a promising topic in the biomedical 
engineering field and gains the increasing interest of 
researchers. Unlike the 2D cultured cells, cells in the 3D 
organoid, and tumor spheroids have more similar top-
ological structures as the native organ or tumor in the 

Figure 5  |  Typical cases of MSI in a spatial pharmaco-metabolomics and molecular mechanism study.
(a) Spatiotemporal visualization of six endogenous metabolites in rat whole-body tissue sections after N6-(4-hydroxybenzyl) adenine riboside 
(NHBA) treatment. Available on https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b00680 and previously published in Ref. [83]; (b) Images 
of significantly changed metabolites in the sagittal brain sections and the metabolic network-based spatial correlation map. The control group 
presents rats modelled with learning and memory impairment. The drug group presents model rats treated with scopolamine [84]. Copyright 
2021 American Chemical Society.

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b00680
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Figure 6  |  Representative study cases for MSI application in the in vitro drug evaluation.
(a) The optical image, and MS image of single cells dosed with acriflavine and azure [10]; (b) 2D- and 3D images of methylthioninium chloride 
within a drug-treated HeLa cell [85].
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body because of the gradient nutrient supply and mass 
exchange with the external environment [86]. Paper 
becomes an emerging 3D culture medium because the 
microporous fiber structure can simulate the extracel-
lular matrix (ECM) environment where endogenous 
cells live and grow. The potential of MALDI-MSI with 
paper-based 3D cell cultures has been demonstrated as 
a rapid, effective, and large-scale drug screening plat-
form [87].

The Hummon group evaluated the penetration of 
doxorubicin-encased liposomes into 3D cell spheroids 
over the course of 72 h using MALDI-MSI combined with 
fluorescence microscopy. The free and liposomal doxo-
rubicin, as well as its three active metabolites through-
out the spheroids after 12 h of treatment, were iden-
tified [88]. Cho et. al constructed the self-assembling 
multicellular spheroids that have reproducible blood-
brain barrier (BBB) features and functions for rapid 
screening of brain-penetrating drugs. The developed 
BBB spheroids were then successfully applied to the ex 
vivo transport of BKM120 (a BBB-penetrant drug) and 
dabrafenib (a non-penetrant drug) by MALDI-MSI [89]. 
Superhydrophobic–hydrophilic droplet microarrays 
(DMAs) were fabricated for the high-throughput cell 
assay platform for the purpose of MALDI-MSI-based 
high speed. The size of a spot in DMA was reduced 
to an internal diameter (ID) of 0.5 mm, allowing for 
as few as 10 A549 lung cancer cells confined in a 
40-nL droplet for high-content drug profiling. Finally, 
a fatty acid synthase (FASN) inhibitor, GSK2194069, 
was successfully screened out as the drug candidate  
(Figure 7) [90].

13. SAFETY AND TOXICITY EVALUATION

Safety and toxicity tests are important items for assess-
ing possible physiologic damage caused by a drug can-
didate in the preclinical trial. Many promising drug 
candidates may have to be suspended for further devel-
opment because of the severe side effects or even tox-
icity. The side effects can be induced by the intensive 
or persistent dosing of the drug or the generation of a 
toxic metabolite. Special attention should be paid when 
the local accumulation of a drug in a non-target organ is 
observed, or its toxic metabolite is monitored. MSI can-
not only provide the in situ evidence of the parent drug 
and its toxic metabolite accumulation, but also corre-
late the regional molecular profile with the histopatho-
logic information, facilitating the molecular elucidation 
behind the side effect or toxicity on the impacted tissue 
region.

