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SUMMARY

Asymptomatic and symptomatic Alzheimer’s disease (AD) subjects may present with equivalent 

neuropathological burdens but have significantly different antemortem cognitive decline rates. 

Using the transcriptome as a proxy for functional state, we selected 414 expression profiles of 

symptomatic AD subjects and age-matched non-demented controls from a community-based 

neuropathological study. By combining brain tissue-specific protein interactomes with gene 

networks, we identified functionally distinct composite clusters of genes that reveal extensive 

changes in expression levels in AD. Global expression for clusters broadly corresponding to 

synaptic transmission, metabolism, cell cycle, survival, and immune response were downregulated, 

while the upregulated cluster included largely uncharacterized processes. We propose that loss of 

EGR3 regulation mediates synaptic deficits by targeting the synaptic vesicle cycle. Our results 

highlight the utility of integrating protein interactions with gene perturbations to generate a 

comprehensive framework for characterizing alterations in the molecular network as applied to 

AD.
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Canchi et al. reveal the transcriptomic dynamics of clinically and neuropathologically confirmed 

Alzheimer’s disease subjects by integrating brain tissue-specific proteome data with gene network 

analysis. They identify perturbed biological processes and provide insights into the interactions 

between molecular mechanisms in symptomatic Alzheimer’s disease.

Graphical Abstract

INTRODUCTION

An increase in the aging population with improved longevity reinforces the urgency for 

prevention and treatment of progressive neurodegenerative diseases including Alzheimer’s 

disease (AD), the most common cause of dementia (Bloudek et al., 2011; Hyman et al., 

2012). Although the predominant pathology of AD is accumulation of neuritic β-amyloid 

(Aβ) plaques and neurofibrillary tangles containing phosphorylated tau protein, 

cooccurrence of other neuropathological features is increasingly recognized to be a frequent 

event in brains of demented patients (Adlard et al., 2014; Bloudek et al., 2011). These 

changes, including inflammation, neuronal and synaptic loss, problems with blood 

circulation, and atrophy, correlate with clinical symptoms of cognitive decline and have led 

to changes in diagnostic criteria during the last decade (Bennett et al., 2012; Hyman et al., 

2012; Sheng et al., 2012).
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Multiple causal factors underlie the complexity of sporadic AD. Primary risk factors include 

age, gender, and family history (Hyman et al., 2012). The presence of elevated blood 

cholesterol, diabetes, depression, and multiple lifestyle and dietary factors is also associated 

with increased risk of AD dementia, although not necessarily with AD pathology (Bennett et 

al., 2012). Genetic mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1), and 

presenilin 2 (PSEN2) associated with autosomal dominant AD were critical in identifying 

pathogenic mechanisms associated with Aβ accumulation (Bennet et al., 2011; Tan et al., 

2014). Although many genome-wide association study (GWAS)-identified genes, including 

the ε4 allele of apolipoprotein E (APOE), have implications for Aβ and tau processing, most 

risk loci associate strongly with pathways involved in inflammation, lipid metabolism, and 

endocytosis, which may partially explain the association of non-genetic risk factors (Jones et 

al., 2015; Zhang et al., 2013). Translation of molecular insights into predictive screening and 

diagnosis is important, because clinical diagnosis of AD is difficult and often imprecise 

(Hyman et al., 2012). This is complicated by genetic mutations explaining only a small 

proportion of autosomal dominant AD and the presence of APOE ε4 being insufficient to 

cause AD (Bennett et al., 2012; Bloudek et al., 2011; Hyman et al., 2012). In addition, 

considering the variability in the rate of cognitive decline among individuals, transcriptomic 

changes between symptomatic and asymptomatic AD subtypes may be distinct and warrant 

subject selection refinement (Bloudek et al., 2011; White et al., 2017).

In this study, we selected 414 clinically and neuropathologically confirmed AD subjects and 

cognitively normal age-matched controls, all sampled from a large, well-characterized 

community-based neuropathological study (Bennett et al., 2012; Mostafavi et al., 2018; 

Table 1). Integration of gene perturbations with protein interactions is a powerful method to 

identify the genes causing a phenotype that are functionally cohesive, interact physically, 

and share coherent biological pathways (Mitra et al., 2013). We characterize the molecular 

network dysregulation in AD relative to controls by integrating global gene expression 

profiles with a precalculated brain tissue-specific protein-protein interactome (Greene et al., 

2015). Human brain transcriptome has revealed intrinsic topological organization of clusters 

of densely interconnected functional coexpressed modules (Jones et al., 2015; Mitra et al., 

2013; Zhang et al., 2013). Detection of the intrinsic structure of a complex network such as 

the human brain transcriptome is typically addressed using community detection 

approaches, in which “community” refers to a collection of nodes that are more densely 

connected compared with nodes outside the community. These previous studies considered 

single-interaction data as a basis for identifying the hierarchical organization. In this study, 

we integrate the transcriptomic changes underlying AD with brain tissue-specific protein 

interaction networks to identify functional composite clusters by implementing the Louvain 

algorithm. We characterized the distinct gene clusters that revealed extensive expression 

changes across multiple biological and cellular pathways implicated in AD. By applying the 

strategy of gene set enrichment, we identify four transcriptional regulators across all 

clusters. These include transforming growth factor β (TGF-β)-induced factor homeobox 1 

(TGIF1) and early growth response 3 (EGR3), which were previously not associated with 

AD and were validated by protein analysis of brain tissue samples from an independent AD 

cohort. We propose that loss of regulation of EGR3, which is crucial for short-term memory, 

mediates synaptic deficits by targeting the synaptic vesicle cycle (Poirier et al., 2008; Sheng 
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et al., 2012). These results highlight the utility of the integrated network approach to provide 

insights into global changes in gene interactions in complex heterogenous diseases such as 

AD.

RESULTS

Refined AD Phenotype Reveals Perturbation in the Transcriptomic Landscape

After adjusting for covariates and multiple testing, 1,722 genes were significantly 

differentially expressed in AD compared with age-matched non-demented controls (NDCs), 

and 57% of those genes were downregulated (Figure 1A; Table S1). Gene set enrichment 

analysis (GSEA) (Subramanian et al., 2005) revealed functional enrichment of specific 

biological processes (Gene Ontology [GO]) and molecular pathways (Kyoto Encyclopedia 

of Gene and Genomes [KEGG]) underlying these genes. A total of 453 upregulated and 113 

downregulated MSigDB gene sets (Subramanian et al., 2005) were identified at a 5% false 

discovery rate (FDR). Among the GO terms that were enriched, those related to neural 

development, gliogenesis, metabolism and localization of proteins, and extracellular 

structure organization were upregulated, while those related to synaptic transmission, 

mitochondrial and metabolic processes, and extracellular transport were downregulated 

(Tables S2 and S3). These results are consistent with previous findings of multiple studies 

associating AD pathophysiology with genetic perturbation, and they demonstrate the 

complexity of the disease (Bloudek et al., 2011; Jones et al., 2015; Mostafavi et al., 2018; 

White et al., 2017; Zhang et al., 2013).

A total of 133 differentially expressed genes were also mitochondrial genes, defined as 

mitochondrial encoded genes from MitoCarta 2.0 (Calvo et al., 2016) (Figure 1B; Table S4). 

