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1 | INTRODUCTION

| Masaud Shah? | Jason Kim? |

Abstract

Toll-like receptors (TLRs) are germline-encoded receptors that
are central to innate and adaptive immune responses. Owing to
their vital role in inflammation, TLRs are rational targets in
clinics; thus, many ligands and biologics have been reported to
overcome the progression of various inflammatory and
malignant conditions and support the immune system. For
each TLR, at least one, and often many, drug formulations are
being evaluated. Ligands reported as stand-alone drugs may
also be reported based on their use in combinatorial
therapeutics as adjuvants. Despite their profound efficacy in
TLR-modulation in preclinical studies, multiple drugs have been
terminated at different stages of clinical trials. Here, TLR
modulating drugs that have been evaluated in clinical trials are
discussed, along with their mode of action, suggestive failure
reasons, and ways to improve the clinical outcomes. This review
presents recent advances in TLR-targeting drugs and provides

directions for more successful immune system manipulation.
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Toll-like receptors (TLRs) are integral membrane bound receptors that are vital for innate immunity and help to shape

the adaptive immune response. These receptors are triggered by a variety of pathogen-associated molecular patterns

(PAMPs), and danger-associated molecular patterns (DAMPs). PAMPs are parts of pathogens such as lipoproteins,
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lipopeptides, and flagella, as well as nucleic acids (either single-stranded or double-stranded DNA or RNA),* while
DAMPs are self-molecules that include multiple heat shock proteins, S100, and high mobility group box 1 (HMGB1) that
are released in response to injury or any other anomaly in the cells.2® DAMPs or PAMPs can engage a variety of TLRs;
those situated on the cell surface primarily engage TLRs that function on the cell membrane, whereas intracellularly
localized TLRs are activated by nucleic acid components, which are made available after pathogen endocytosis or
replication. Given their functions, TLRs are considered as the first line in immune defense.™

The number of functional TLRs can vary in mammals; however, they all have conserved functions, namely the
activation of inflammatory mediators. Humans have 10 TLRs; TLR2 (can heterodimerize with TLR1 or TLRé), TLR4,
TLR5, and TLR10 are present at the cell membrane, whereas TLR3, TLR7, TLR8, and TLR9 are functionally localized to
endosomes (Table 1).%>¢ These receptors invariably work as homodimers or heterodimers, and several studies have
suggested that they exhibit unusual dimer characteristics.”® All TLRs form homo- and heterodimers, except for TLR3
and TLR5, which are currently considered strictly homodimeric, in the absence of empirical evidence to the contrary.

TLRs are composed of three distinct domains, an extracellular domain (ECD) that senses the ligand, a
transmembrane domain (TM) that anchors the TLR within membranes, and Toll/interleukin-1 (IL-1) receptor (TIR)
domain that interacts with other TIR-containing adapters to initiate signaling (Figure 1A)."*! TLRs signaling
depends on its dimer assembly, and in the absence of any ligand, TLRs exist either in monomeric forms or weakly
dimeric forms that are unable to initiate the signaling. While ligand binding confers dimer stability and induces a
conformational change that reorients the TIR domain and initiates signaling.'>% TLRs are ideal targets for immune
modulation strategies, since they have both known modulators and proven therapeutic potential (Table 1).

Therefore, it is rational to harness their potential for improving vaccines efficacy, to treat cancers (breast and
bladder cancers'**?), to inhibit their activity in inflammatory diseases (for instance; rheumatoid arthritis (RA)*° and
multiple sclerosis?’), to modulate them in autoimmune diseases such as systemic lupus erythematosus (SLE),*® to
fine tune them to generate specific responses (humoral vs cell-mediated immune responses) and to curb the
menopausal osteoporosis.t?~?! Other than these, there are numerous diseases where TLRs play important roles, for
that, the interested reviewers are encouraged to consult recent reviews.??2"2% Given their extensive potential
benefits, they are the target-of-choice for many therapeutic endeavors, and these efforts are bearing fruit, with
many compounds that target TLRs are currently at various stages of evaluation in clinical trials.'?

We have therefore revised and gathered relevant data and wish to present it to the scientific community to
guide them in their future investigations. The data in this paper has been collected from ongoing clinical trials that
either target TLRs or use them to induce improved responses. Data have been organized in a reader-friendly
manner, focusing on the clinical condition, the type of TLR being targeted, the failures and successes of drugs in

different phases of clinical trials, and the synergistic efficacy of TLR ligands as adjuvants.