There is an increasing number of MSI application 
cases investigating organ accuracy and chronic toxicity, 
such as hepatotoxicity, nephrotoxicity [91], pulmonary 
toxicity [92], ocular toxicity, and neurotoxicity [93]. The 
Cai group integrated MALDI-MSI and MS-based lipidom-
ics to study bisphenol S nephrotoxicity in mice after a 
56-day long-term exposure. Glomerular necrosis in the 

renal cortex, cloudy swelling in the renal medulla, and 
interstitial collapsing in the renal pelvis were diagnosed. 
Dysfunctional lipids were those lipids which serve signa-
ling, such as ceramide, sphingosine, and sphingomyelin, 
in the renal cortex, implicating the vulnerability of renal 
cortex lipids to the bisphenol S exposure than those in 
the renal medulla and pelvis [94]. Castellino et al. led 
a team in GlaxoSmithKline to investigate the meta-
bolism and toxicity of an HIV non-nucleoside reverse 
transcriptase inhibitor, fosdevirine (FDV), in the central 
nervous system (CNS). The MALDI-MSI was applied to 
map the spatial pattern of FDV and its metabolites in 
the brains of rabbits, minipigs, and monkeys. A cysteine 
conjugate FDV metabolite was discovered to be the pre-
dominant component and persistent in the CNS for an 
extended period after the last dose in patients with sei-
zure and minipigs. This metabolite was highly enriched 
in the white matter of rabbit and minipig brains, 
whereas the predominant component in monkey CNS 
was FDV, which was specifically located in the gray mat-
ter (Figure 8a) [95].

Organ toxicity after long-term or high-dose expo-
sure to a drug can be tested on vertebrate models, such 
as rats, mice, minipigs, rabbits, and monkeys. In addi-
tion to these model animals, zebrafish, and its larvae 
or embryos are another important vertebrate model 
in genetics and toxicology (Figure 8b) [96, 97]. Shao et 
al. examined the distribution and metabolism of diaz-
epam (DZP) and its chlorination disinfection byprod-
uct, 2-methylamino-5-chlorobenzophenone (MACB), in 
zebrafish by DESI-MSI. MACB was shown to accumulate 
in the spinal cord of the female group. Thereafter, the 
enriched MACB also transversed through the BBB and 
induce microglial phagocytosis of neurons [98].

14. MSI FOR MEDICINAL PLANT AND NATURAL 
PRODUCT

Terrestrial and marine plants, along with their symbi-
otic microorganisms on earth, are the largest natural 
library containing abundant chemical species to be 
explored. The structural diversity of natural products 
provides a valuable molecular template for medicinal 
chemist optimization to satisfy the drug-like properties 
as a qualified lead compound [99]. MSI has shown its 
potential in localizing those previously known natu-
ral products within the active medicinal part of plants. 
Additionally, the MSI can also be used for differentiat-
ing the multiple steps for active natural product bio-
synthesis or monitoring the spatiotemporal chemical 
changes of active natural products during steaming or 
boiling process.

Compared to the extensively studied biological tis-
sues, the MSI application in plant chemistry is still rela-
tively lagging. In the author’s personal view, the reason 
behind this phenomenon arises from several techni-
cal aspects. First, the natural product in a plant is also 
known as a secondary metabolite. They have a relatively 
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(a)

(b)

Figure 7  |  In vitro cell-based high-throughput screening platforms built for MSI analysis.
(a) MALDI-MS images of irinotecan and its deuterated internal standard spotted or sprayed on the paper-based cell culturing scaffolds [87]; 
Copyright 2019 American Chemical Society. (b) Quantitative MALDI-MS imaging of the GSK20194069 response in A549 cancer cells on the 
droplet microarray platform. The fold-change (treated vs. control, n = 3) of endogenous malonyl-CoA (green spot) and PC (34:1) [red spot] 
in A549 cells was plotted against the inhibitor concentration. The IC50 is marked by an asterisk and derived from this concentration-response 
curve [90].
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low content compared to the universally existing pri-
mary metabolites, such as amino acids, lipids, carbo-
hydrates, and nucleotides. The more potent a natural 

product, the less content existing within a plant/micro-
organism. Second, a plant cell has a unique cellulose 
wall providing hydrophobic mechanic protection. It 