Among these are nuclear-encoded genes for oxidative phosphorylation (OXPHOS) (Figure 

1C). These include NADH ubiquinone oxidoreductase core subunits S1 (NDUFS1, posterior 

error probability [PEP] = 2.4e–2), A5 (NDUFA5, PEP = 8.0e–5), A10 (NDUFA10, PEP = 

1.3e–2), and B5 (NDUFB5, PEP = 2.4e–2), all part of complex I involved in transfer of 

electrons to the respiratory chain. Reduced expression of complex V genes, including 

ATPase inhibitory factor I (ATPIF1, PEP = 2.4e–3), subunit B (ATP5F1, PEP = 1.8e–3), and 

subunit F1 alpha (ATP5A1, PEP = 3.7e–2) have implications for production of ATP from 

ADP (Chaban et al., 2014). In addition, expression of 8 mitochondrial ribosomal protein 

(MRP) subunits involved in translation of the mitochondrial-encoded OXPHOS genes is 

downregulated. Downregulated nuclear and mitochondrial genes encoding subunits involved 

in OXPHOS have been shown in the brain and blood of subjects with AD and mild cognitive 

impairment (MCI) compared with NDCs (Devi et al., 2006; Lunnon et al., 2017). Although 

most mitochondrial genes were downregulated, 27 genes showed upregulation (Figure 1B). 

Of these, increased expression of diazepam-binding inhibitor (DBI, PEP = 8.9e–4), known 

for its role as a mediator in corticotropin-dependent adrenal steroidogenesis and in 

modulation of the action of the γ-aminobutyric acid (GABA) receptor, has been shown to be 

dose dependent on Aβ aggregates (Luchetti et al., 2011).
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Aggregate Network of Protein and Genetic Interactions Reveals Gene Candidates in 
Biologically Distinct Clusters Associated with AD Pathogenesis

The AD subnetwork was first generated by integrating the differentially expressed genes into 

the Genome-Scale Integrated Analysis of Networks in Tissues (GIANT) brain-specific 

interactome (Greene et al., 2015). The inherent clustering structure of the AD subnetwork 

was identified computationally using the Louvain modularity maximization algorithm 

(Blondel et al., 2008) (Figure 2A). This graph-based, unsupervised clustering analysis does 

not require explicit assumptions and instead uses an iterative process to optimally partition 

nodes in a graph by maximizing the number of edges within clusters and minimizing the 

number of edges between clusters.

The largest connected AD subnetwork of 1,383 differentially expressed genes partitions into 

8 distinct clusters ranging from 2 to 373 genes. We restricted our analysis to clusters 

containing at least 5 genes. There are fewer genes in the AD subnetwork than in the 

differentially expressed genes list, because the interactome is not complete. That is, not all 

differentially expressed genes were contained in the interactome. Many of these clusters are 

significantly upregulated or downregulated in AD with respect to NDCs (Figure 2B; Table 

S5). The AD subnetwork is uploaded to the Network Data Exchange (NDEx) platform for 

further visual and interactive exploration (see Supplemental Information for details). Three 

metrics were used to assess significance of up- and downregulation. The first metric was a 

simple binomial test, comparing the number of observed positive nodes within each cluster 

to the number expected given the rate of positive nodes within the full AD subnetwork. The 

second metric was the Kolmogorov-Smirnov test to check whether the distribution of log 

fold change expression values in each cluster is significantly different from the distribution 

in the full AD subnetwork (Figure 2B). The third metric was the Wilcoxon rank-sum test to 

check the relative shift in the distribution of the log fold change of expression values in each 

cluster when compared with the full distribution in the AD subnetwork. Of the 8 detected 

clusters, 5 that contained at least 5 genes were significantly enriched for up- or 

downregulated genes (Figure 2C; Tables S5 and S6). In addition to the gene-level tests at the 

network level, we assessed the patient-level distribution of expression in each cluster for 

both AD and NDC groups (Figure S2). The expression across all genes in a given cluster for 

each patient was averaged, and the distributions between AD and NDC groups were 

compared using a Wilcoxon rank-sum test. The patient-level results are consistent with the 

gene-level results.

Overrepresentation analysis of the genes in the clusters characterized significantly enriched 

biological processes and molecular pathways. This revealed functionally distinct units 

related to broad categories of synaptic transmission, signal transduction, cell survival and 

viability, immune response, and metabolism (Figure 3; Figures S1–S5; Table S7). The 

expression for clusters corresponding to synaptic transmission, DNA repair, immune 

response, and metabolism were downregulated, while the cluster with overall upregulation 

had many uncharacterized genes (Figure 2C). Although the cluster with immune response 

functional enrichment has a large set of downregulated genes, the set of upregulated genes in 

the cluster correspond to increased proinflammatory response. The downregulated genes 

within these pathways correspond to signaling components that promote cell survival, 
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immune homeostasis, phagocytosis, and metabolism. Although evidence points toward the 

role of innate immunity in driving the neuroinflammation in AD, the consequences of 

engaging adaptive immunity in AD pathogenesis are not completely understood. Ligation of 

CD28 is critical for effective functioning of conventional T cells and is crucial to mediating 

immunity checkpoints through competing pro- and anti-inflammatory effects. Decreased 

CD28 costimulation pathways as observed here, in concert with changes in signaling 

characteristics of the innate immune cells, support discovery of a disease-associated 

molecular signature of immune cells in the brain (Deczkowska et al., 2018; Marsh et al., 

2016).

Cluster 0: Synaptic Transmission—Loss of neurons and synapses in the hippocampus 

and cerebral cortex, a characteristic of AD, is shown to strongly correlate with cognitive 

impairment, high levels of Aβ production, and tau oligomers (Sheng et al., 2012). Pathways 

in cluster 0 were enriched for neurotransmitter-related signaling (Figure 3; Figure S3; Table 

S7). Expression of neuregulin-1 (NRG1, PEP = 6.7e–4) and neurexin 3 (NRXN3, PEP = 

4.6e–3), which promote the formation of functional synaptic structures, was downregulated 

(Martinez- Mir et al., 2013). Expression for GABAA receptors was downregulated and is 

comparable to evidence of decreased amplitude of GABA currents on examination of the 

electrophysiological activity of AD brains, which correlated with reduced mRNA and 

protein expression of α1 and γ2 GABA receptor subunits in the temporal cortex (Limon et 

al., 2012; Luchetti et al., 2011). Downregulation in glutamate ionotropic receptor α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subunits (GRIA2, GRIA3, 
and GRIA4) and kainate-type subunits (GRIK1 and GRIK2), along with SHANK2, which 

forms a postsynaptic scaffold for receptor complexes, is consistent with the idea that excess 

Aβ can enhance endocytic internalization of AMPA and NMDA receptors and suppress 

long-term potentiation (LTP) in AD (Sheng et al., 2012). Increased expression of 

lysophosphatidic acid receptor 1 (LPAR1, PEP = 4.4e–3) a G protein-coupled receptor has 

been shown to regulate glutamatergic and GABAergic signaling, although the details are 

unclear (Yung et al., 2015).