2 | TLR SIGNALING

In induction of inflammatory responses, TLRs primarily act via the myeloid differentiation response protein 88 (MyD88)
and TIR-domain-containing adapter-inducing interferon-8 (TRIF)-mediated pathways.?>2® On sensing PAMPs or
DAMPs, TLRs dimerize and reorient their TIR domains, which allow docking of the TIR containing proteins, MyD88 and
MyD88 adapter-like (MAL). MAL is a bridging adapter frequently involved in TLR4, and to a lesser extent in TLR2,
signaling pathways, and it interacts with MyD88 through TIR-TIR interaction. In addition to the TIR domain, MyD88
contains a death domain that facilitates its interaction with interleukin-1 receptor (IL1R)-associated kinase 4 (IRAK4),

which can both auto-phosphorylate and trans-phosphorylate IRAK2/1.27

This inter-domain interaction results in a large
multimeric molecule, referred to as myddosome, the phosphorylation of which leads to the activation and dimerization of
tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6).3° TRAF6, an E3 ligase that is activated via
autoubiquitination in an sequestosome 1 (SQSTM1/p62)-dependent manner, mediates the ubiquitination of transforming

growth factor-B-activated kinase 1 (TAK1).3132 TAK1 belongs to the mitogen-activated protein kinase kinase kinase
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FIGURE 1 Generalized structure and signaling mechanisms of Toll-like receptors. A, A typical TLR is composed
of three distinct domains, an ECD, a TM domain, and a TIR domain. B, Conventionally, TLRs are divided into two
categories; cell surface functional, and endosomally functional TLRs. Endosomal TLRs are mainly activated through
nucleic acids, while cell surface-expressed TLRs are activated by a variety of ligands, including proteins and
lipoproteins. Upon sensing PAMPs or DAMPs, TLRs dimerize and reorient their TIR domains, allowing the docking
of intracellularly localized TIR-containing proteins, including MAL, MyD88, TRIF, and TRAM. The majority of TLRs
convey downstream signals through MyD88; however, TLR3 can signal only through TRIF. Exceptionally, TLR4 can
transmit signals through both the MyD88 and TRIF adapter proteins. Therapeutics targeting immune-related
diseases mediated by TLRs are reported to modulate these signaling mechanisms. There are many internal
mechanisms that come into action to regulate TLR-mediated inflammation. These act at all levels starting from cell
surface interaction to dent the TLR dimerization, and cytoplasmic interactions to block adapter molecules, alter the
posttranslational modification state, and finally in the nucleus to counter overexpression of various interleukins
and cytokines. There are many microRNAs that reduce the mRNA stability of different cytokines. All these
mechanisms ensure a balanced response toward the invading pathogen or DAMP that unbalance the homeostasis.
ABIN3, A20 binding and inhibitor of NFxB-3; AhR, aryl hydrocarbon receptor; AP1, activated protein 1; ATF3,
activating transcription factor 3; Bcl-3, B-cell lymphoma 3-encoded protein; CYLD, cylindromatosis; DOK,
downstream of tyrosine kinases; DUSP, dual specificity phosphatases; ECD, extracellular domain; ERK,
extracellular-regulated kinase; IFN, interferon; IkB, inhibitor of ¥B; IKK, inhibitor of kB kinase; IL, interleukin; IRF,
interferon response factor; IRAK-M, interleukin receptor-associated kinase M; JNK, c-Jun N-terminal kinase; MAL,
MyD88 adapter like; MD2, myeloid differentiation factor 2; MIR, microRNA; MKK, mitogen-activated protein
kinase kinase; mRNA, messenger RNA; MyD88, myeloid differentiation primary response 88; MyD88s, myeloid
differentiation primary response 88 short; NEMO, NF-xB essential modulator; NFKBID, NF-xB inhibitor &; NF-xB,
nuclear factor kB; Nurrl, nuclear receptor related 1 protein; p38, protein 38; PDLIM2, PDZ and LIM domain 2;
PTP1B, protein tyrosine phosphatase-1B; Reg-1, regnase-1; RIPK-1, receptor interacting protein kinase 1; RP105,
radioprotective 105 kDa protein; SARM, sterile a and armadillo-motif containing protein; SHP-1, Src homology
region 2 domain-containing phosphatase-1; SIGGR, single immunoglobulin IL1R-related molecule; SOCS,
suppressor of cytokine signaling; ST2, suppression of tumorigenity 2; ST2L, membrane bound ST2; STAT, signal
transducers and activators of transcription; sTLRs, soluble Toll-like receptor; TAB, TAK-1-binding protein; TAK1,
transforming growth factor g-activated kinase 1; TANK, TRAF-associated NF-xB activator; TBK1, TANK-binding
kinase 1; TIR, Toll/interleukin-1 receptor; TLR, Toll-like receptor; TM, transmembrane domain; TNF-a, tumor
necrosis factor o; TRAF, tumor necrosis factor receptor (TNF-R)-associated factor; TRAM, TRIF-related adapter
molecule; TRIF, TIR-domain-containing adapter-inducing interferon-g; TRIM38, tripartite motif 38; TTP,
tristetraprolin; USP4, ubiquitin-specific protease 4 [Color figure can be viewed at wileyonlinelibrary.com]
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(MAPKKK) family and forms a complex with the TAK1 binding proteins, TAB1-3. TAK1 deficiency reduces inflammatory
3334

signaling across TLRs; however, no such difference has been observed in response to a deficiency of TAB proteins.
TAK1/TABs signaling then branches into two arms: activation of nuclear factor kB (NF-xB) and MAPK. NF-«xB is held
inactive in the cytoplasm by inhibitor of kB (1xB), which is phosphorylated by 1B kinase o (IKKe) and IKK@, and degraded
via ubiquitin mediated-proteasomal degradation, exposing a nuclear localization signal in NF-xB, and subsequently
translocating to the nucleus as reviewed by Kawai and Akira.3> NF-xB is a hub molecule for inflammatory signals and it
induces the expression of a wide array of molecules that cause inflammation, alteration in cell surface receptors,
expression of pro- and anti-cancerous molecules, and perturbation in cell motility, among other responses. TAK1 also
activates MAPK family members, including MKK7 and/or MKKé/3, resulting in the phosphorylation of p38 and JNK, and
culminating in the activation of activated protein 1 (AP1) family transcription factors and messenger RNA (mRNA)
stabilization of various genes involved in the regulation of inflammation (Figure 1B).*3¢