Figure 8  |  Cases of MSI in drug safety and toxicity studies.
(a) Disposition and metabolism of fosdevirine (FDV) and its cysteine conjugate metabolite (M22) in the monkey (left), rabbit (middle), and 
minipig (right) sagittal brain sections. The left ion image mapped the FDV distribution and middle, right images mapped the M22 distribution; 
Copyright 2013 American Chemical Society. Adapted with permission from reference [95]. (b) Clozapine ion images in dosed zebrafish larvae 
acquired by MALDI (left) and DESI (right) [97].
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is not as easy as a biological tissue for sectioning and 
adhesively mounted on the substrate for MSI analy-
sis. Third, the availability of plant metabolomics data-
bases is still short in hand for a confident assignment 
of detectable species from plant imaging. In most sit-
uations, natural products derived from a certain type 
of parent structure are isomers with the only posi-
tional difference in substitute groups. The identity of 
an ion is still hard to accurately assign without the aid 
of LC-MS/MS or nuclear magnetic resonance (NMR) as 
complementary. All these reasons pose a methodologic 
challenge in sensitive detection and accurate structural 
identification by MSI.

Nevertheless, technical improvement efforts have 
been made to address these putative issues, including 
the development of nanomaterials for plant imprinting 
and on-tissue chemical derivatization of natural prod-
ucts with a specific functional group. A new composite 
substrate, a hydrophobic polydopamine-modified TiO2 
nanotube coated with plasmonic gold nanoparticle, 
was constructed as a dual-polarity surface-assisted laser 
desportion/ionization (SALDI) substrate. The intricate 
structural details of plant samples can be preserved and 
transferred for the MSI study. The flavonoids, coumarins, 
and anti-tumor medicine, vinblastine, were successfully 
visualized from the imprinted petal of J. integerrima 
[100] (Figure 9a).

Apart from the method development for plant imag-
ing, there were also mounting reports of MSI in eval-
uating the in vivo isolated natural product properties 
and a localization study [101]. The MSI application for 
the in vivo structure-activity relationship (SAR) of natu-
ral products has been reported recently. The Guo group 
quantitatively evaluated the distribution of 7 monoter-
pene indole alkaloids in 13 rat brain microcompartments 
by DESI-MSI. These alkaloids were isolated from Uncaria 
species (Rubiaceae), a traditional Chinese medicine 
(TCM) for treating CNS diseases. The distribution trend 
of these Uncaria alkaloids and the R/S-configuration 
epimer influence were summarized to provide valua-
ble SAR information [102]. Sun et al. used MALDI-MSI 
to successfully map distributions of notoginsenoside-R1, 
notoginsenoside-Fc, ginsenoside-Re in the rhizome, and 
root of Panax notoginseng (Figure 9b), a highly valua-
ble herbal medicine used in Asian for the treatment of 
cardiovascular and hematologic diseases. Furthermore, 
the spatiotemporal changes during the 2 h steaming 
process. Series of metabolites were also discovered to 
significantly change by streaming (Figure 9c-d) [103].  
Kusari and Spiteller collaboratively reported the use of 
MALDI-MSI in probing several maytansinoids (maytan-
sine, maytanprine, maytanbutine, maytanvaline, and 
normaytancyprine) distribution in Putterlickia pyracan-
tha plants. These active maytansinoids show remarkable 
antibiotic activities along with high cytotoxicity. Many 
of the maytansinoids have been put into the front line 
of chemotherapy or clinical trials for treating breast 
cancer [104].

The spatially-resolved biosynthesis pathway for the 
active natural product is another important field for 
plant chemistry. Qiu and Chen studied the spatial distri-
butions of phenolic acids, flavonoids, and tanshinones 
across the underground and aerial parts of Salvia milti-
orrhiza. The flavonoids and phenolic acids were chosen 
for in-depth visualization of phenylpropanoid biosyn-
thesis pathways in S. miltiorrhiza. DESI-MSI highlighted 
key reactions of flavonoid biosynthesis in flowers and 
identified the core precursor for phenolic acid biosyn-
thesis in Salvia species [105].