In addition to neurotransmitters, neurosecretory proteins and neuropeptides are known for 

their role in neuronal cell communication. Reduced expression of neurosecretory protein 

VGF nerve growth factor inducible (VGF, PEP = 2.9e–5), associated with synaptic plasticity 

and function, has been identified in cerebrospinal fluid (CSF) and parietal cortex of AD 

patients (Cocco et al., 2010; Hendrickson et al., 2015). These results confirm and extend the 

trend to prefrontal cortex in AD. Based on the specificity of VGF to the CNS, it is an ideal 

candidate, with potential as a blood-based biomarker for AD. Reduced cortical 

corticotropin-releasing factor immunoreactivity (CRF, PEP = 2.1e–4) in the face of 

increased hypothalamic expression is a prominent neurochemical change in AD and is 

shown to mediate stress-induced hyperphosphorylated tau through its receptor 1 (CRFR1), 

with antagonist reduction of Aβ levels in animal AD models (Rissman et al., 2007; Zhang et 

al., 2016). Decreased expression of doublecortin-like kinase 1 (DCLK1, PEP = 7.7e–3), 

which has both microtubule-polymerizing activity and protein kinase activity, likely has 

implications for axon trafficking deficits (Koizumi et al., 2017). Downregulation of 
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dipeptidyl-peptidase 6 (DPP6, PEP = 1.5e–2) is associated with reduced dendritic spine 

density, a phenotype observed in AD brains (Lin et al., 2013).

Cluster 1: DNA Repair and Transcription—Abnormal cell-cycle reentry in response to 

accumulation of damaged DNA is hypothesized to precede AD pathogenesis (Davydov et 

al., 2003; Weissman et al., 2007). Pathways in cluster 1 were enriched for DNA replication 

and transcription (Figure 3; Figure S4; Table S7), with approximately 15% of genes 

associated with cell-regulated DNA repair and chromatin remodeling (Mjelle et al., 2015). 

One of the highly connected genes in this cluster, minichromosome maintenance complex 

component 7 (MCM7, PEP = 9.3e–5), was identified as an additional AD-susceptible locus 

in a large-scale GWAS study (Escott-Price et al., 2014). Expression of DNA-dependent 

protein kinase (PRKDC, PEP = 9.5e–3), which is essential for the repair of double-strand 

breaks, a lethal form of DNA damage, was downregulated and is comparable to protein 

expression observed in AD brains (Cardinale et al., 2012; Davydov et al., 2003). Reduction 

in the base excision repair, a multistep DNA repair pathway, has been detected in early 

stages of the disease (amnestic MCI), with a continued trend with progression to AD 

(Weissman et al., 2007). Reduced expression of tyrosyl-DNA phosphodiesterase 1 (TDP1, 
PEP = 4.0e–2), a DNA repair protein involved in base excision repair, is a rational result (El-

Khamisy et al., 2005). Overexpression of the DEK proto-oncogene (DEK, PEP = 4.1e–2), 

known for its role in p53 destabilization, is associated with multiple cancer phenotypes and 

has not been characterized in AD with potential as an early target for neuronal homeostasis 

(Feng et al., 2017). PHD finger protein 19(PHF19, PEP = 3.1e–5), a Polycomb-like protein, 

is known to specifically bind to histone H3 lysine 36 trimethylation (H3K36me3) and is 

crucial for PRC2 recruitment to CpG islands, which mainly mediate transcriptional 

repression (Brien et al., 2012). Although its role in AD remain unclear, overexpression of 

PHF19 as observed here has been shown to correlate positively with astrocytoma grades (Li 

et al., 2013). Whether this was a consequence of cell-state activity or an essential event is to 

be determined. Although not directly linked to AD, suppression of chromatin assembly 

factor I (CHAF1B, PEP = 2.0e–3) has been shown regulate somatic cell identity in a 

transcription factor-induced cell-fate transition correlated to protein levels in Down 

syndrome brains and identified via whole exome sequencing to be associated with 

neurogenetic disorders with intellectual disability (Alazami et al., 2015; Cheloufi et al., 

2015). Stathmin (STMN1, PEP = 3.3e–2) known to negatively correlate with neurofibrillary 

tangles and highly connected to genes in this cluster, is shown to mediate cell-cycle 

regulation via MELK kinase and has been investigated as a biomarker of DNA damage in 

AD (Marie et al., 2016; Watabe-Rudolph et al., 2012). This could provide an important link 

between dysregulation of microtubule polymerization and cell-cycle dynamics as seen in AD 

and merits further investigation.

Cluster 2: Immune Response—Immune system pathways were enriched in cluster 2 

(Figure 3; Figure S5; Table S7). Several lines of evidence suggest that chronic 

neuroinflammation, shown to correlate with disease progression, could contribute to the 

pathogenesis of AD (Jones et al., 2015; Marsh et al., 2016; Zhang et al., 2013). The 

associated causal regulators, including TYROBP as described in Zhang et al. (2013), were 

not significant, although pathways under the Fc and Complement immune and microglia 
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modules are enriched. While the role of C-type lectin receptors (CLRs), members of the 

pattern recognition receptor family in AD, are unclear, two functional variants of mannose-

binding lectin (MBL2), a soluble CLR, are associated with AD risk (Sjölander et al., 2013). 

Antagonists to MBL2 have been shown to facilitate a favorable outcome in experimental 

models of traumatic brain and spinal injury, suggesting a potential target for modulation of 

immune response (De Blasio et al., 2017; Gensel et al., 2015). Increased expression of 

chemokine receptor 4 (CXCR4, PEP = 3e–0.2) is shown to be associated with higher levels 

of activated phosphorylated protein kinase C and with synaptic pruning in early development 

(Matcovitch-Natan et al., 2016; Weeraratna et al., 2007). This was concomitant with 

decreased expression of C2H2 zinc-finger protein (PLAGL1, PEP = 4.2e–7) known to 

activate SOCS3, a suppressor of cytokine signaling (Schmidt-Edelkraut et al., 2013). Fc 

receptor-mediated glial cell activation, identified as one of the immune pathways in AD 

GWAS study, has been attributed to adverse side effects associated with failed AD 

immunotherapy trials, reiterating the need to understand the functional roles of these 

receptors (Fuller et al., 2014; Jones et al., 2015). Decreased expression of a bromodomain 

family member (BRWD1, PEP = 1.7e–6), a histone reader essential for B lymphopoiesis, is 

in lieu of the observed loss of the cross talk between the innate immune system of the brain 

and the adaptive immune system facilitated by circulating B and T cells (Mandal et al., 

2015; Marsh et al., 2016).

Cluster 3: Uncharacterized Gene Candidates—Genes from cluster 3, the only cluster 

with an overall upregulation in differential expression, were not readily characterized. No 

enriched pathways were detected, and only a few marginally significant GO terms were 

found. Examination of this cluster revealed more uncharacterized genes than expected by 

chance (p < 0.05), suggesting genes within this cluster would be attractive candidates for 

follow-up studies, because many encode for proteins not previously characterized or 

associated with AD. Enriched biological processes included small guanosine triphosphatase 

(GTPase)-mediated signal transduction (FDR = 6.21e–5), which is known to control diverse 

cellular activities (Figure S1). Evidence suggests that dysregulation of Rho- GTPase, 

specifically RHOA-, RAC1 -, and CDC42-mediated actin dynamics, could be a key 

contributor to synaptic deficits observed in AD, yet interactions among the different 

signaling pathways remain unclear (Hooff et al., 2010). Ras homolog family members C 

(RHOC, PEP = 4.5e–2), D (RHOD, PEP = 9.5e–3), and G (RHOG, PEP = 1.2e–3) were 

upregulated, and increased expression of ras-associated protein rab13 (RAB13, PEP = 4.9e–

3), a paralog for RAB8B, is consistent with the protein levels measured in AD brains (Hooff 

et al., 2010). ADP ribosylation factor subfamilies (ARF3 and ARF5) of GTPase have critical 

roles in the secretory pathway for intracellular endoplasmic reticulum (ER)-Golgi trafficking 

and in vesicle formation (Hooff et al., 2010). ARF6, a paralog of ARF3, was reported to be 

an important modulator of BACE1 sorting in early endosomes in a clathrin-independent 

route; abrogating its function led to increased Aβ secretion, while functions of ARF5 in AD 

are unknown (Sannerud et al., 2011). AD GWAS-identified gene families, including 

INPP5D, NME4, ABCA2, and PLXNB1, were upregulated (Zhang et al., 2013). 

Transcription factor EB (TFEB), a master regulator for lysosomal biogenesis, was over-

expressed, which is associated with regulated autophagy (Settembre et al., 2011). Given that 

Canchi et al. Page 8

Cell Rep. Author manuscript; available in PMC 2020 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the events in AD are non-linear, whether the observed changes are pathogenic or protective 

is to be determined.

Cluster 4: Metabolism and Bioenergetics—Metabolic dysfunction is a well-

established characteristic of AD, and pathways in cluster 4 were enriched for energy 

metabolism and vesicle-mediated transport (Figure 3; Figure S6; Table S7). Clinical imaging 

modalities have consistently shown brain glucose hypometabolism to be an early irregularity 

in patients with cognitive impairment and in some cases prelude memory deficits (Adlard et 

al., 2014; Bloudek et al., 2011). An increase in free radical production, a decrease in the 

ATP/ADP ratio, and an increased rate of oxidant damage to lipids, proteins, and 

mitochondrial DNA characterize the mitochondrial dysfunction in AD (Atamna and Frey, 

2007; Tramutola et al., 2017). Whether mitochondrial dysfunction is induced by Aβ or an 

independent upstream process is unresolved. Reduction in expression of dynamin 1-like 

protein (DNM1L, PEP = 1.4e–3) is consistent with the observation that mitochondrial 

dynamics shift in favor of fission and depend on Aβ overexpression as seen in AD (Atamna 

and Frey, 2007). Increased fission could also be explained by reduced expression of 

hypoxia-inducible domain family member 1A (HIGD1A, PEP = 1.4e–2), shown to regulate 

mitochondrial fusion by inhibiting cleavage of OPA1 (An et al., 2013). It has also been 

attributed to regulation of the mitochondrial γ-secretase, a multi-subunit protease complex 

known to cleave numerous transmembrane proteins, including notch and APP, and whose 

activity is dysregulated in AD (Hayashi et al., 2012). The presence of APP in the 

mitochondria is associated with reduced cytochrome c oxidase (COX10, PEP = 3.8e–5), 

which is essential for COX assembly and function of complex IV of the electron transport 

chain (Devi et al., 2006). Although the direct inhibition of COX on Aβ deposition has shown 

conflicting results in animal and cell culture models (Fukui et al., 2007; Silva et al., 2013), 

reduced expression of COX may lead to reduced regulatory heme, a key metabolite shown to 

bind with Aβ (Atamna and Frey, 2007). HIGD1A also plays the role of positively regulating 

the COX complex, presenting with a therapeutic treatment strategy applicable across various 

disorders with dysfunctional OXPHOS activity, including AD (Hayashi et al., 2015; Lunnon 

et al., 2017). The expression of malate dehydrogenase 1 (MDH1, PEP = 7.0e–3), a key 

enzyme in the tricarboxylic acid (TCA) cycle that reversibly catalyzes the oxidation of 

malate to oxaloacetate, was reduced, contrary to previous reports of increased protein 

expression (Atamna and Frey, 2007; Tramutola et al., 2017). This could reflect variance in 

methodological approaches, patient demography, or preferential transcription for this gene. 

Decreased MDH1 expression is proposed to enhance oxidative stress and mitochondrial 

damage because of its interaction with AKT1, activating a cascade of pathway alterations 

implicated in AD, Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) 

(Recabarren and Alarcón, 2017).

Apart from bioenergetics, alterations in metabolic pathways are observed and associated 

with risk of developing AD. Increased expression of the solute carrier family of riboflavin 

transporters (SLC52A3, PEP = 3.6e–2) is intriguing, considering riboflavin is a precursor to 

the complex II substrate flavin adenine dinucleotide. Findings of mutations and deficiency of 

the brain-specific transporter SLC52A3 are linked to motor neuron diseases (Brown-

Vialetto-Van Laere syndrome and Fazio-Londe disease) (Bosch et al., 2011; Manole et al., 
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2017), while its overexpression was shown to enhance the proliferatory capability of human 

glioma, mediating its effect through suppression of proapoptotic proteins and upregulation 

of matrix metalloproteinases (MMPs), specifically MMP-2 and MMP-9, which have been 

shown to correlate with both CSF Aβ and tau levels from AD patients (Fu et al., 2016; Wang 

et al., 2014). Understanding the signaling pathways of SLC52A3 warrants further research 

for validity as clinical diagnostic markers and for dietary considerations (Jones et al., 2017). 

Adiponectin receptor 1 (ADIPOR1, PEP = 8.4e–4), which transduce signals from 

adiponectin, an adipocyte-derived hormone involved in control of fat metabolism and insulin 

sensitivity, was upregulated. Because of its relatively recent discovery, data on ADIPOR1 
gene expression in AD are lacking, although increased plasma and CSF adiponectin has 

been detected in MCI and AD patients (Thundyil et al., 2012).

Regulatory Mechanisms of AD Pathogenesis Include TGIF1 and EGR3

We identified four transcriptional regulators whose targets were significantly enriched in the 

AD subnetwork and that were differentially expressed across all clusters (Table S8). Using 

the overrepresentation analysis feature of the pathway analysis tool WebGestalt, with a 

background set of all expressed genes in the data, we identified transcription factors that had 

more targets in the AD subnetwork than would be expected by chance. Of these significantly 

enriched transcriptional regulators, two were strongly significantly differentially expressed 

(SP1 and EGR3, adjusted p < 0.05) and two were marginally significantly differentially 

expressed (TGIF1 and BPTF, adjusted p < 0.30) (Figure 4; Figure S7). Specificity protein 1 

(SP1) is dysregulated in AD and can regulate key genes associated with AD pathology, i.e., 

APP, tau, and APOE (Citron et al., 2008). Gene members of the early growth response 

family (EGR3 and EGR1) are zinc-finger transcription factors essential for synaptic 

plasticity and memory and are downregulated. Dysregulation of EGR1, a critical microglial 

homeostatic gene required for maintenance of LTP, was associated with pathogenesis of 

APP-expressing mice, while EGR3, critical for short-term memory, has not been previously 

associated with AD (Koldamova et al., 2014; Matcovitch-Natan et al., 2016; Poirier et al., 

2008). BPTF/FAC1 is a chromatin remodeler first identified in AD brain whose 

overexpression is associated with apoptotic cell death (Strachan et al., 2005). TGF-β and 

bone morphogenic protein (BMP) bind via receptors (TGFBR1, TGFBR2, TGFBR3, and 

BMPR2) and activate Smad to regulate gene expression (Massague, 2012). Transcriptional 

corepressor TGIF recruits histone deacetylase (HDAC) to modulate Smad complexes to 

control the TGF-β signaling-based activation; these complexes have pleiotropic functions 

and are disrupted in AD (von Bernhardi et al., 2015).