15. PROSPECTIVE OUTLOOK

MSI has been shown to be a powerful tool in pharma-
ceutical research at the preclinical and clinical phases. 
Nonetheless, MSI still has room for further improvement 
in technique and methodology. The technical advances 
in MSI and its application in pharmaceutical research are 
summarized in Figure 10 for an overview to what extent 
MSI has been developed in the two decades of com-
mon efforts by the whole community, and which spe-
cific research topics MSI is still poorly investigated and 
unsolved in future. The author would like to share some 
personal viewpoints on the direction in which the MSI 
can be further developed as a better multiplex molecu-
lar imaging technique.

1.	 Sensitivity: A more sensitive in situ soft ionization 
method needs to be further developed to acquire 
molecular profile, even from the sub-micron-sized 
impact region without severe loss in sensitivity. 
Efforts should be continuously made in the follow-
ing: the novel sample-mounting nanomaterials; 
well-designed secondary-ionization; intricate ion 
focusing lens system; sample-friendly pre-process-
ing; and chemical derivatization. This is always a 
critical research field that may drive the entire MSI 
research community forward. The territory of appli-
cable pharmaceutical research will also be expanded 
due to the technical advancement.

2.	 Spatial resolution: This is another critical MSI met-
ric to determine how precise an ion image can 
be acquired to learn more detailed spatial infor-
mation. In most situations, this is a paradox issue 
conjugating with the sensitivity because a smaller 
sampling size usually means a very limited molecu-
lar amount and the corresponding signal response 
given a constant ionization efficiency. Currently, 
spatial resolution improvement can be achieved by 
a multi-modular image fusion strategy. Molecular 
information in a smaller region can be predicted by 
co-registering pixels from a rough MS image with 
other cell-resolved digital images acquired from 
H&E, IF, and MRI, [70, 75, 106, 107]. This high-res-
olution image is artificially predicted other than 
being really observed. Once soft ionization gains 
another evolutionary breakthrough in sensitivity, 
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a more universe, cost-effective MSI method for 
sub-micron-resolved drug/metabolite imaging will 
not be the bottleneck for the single-cell, spatial 
phenotypic-omics.

3.	 Coverage of detectable species: MSI is expected 
to be a universally-applicable molecular imaging 

method to all types of functional proteins, gly-
cans, metabolites, and drugs. Thus, the complex 
networks consisting of all molecules for signaling 
regulation, metabolism, and interaction can be 
spatiotemporally explored. From the of proteomic 
imaging, especially for those protein complexes 
or membrane proteins, although there have been 

Figure 9  |  Representative cases of MSI application in medicinal plant chemistry.
(a) Localization of isorhamnetin, quercetin-3β-glucoside, and an anti-tumor cytotoxic drug vinblastine across the imprinted petal of J. inte-
gerrima; Copyright 2022 American Chemical Society. Adapted with permission from reference [133]. (b) Differentiated distributions of noto-
ginsenoside-R1 and ginsenoside-Re in the P. notoginseng root section; (c) The raw and steam-processed P. notoginseng tissues from same  
P. notoginseng root.; (d) Contents and distributions of notoginsenoside-R1 and ginsenoside-Re during the streaming process. Copyright 2021 
The Korean Society of Ginseng. Adapted with permission from reference [103].
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native MSI methods proposed for direct detection 
of those functional membrane proteins or com-
plexes [108, 109], the mass tag-based ionization and 
imaging provide a feasible and universal strategy to 
indirectly report the locations for these functional 
macromolecules [110-114]. Thus far, compared to 
the small molecular drugs, the, such as monoclo-
nal antibody drug (mAb), antibody-drug conjugate 
(ADC), and RNA drugs, still lack reports in the MSI 
field.