TGF-β signaling across multiple cell types can activate several Smad-dependent and Smad-

independent pathways, including mitogen-activated protein kinases (MAPKs), nuclear factor 

κB (NF-κB), and phosphatidylinositol 3-kinase (PI3K)/AKT, with contradictory results in a 

context-dependent manner. Consistent with observations in AD brains, overexpression of 

TGF-β and its receptors associated with increased Aβ accumulation, along with 

downregulation of BMPR2, point toward dysregulation in signaling mediated by TGF-β 
(von Bernhardi et al., 2015). Downregulation of BMPR2 observed here could be primarily 

mediated by downregulation of EGR1, an essential microglial transcription factor 

(Matcovitch-Natan et al., 2016). Deficiency in BMPR2 is linked to increased sensitivity to 
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DNA damage, along with alterations in DNA repair efficiency, and upregulated SP1 could 

reflect DNA damage control (Li et al., 2014). This could provide an important link between 

neurodegenerative microglial phenotype and DNA damage observed in AD.

Downregulation of nemo-like kinase (NLK) and upregulation of NOTCH4, which is shown 

to strongly couple to AD risk genes and its downstream coactivator complex RBPJ, point 

toward ectopic cell-cycle reactivation (Bennet et al., 2011; Brai et al., 2016). Surprisingly, 

these observations coincide with dysregulation of genes involved in reprogramming of cell 

function, i.e., KLF9 is downregulated, while SOX2, SALL2, and JUND are up- regulated, 

consistent with reduced efficacy of glucocorticoids (GCs) in the aging brain (Juszczak and 

Stankiewicz, 2017). Downregulated KLF9 and upregulated JUND and SALL2 promote cell 

proliferation and activate PI3K/AKT pathways involved in growth factors, while increased 

expression of SOX2 and SOX12 can act synergistically with octamer-binding proteins 

(POU3F2 and POU3F3) to implement a feedforward circuit to increase expression of genes 

(YES1 and ID4) associated with cell reprogramming. Increased expression of SGK1, 
regulated by BPTF, could stem from TGF-β-activated PI3K signaling, leading to enhanced 

activity of NF-κB and providing positive feedback through cross talk between the two 

pathways (Juszczak and Stankiewicz, 2017; Massagué, 2012).

Protein Expression of TGIF1 and EGR1 Is in Concordance with Transcript-Level 
Expression

To substantiate the differences in transcription between AD and non-demented aged brains, 

we assessed the protein expression of TGIF1 and EGR1, the direct target for EGR3, in 

prefrontal cortex of AD and age-matched control brains from an independent cohort. EGR1 
shares structural and functional homology with EGR3 and reportedly is dysregulated in AD 

brains, correlating with severity of cognitive decline (Zhu et al., 2016). In line with changes 

in the transcriptome data, we observed an overall 72% decrease in EGR1 and a 51% increase 

in TGIF1 levels in AD brains relative to NDCs, and these trends reached statistical 

significance (Figure 5). We found EGR1 and TGIF1 distribution across all cell types in the 

control brains and EGR1 protein levels were particularly diminished in pyramidal neurons in 

AD brains. Overall, these results are consistent with the direction of change at mRNA levels, 

along with the strength of association in AD relative to NDCs.

DISCUSSION

We employed the Louvain modularity maximization algorithm, an unbiased and 

unsupervised community detection method, to identify coherent functional clusters in the 

molecular network associated with clinical and pathological AD when compared with age-

matched NDCs. A key feature of this study is the integration of brain tissue-specific protein 

interactions with gene expression profiles derived from large sampling of postmortem 

transcriptome data, which help strengthen disease associations. This approach and our study 

allowed identification of distinct biological clusters that point toward associations critical for 

AD (Blalock et al., 2004; Davydov et al., 2003; Jones et al., 2015; Mostafavi et al., 2018; 

Tramutola et al., 2017; Zhang et al., 2013). We found the average global expression for 

clusters that broadly correspond to synaptic transmission, metabolism, cell cycle and 
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survival, and immune response was downregulated, while upregulated cluster 3 had a large 

set of uncharacterized pathways and processes. By refining the subject selection, we 

identified genes with target potential, confirmed some previous correlations, and found a 

lack of associations for other previously reported GWAS-computed AD-susceptible genes.

The fundamental finding of this study is the identification of sets of coexpressed genes, with 

inherent expression distribution corresponding to discrete biological processes to be 

associated with symptomatic AD. We identified transcriptional regulators across all clusters, 

including EGR3 and TGIF1, along with their coexpressed targets. We found downregulation 

of EGR3 was associated with a dysregulated synaptic vesicle cycle and postulated to 

mediate synaptic deficits as seen in AD. Consistent with the association of synaptic loss with 

AD, we observed a concerted downregulation of many genes that code for proteins involved 

in the synaptic vesicle cycle, of which key genes are regulated by EGR3 (Figure 6). Vacuolar 

ATPase (V-ATPase) is an essential proton pump highly expressed on the membrane of the 

presynaptic vesicle, facilitates neurotransmitter concentration in synaptic vesicles, and is 

differentially expressed in brains of different APOE isoforms (Woody et al., 2016). The C1 

subunit of V-ATPase (ATP6V1C1) is crucial to connect the ATP catalytic domain (V1) to the 

proton-translocation domain (V0) and its downregulation has implications for vesicle 

acidification, as well as membrane fusion. Reduction in expression of neuronal SNARE 

synaptosome-associated protein 25 (SNAP25), along with synaptotagmins (SYT5 and 

SYT13) and syntaxin-binding proteins (STXBP1 and STXBP5L), indicates reduced vesicle 

docking and SNARE-mediated fusion (Bereczki et al., 2016). Furthermore, decrease in 

vesicle-fusion ATPase (NSF), necessary for disassociating the SNARE complex from the 

plasma membrane, implicates decreased availability of uncomplexed SNARE (Jahn and 

Scheller, 2006). Reduced clathrin (CLTC), along with adaptor protein complex (AP2A), 

synaptophysin (SYP), and rab (RAB3A), implies reduced vesicle recycling (Bereczki et al., 

2016). Targeting the regulation of the dysfunction of CLTC-mediated endocytosis for a 

synaptic receptor holds promise as an early intervention strategy (Sheng et al., 2012). 

Neurosecretory polypeptide precursor VGF is enhanced in neuronal activity associated with 

LTP and can be postulated to have a role in the sorting of other regulated secretory proteins, 

including glutamate, in immature vesicles (Hendrickson et al., 2015). Sortilin-related 

receptor (SORCS3), a neuronal receptor for proteolytic processing of APP, is implicated in 

AD and is shown to modulate long-term depression (LTD; Breiderhoff et al., 2013). EGR3-

mediated reductions in VGF and SORCS3 aid in the observed phenotype of Aβ-induced 

impairment in LTP and neuronal networks (Sheng et al., 2012).

Although little is known about the potential contributions of TGIF1 in AD, there is evidence 

of involvement of impaired TGF-β signaling in pathogenesis of AD (von Bernhardi et al., 

2015). Gene targets directly repressed by TGIF1 or indirectly repressed in conjunction with 

corepressors point to regulation of gene expression aimed at arresting the cell cycle 

(CDKN2C, MAX, MXI1, WWC1, and TNS2), repairing a DNA strand (DDIT4, EYA2, and 

ZYMND8), and restoring homeostasis (CEP57 and GAB2). Increased expression of TGIF1-

regulated syntaxin 4 (STX4), critical for vesicle docking, and the Wnt frizzled receptor 

(FZD9) and coreceptor (LRP5), which regulate the synaptic vesicle cycle, may be 

compensatory mechanisms to restore effects mediated by EGR3 (Inestrosa and Varela-

Nallar, 2014). Although the findings of the study are robust at the network level, more 
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detailed experiments and model system studies will provide clarity on the specific regulatory 

mechanisms.

It is important to consider some potential limitations of the interpretations of this study. The 

effect of rate of decline between the pathological subtypes in AD was not incorporated into 

the analysis. This could bias the differential gene significance toward genes with similar 

expression change in both subgroups relative to the NDCs. The underlying gene-gene 

interaction network used is imperfect. GIANT uses an algorithm to predict some gene-gene 

interactions, and although the data were thoroughly benchmarked, the algorithm is not 

perfect and there are likely numerous false-positive interactions. The clustering algorithm 

used partitions to annotate genes to a given cluster such that each gene could belong to only 

one cluster. Biologically, some genes may be involved in multiple functions, and that is not 

captured by this clustering algorithm. Functional enrichment analysis with pathway 

databases only captures known and established biology. Clusters or genes that are not 

significantly enriched may represent undescribed pathways or functions, but existing 

databases do not help with the interpretation of these pathways. RNA sequencing (RNA-seq) 

data used in the study was obtained from bulk tissue, which represents a heterogenous 

cellular mixture with known variability and changes in cellular composition with age and 

with AD. Some observed changes in the gene signals may reflect relative changes in cellular 

abundance rather than a true biological mechanism.

Altogether, our study highlights the potential for integrating brain-specific protein networks 

with transcriptome changes to identify key biological changes associated with symptomatic 

AD. We have demonstrated the use of the network approach to prioritize transcriptional 

regulators; expression patterns of a small subset of these regulators matched protein levels in 

brain tissue. EGR3 and TGIF1 identified in this pilot study are potential targets for AD 

therapeutics and require further detailed evaluation. Understanding detailed molecular 

changes in complex diseases such as AD is of prime importance, and future studies 

incorporating transcriptomic changes at the single cell may be able to address the cell-

specific transcriptional dysregulation. The transcriptomic alterations listed in this study may 

represent an important resource for investigations of molecular mechanisms involved in 

symptomatic AD.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents and resources should be directed to and will be 

fulfilled by the Lead Contact, Robert A. Rissman (rrissman@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Religious Orders Study and Rush Memory and Aging Project (ROSMAP) are an 

ongoing longitudinal clinical-pathologic cohort studies of aging and dementia with 

enrollment of aged individuals without known dementia at baseline (Bennett et al., 2012). 

All participants are organ donors. Participants undergo detailed annual clinical evaluation. 

At death, a postmortem brain evaluation is performed, including silver stain to assay AD 
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pathology (neuritic and diffuse plaques, and neurofibrillary tangles), and Aβ load by image 

analysis and the density of PHF tau-positive neurofibrillary tangles (Bennett et al., 2012). 

The Institutional Review Board of the Rush University Medical Center approved the both 

studies. An informed consent and an anatomical gift act are obtained from each participant, 

as is a repository consent that allows for sharing of data and biospecimens.

Subjects were classified as either non demented controls (NDC) or AD based on a weighted 

combination of complementary information including cognitive score (MMSE) within two 

years of death along with three separate pathological scores i.e., total amyloid load, 

neurofibrillary tangles (Braak stage), and presence of neuritic plaques (CERAD score) 

(Hyman et al., 2012). Non-demented controls (NDC) included cognitively intact subjects (no 

diagnosis of mild cognitive impairment within two years of death) containing diffuse 

amyloid deposits in absence of neuritic plaques, and neurofibrillary tangles confined to the 

entorhinal region of the brain. For subjects with cognitive impairment, AD diagnosis was 

assigned based on the high or intermediate likelihood of AD neuropathology as presented in 

the revised NIA-AA guidelines for neuropathologic assessment of disorders of the brain 

common in the elderly (Hyman et al., 2012). A total of 414 subjects who passed these 

criteria were included in the current study (Table 1). Assessment of the pathological metrics 

as well as the characteristics of the cohort has been previously described in detail (Bennett et 

al., 2012; Mostafavi et al., 2018).

For the validation cohort, subjects were selected based on diagnostic criteria as described 

above and brain tissue samples were obtained from University of California San Diego 

Shiley-Marcos Alzheimer’s Disease Research Center (ADRC) brain bank. BA9 tissue 

samples were obtained from five non-demented aged controls (77.25 ± 15.2 years, 10.8 ± 2.7 

hours, 60% M) and five AD subjects (80.6 ± 7.8 years, 9.4 ± 5.4 hours, 80% M). The 

experiment was done with the approval of the Institutional Review Board at the University 

of California San Diego.

METHOD DETAILS

ROSMAP RNA-seq Data—RNA was extracted from the gray matter of the dorsolateral 

prefrontal cortex using QIAGEN’s miRNeasy mini kit (cat. no. 217004) and the RNase free 

DNase Set (cat. no. 79254). These samples were quantified by Nanodrop and quality was 

evaluated by Agilent Bioanalyzer. RNA-Seq library preparation included the strand specific 

dUTP method with poly-A selection on samples that met quality (Bioanalyzer RNA integrity 

(RIN) score > 5) and quantity thresholds (5ug). Sequencing was performed on the Illumina 

HiSeq with 101bp paired-end reads and achieved coverage of 150M reads of the first 12 

samples. These 12 samples will serve as a deep coverage reference and included 2 males and 

2 females of non-impaired, mild cognitive impaired, and Alzheimer’s cases. The remaining 

samples were sequenced with coverage of 50M reads. The libraries were constructed and 

pooled according to the RIN scores such that similar RIN scores would be pooled together. 

Varying RIN scores results in a larger spread of insert sizes during library construction and 

leads to uneven coverage distribution throughout the pool.