4.	 Diversity of testable objects: The biospecimens for 
MSI study have widely covered the whole-body ani-
mal sections from rats, mice, minipigs, zebrafish, 
monkeys, tumor spheroids, and xenografted tum-
ors from model animals or patients, fragile organs 
like lungs, and eye lenses, cultured single cells, and 
3D organoids. An way to make MSI compatible with 
the formalin-fixed paraffin embedding tissue sec-
tions is limited, and more widely used biospecimens 
in clinical pathology, particularly for ambient ion-
ization-based drug/metabolomics imaging studies.

5.	 Data collection mode: An industrialized robot sys-
tem for automatic management of batch tissue sam-
ples, streamlined MSI data acquisition, and quality 
control is expected to establish a more standardized 
procedure. It is surprising to notice that effort has 
been made in this industrial design direction [115]. 
Currently, the microprobe-based spot-by-spot or 
line-by-line scan mode remains the predominant 
way for MSI data collection, which usually takes 
hours or even a whole day to complete for a larger 
size sample or when the ultrahigh-resolution image 
is required. A rapid, microscopic snapshot-mode 
MSI data collection will definitely accelerate the 
MSI working efficiency [116]. This requires a more 
sophisticated MS instrumentation design in the 
micro-arrayed ion detection system.

6.	 Isobaric ion differentiation and reliable identifica-
tion: MSI has the difficulty in recognizing isobaric 
ions due to the in situ detection principle. Ions 
with identical formula composition cannot be dif-
ferentiated. The invention of ion mobility mass 

Figure 10  |  Retrospective overview and prospective outlook of MSI technique advances and its application in pharmaceutical 
research.
(a) MSI technique advancement; (b) Reported MSI application in pharmacy. Fields close to the left side are those which have been relatively 
well-developed and fields more closer to the right side are those which remained less developed.
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spectrometry (IMS) provides a feasible direction to 
overcome this limitation because it actually plays 
a role in gas-phase ion “chromatography” sepa-
ration. The separating ability is still under further 
improvement. Ion identification is another issue 
posed to the MSI method. A relatively confident 
result for an ion identification could be assured by 
chemometrics based on multiple matching criteria, 
including exact mass tolerance, isotope abundance, 
adduct ion types, and featured fragments [117-
119]. Apart from the post-acquisition dry method, 
the online wet experiments also provide comple-
mentary chemical structure to help isobaric ion dif-
ferentiation, such as hydrogen-deuterium exchange 
(HDX) during the ionization process in the liquid 
phase or and post-ionization traveling process in 
the gas phase [120, 121].

7.	 Functional Imaging: Mass spectral profile acquired 
by an MSI experiment is not simply the list of sep-
arated irrelevant peaks; there are biological con-
nections among these peaks. These bio-informative 
connections could provide insight into the drug-phe-
notype interaction, and spatially resolved molecular 
composition-environment-biological function. It 
is believed that MSI can also become a functional 
imaging tool to visualize biological events, such as 
proliferation, metastasis, invasion, autophagy, fer-
roptosis [122, 123], and biomolecular activity, such 
as enzyme catalysis [124-127], and biological tissue 
microenvironments, such as acidity [128], by analyz-
ing and organizing the acquired big data.

8.	 Artificial intelligence: Deep learning has already 
been introduced to learn the molecular profile pat-
tern and guide precise spatial recognition [39]. It is 
expected to introduce more cutting-edge data sci-
ence techniques and computation methods to facil-
itate the integration of spatial multi-omics informa-
tion, such as spatial genomics and transcriptomics.

9.	 Open-access to spatial omics database or platform: 
An open-access MSI data platform should be pro-
posed and encouraged for MSI researchers’ free 
exploration and communication [129]. It is also 
expected for an open-access spatial omics database 
containing molecular phenotype atlas from key 
organs and cancer tissue. This, of course, needs the 
common efforts and consensus of the entire MSI 
and spatial omics community. It is critical not only 
for the MSI community, but also for multimodality 
imaging analysis between MS images and other 
molecular imaging techniques for the entire spatial 
omics community.
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