The raw RNA-seq files were processed to trim the adaptor sequences and to remove rRNA 

reads. Using the non-gapped aligner Bowtie (Langmead et al., 2009), the reads were aligned 
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to reference transcriptome and RSEM (Li and Dewey, 2011) was utilized to estimate the 

transcript levels in the form of fragments per kilobase of exon per million reads mapped 

(FPKM). Details of the RNA-seq data pipeline can be found in previous literature 

(Mostafavi et al., 2018; White et al., 2017).

Immunohistochemistry for TGIF1 and EGR3—We assessed the protein expression 

and distribution of TGIF1 and EGR3 target EGR1 in prefrontal cortex brain tissue of 

clinically diagnosed pathologically confirmed AD and from age matched controls using 

standard immunohistochemistry techniques. Paraffin-embedded tissue blocks were serially 

sectioned and incubated with either TGIF antibody (H-1) (Santa Cruz Biotechnology) or 

EGR1 antibody (Cell Signaling Technology). Staining was performed with chromogen 3,3’ -

diaminobenzidine (DAB) to identify the immunoreactive structures and counterstained with 

hematoxylin. All images were acquired using an upright microscope (Leica DM5500B) at a 

resolution of 1392 × 1040 pixels and consistent aperture and gain settings.

AD Subnetwork—The full AD subnetwork shown in Figure 2 has been added to the 

Network Data Exchange (NDEx) platform.

http://www.ndexbio.org/#/network/0f329e3e-c347-11e8-aaa6-0ac135e8bacf?

accesskey=21fb4630b60dd2458204226de0be272fe327456ec147721ad362c16d3871723d

Alternatively, the network can also be obtained by searching the NDEx website for the 

unique network identifier UUID: 0f329e3e-c347–11e8-aaa6–0ac135e8bacf.

Note that because there are more than 10,000 edges only a (very small) subset of the edges 

are shown on the NDEx website interface. Users can however download the full network and 

view in Cytoscape.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gene Expression Analysis—Expression data were downloaded from ROSMAP as 

FPKM values and normalized using a multi-loess method and batch effects removed using 

COMBAT algorithm (Johnson et al., 2007). For the log-transformed expression data, linear 

regression models were fit to account for effects of diagnostic conditions as well as 

confounding covariates of age at death, sex, postmortem interval (PMI) and APOE status for 

the risk allele. Test for statistical significance was achieved by implementation of a Bayesian 

strategy of Lönnstedt and Speed as implemented in R package limma (Ritchie et al., 2015). 

Genes are sorted by their posterior error probability (PEP) and considered significant at PEP 

< 0.05.

Background Interactome—The background interactome on which the network analysis 

was conducted was built from the brain-specific network in the GIANT database (Greene et 

al., 2015). This network is composed of edges which support a strong tissue-specific 

functional interaction between source and target genes. This network, thresholded at an edge 

confidence of 0.2, contains 14,545 genes, and 1,370,174 edges, and represents genes and 

interactions which are likely to be present in normal brain function. The identified 
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differentially expressed genes were mapped onto this network to create an AD subnetwork. 

Network visualization was accomplished using visJS2Jupyter (Rosenthal et al., 2018).

Clustering analysis—Clusters were identified in the AD subnetwork using a network-

based modularity maximization algorithm (Blondel et al., 2008). This algorithm, commonly 

referred to as the Louvain clustering algorithm, identifies groups of nodes which have many 

connections within groups, and few connections between groups, and is efficient at 

extracting community structure from large networks. The algorithm iteratively maximizes 

the modularity, Q, defined as follows:

Q = 1
2m ∑

i, j
Aij −

kikj
2m δ(Ci, Cj)

Where Aij is the binary adjacency matrix element representing the presence or absence of 

the connection between node i and node j, ki represents the degree of node i, where degree is 

defined as the number of nodes directly connected to node i, ci is the community to which 

node i belongs, and the function δ(x, y) is 1 if x = y, and otherwise it is 0. m is the total 

number of edges in the network, m = (1/2)∑ijAij (divided by two to avoid double counting). 

See Blondel et al. (2008) for more details on the algorithm.

The Louvain algorithm does not require selection or fine-tuning of parameters, as do some 

other clustering algorithms such as, K-means clustering and hierarchical clustering (such as 

are used in the WGCNA R package). Rather, clusters are determined by finding groupings of 

genes which have many within group connections, and few between group connections. This 

algorithm has proven useful in detecting modules, or clusters, in protein-protein interaction 

networks, such as the one used here (Fortunato, 2010; van Laarhoven and Marchiori, 2012).

Functional Annotation and Pathway Analysis—To identify the underlying biological 

functions enriched in AD, Gene Set Enrichment Analysis (GSEA) was implemented which 

identifies the enrichment of functionally defined gene sets using a modified Kolmogorov-

Smirnov statistic (Subramanian et al., 2005). The Molecular Signature Database (MSigDb 

v6.0) (Subramanian et al., 2005) consists of well over 4000 gene sets from functionally well-

established or published pathways from databases including Gene Ontology (GO), the Kyoto 

Encyclopedia of Gene and Genomes (KEGG), BioCarta, and Reactome. Statistical 

significance after adjusting for multiple testing is defined at FDR < 0.05. Gene set-based 

permutation test of 1000 permutations was applied. Detailed description of the GSEA 

algorithm, testing metrics and the implementation have been described previously 

(Subramanian et al., 2005). Hypergeometric test was utilized to test of statistical significance 

of the enriched biological process and pathways identified for the differential expressed 

genes in the clusters (Wang et al., 2017; Yu et al., 2012). Overrepresentation enrichment 

analysis was conducted using the full set of genes from the AD subnetwork as the reference 

gene set, corrected for multiple testing using the Benjamini-Hochberg procedure and FDR < 

0.05 was considered significant.
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Transcriptional Regulation Analysis—To identify transcription factors (TF) likely 

related to AD, we analyzed for enrichment of transcription factor targets in the AD clustered 

subnetwork (Wang et al., 2017). This resulted in 16 significantly enriched transcription 

factors (Table S8). We further filtered this list by differential expression in AD versus NDC, 

resulting in 4 candidate TFs. These four TFs are all significantly differentially expressed in 

AD as compared to NDC and have more targets than would be expected by chance in the 

AD subnetwork (Figure S7). The TF subnetwork is visualized to highlight the connections 

between TF and targets along with connections between targets using visJS2Jupyter 

(Rosenthal et al., 2018).

Quantification of Image Data: Images were analyzed in ImageJ software (Schneider et al., 

2012). Custom designed macro was used to convert the optical images to grayscale, 

threshold and measure the TGIF or EGR1 positive area fraction relative to the optical field. 

Area fraction were averaged across image fields to generate within sample mean values for 

each sample in a given diagnostic group for each protein of interest. Due to the non-normal 

distribution of the data, test of significance was evaluated using Wilcoxon rank sum test and 

differences were considered significant when p < 0.05. GraphPad Prism 7 software was used 

for statistical analysis.

DATA AND CODE AVAILABILITY

RNaseq data reported in this paper are hosted on NIA supported AMP-AD knowledge portal 

on Synapse platform, and the accession number is Synapse: syn3388564 [https://doi.org/

10.7303/syn3388564]. Additional data can be accessed from the Rush Alzheimer’s Disease 

Center Resource Sharing hub (https://www.radc.rush.edu/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RNA expression profiling of 414 Alzheimer’s disease and non-demented 

controls

• Integration of transcriptomic profiles with brain tissue-specific protein 

interactome

• Revealed biologically distinct clusters by Louvain algorithm for community 

detection

• Characterized transcriptional regulators across all clusters
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Figure 1. Global Gene Expression Patterns Highlight Differences in Alzheimer’s Disease (AD) 
Relative to Non-demented Controls (NDCs)
(A) Heatmap of all differential expressed genes (N = 1,722) clustered by phenotype In the 

prefrontal cortex.

(B) Most differentially expressed mitochondrial genes are downregulated In AD, but a small 

proportion are upregulated relative to NDCs.

(C) Nuclear encoded oxidative phosphorylation (OXPHOS) genes are dysregulated in AD.
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Figure 2. Composite Gene-Protein Interaction Network Reveals Significant Clustering in AD
(A) AD subnetwork with cluster ID mapped to node color. The subnetwork is composed of 

genes differentially expressed in AD compared with NDCs and overlaid onto the GIANT 

brain-specific interactome. Node positions are fully determined from the spring layout. 

Clusters are determined using the Louvain modularity maximization algorithm.

(B) Distributions of log fold change values in each cluster, as well as in the entire AD 

subnetwork. Distribution curves were determined using a kernel-density estimation function 

(see also Figure S1).

(C) AD subnetwork with node positions biased by cluster membership. Node colors are 

mapped to the log fold change between AD and NDC. Node size represents the significance 

(FDR) of the gene’s differential expression in AD compared with NDC.
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Figure 3. Heatmaps of Top Enriched Pathways from Each Functionally Distinct Cluster
(A–D) Enriched pathways correspond to (A) neurotransmitter-related signaling in cluster 0, 

(B) DNA repair and cell-cycle control in cluster 1, (C) immune response in cluster 2, and 

(D) metabolism and bioenergetics in cluster 4. No enriched pathways were identified for 

cluster 3 (see also Figures S2–S6).
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Figure 4. Transcriptional Regulatory Network in AD
Four candidate transcription factors (TFs) identified in AD, along with all differentially 

expressed targets in the AD subnetwork, are displayed in a circular layout, ordered by 

cluster membership. TFs are displayed inside the circle as triangles. The log fold change 

between AD and NDC is mapped to the node color. BPTF does not belong to any cluster. 

The TF subnetwork highlights the connections between TFs and targets, along with 

connections between targets (see also Figure S7).
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Figure 5. Protein Expression of TGIF and EGR1 in Human Prefrontal Cortex Tissue Samples
(A) Representative images of prefrontal cortex from NDCs and AD brains 

immunohistochemically stained for TGIF1 and EGR1, which is a direct target of EGR3.
(B and C) Bar graphs of relative area fraction for (B) EGR1-stained cells and (C) TGIF1-

stained cells are consistent with the RNA-level expression changes.

Data are represented as mean ± SD for n = 5 per group. Each tissue section contributed to an 

average of 20 image fields. Scale bar is 50 μm. *p < 0.05, **p < 0.01.
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Figure 6. Loss of EGR3 Regulation Mediates Synaptic Deficits by Targeting the Synaptic Vesicle 
Cycle
Genes names in blue imply downregulation in AD relative to NDCs, and direct targets of 

EGR3 are shown in bold. Reduced proton gradient (V-ATPASE) results in inefficient 

neurotransmitter uptake. Downregulation of key essential proteins, including SNAP25, 
imply reduced vesicle docking at the presynaptic membrane. Inefficient disassociation of 

actively fused vesicles, along with reduced clathrin (CLTC), leads to decreased vesicle 

recycling. This creates a negative feedback loop and, after multiple cycles, leads to eventual 

depletion in reserve vesicles. Downregulation of EGR3 results in reduced content and 

number of vesicle fusion activities, priming the cells toward ineffective synaptic 

transmission.
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Table 1.

Sample Demographics of the Subjects Included in the Study

Demographic Variable

NDCs AD

(N = 151) (N = 263)

Female sex, No. (%) 92 (60.9) 185 (70.3)

Education, years 16.5 (3.6) 16.2 (3.5)

MMSE 28.6 (1.0) 14.5 (7.5)

APOE ε4, No. (%) 20 (13.2) 90 (34.2)

Age at death, years 85.2 (6.6) 90.9 (5.9)

PMI, h 7.4 (4.4) 7.6 (5.2)

RIN 7.2 (1.0) 6.9 (0.9)

APOE, apolipoprotein E; MMSE, Mini-Mental State Examination; PMI, postmortem interval; RIN, RNA integrity number; NDCs; non-demented 
controls; AD, Alzheimer’s disease. Data are presented as mean (SD) unless specified.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse polyclonal anti-IgG Vector Laboratories Cat# BA-2000; RRID: AB_2313581

Mouse monoclonal anti-TGIF(H-1) Santa Cruz Biotechnology Cat# sc-17800; RRID: AB_2202719

Rabbit monoclonal anti-EGR1 Cell Signaling Technology Cat# 4153; RRID: AB_2097038

Biological Samples

Human BA9 brain tissue blocks University of California San Diego 
Shiley-Marcos Alzheimer’s Disease 
Research Center Brain Bank

http://adrc.ucsd.edu/neuropath.html

Chemicals, Peptides, and Recombinant Proteins

Normal Horse Serum Vector Laboratories Cat# S-2000; RRID: AB_2336617

Critical Commercial Assays

DAB Substrate Kit (3,3′-
diaminobenzidine)

Vector Laboratories Cat# SK-4100; RRID: AB_2336382

VECTASTAIN Elite ABC-Peroxidase Kit Vector Laboratories Cat# PK-6100; RRID: AB_2336819

Deposited Data

RNaseq Synapse https://www.synapse.org/#!Synapse:syn3388564

Clinical_Data Synapse https://www.synapse.org/#!Synapse:syn3157322

Software and Algorithms

visJS2jupyter v0.1.16 Rosenthal et al., 2018 https://pypi.org/project/visJS2jupyter/

Cytoscape v3.6.1 Shannon et al., 2003 https://cytoscape.org/

NetworkX v1.11 Hagberg et al., 2008 https://networkx.github.io/documentation/
networkx-1.11/

Python v2.7 N/A https://www.python.org/download/releases/2.7/

Webgestalt 2017 Wang et al., 2017 http://www.webgestalt.org/2017/option.php

gseapy v0.8.4 N/A https://pypi.org/project/gseapy/

COMBAT v3.20.0 Johnson et al., 2007 https://bioconductor.org/packages/release/bioc/html/
sva.html

limma v3.38.3 Ritchie et al., 2015 https://bioconductor.org/packages/release/bioc/html/
limma.html

seaborn v0.9.0 N/A https://seaborn.pydata.org/

R v3.5.1 R Core Team, 2013 http://www.R-project.org/

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

GraphPad Prism 7 GraphPad Software Inc http://www.graphpad.com

Other

Leica DM5500 B microscope Leica Microsystems N/A
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