TRIF-dependent signaling is a separate arm of TLR signaling perpetuated only by TLR3 and TLR4, where TRIF
interacts with TRAF3 and TRAF6. TRAF6 interacts with receptor interacting protein kinase 1 (RIPK-1), which transduces
the signal by activating TAK1, a crucial branch point in the TLR signaling pathway. TRAF3 activates IKK-related kinases,
such as TANK-binding kinase 1 (TBK1) and IKKi, along with NEMO, and the transduced signals culminate in interferon
(IFN)-regulatory factor 3 (IRF3) phosphorylation, which translocates into the nucleus after dimerization, inducing
expression of type | IFN genes**¢ The production of IFNs is the prominent outcome of TLR3 and TLR4 pathways
to counter viral infections, which in turn regulated by IRF3. Recently, it has been shown that phosphatidylinositol
5-phosphate (PtdIns5P) can regulate IRF3 activation. This inositol lipid can bind to and facilitate complex formation
between IRF3 and TBK1, leading to the IRF3 phosphorylation by TBK1, situated proximally.*” Furthermore, during viral
infection, production of the inositol lipid, PtdIns5P, could be observed by evaluation of PIKfyve activity.>®

3 | ENDOGENOUS REGULATION OF TLR SIGNALING

Regulation of TLR signaling is achieved through various molecules that restrict it to an appropriate level to avoid any
detrimental consequences in the form of autoimmune or inflammatory diseases. These regulatory molecules bind to key
components of TLR signaling and quench their activities as reviewed elsewhere.>’ The MyD88-dependent pathway can be
suppressed by spleen tyrosine kinase, Cbl-b, and suppressor of cellular signaling 1 (SOCS1), while the TRIF arm is
negatively regulated by sterile o- and armadillo-motif-containing protein (SARM) and TRAM adapter with Golgi dynamics
domain (TAG).2%*! The inhibition mechanisms of molecules can be unique or may overlap. Similarly, SOCS3 and
deubiquitinating enzyme A (DUBA) negatively regulate TRAF3*2 while A20, cylindromatosis, TANK, tripartite motif 38
(TRIM38), ubiquitin-specific protease 4, and small heterodimer partner can negatively influence TRAF6 (Figure 1B).3%4%44
TAK1 activation is regulated by A20 and TRIM30a.** NF«B is pivotal in TLR signaling; therefore, it is regulated by
numerous molecules, including NF-xB inhibitor & (NFKBID), B-cell lymphoma 3-encoded protein (BCL-3), activating
transcription factor 3 (ATF3), Nurrl, and PDZ and LIM Domain 2 (PDLIM2)* IRF3 is an important player in TRIF-
dependent pathways that is suppressed by Pin1 and replication and transcription activator-associated ubiquitin ligase
(RAUL).*” Various microRNAs (miRNAs) have been implicated in mRNA level regulation of TLR signaling molecules,
including miR-21, -29, -126, -146a, -155, -199a, -148/152, and -4661.3° Moreover, cytokine mRNA stability can also be
regulated by regulatory Regnase-1 and tristetraprolin**® Collectively, TLR signaling homeostasis is established and

maintained by these endogenous modulators (Figure 1B).

4 | TLRS AND DISEASES

TLRs are involved in a wide spectrum of diseases that either directly or indirectly exacerbate the conditions. In

recent years, many endeavors have been dedicated to delineate this relationship and compile data regarding the
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TLR involvement in various diseases.*?%4?->! Here, we would like to present a brief overview of how TLRs

influence the pathobiology of inflammatory, autoimmune, and cancerous diseases.??-2452

Sepsis is the worst outcome of host-pathogen interaction and is the leading cause of death in United States.>>>*
The infection by Gram-positive and Gram-negative bacteria equally contribute to the development of sepsis where

exaggerated immune response lead to multiorgan failure and septic shock.>®

These bacteria harbor ligands that
trigger TLR2 and TLR4; particularly, the presence of LPS significantly contributes into sepsis development. The
septic shock is due to the body immune response rather than infection itself.>¢ For sepsis management, various TLR
inhibitors are evaluated clinically, and new modalities are being devised recently.>”

Chronic pulmonary obstructive disease (COPD) is characterized by the poor reversible air flow and bronchial
inflammation.>?°® This condition can also be worsened when TLRs react in response to viral infections. It has been
observed that the COPD patients exhibit higher inflammatory cytokines, TNF-a and CCL5 in infections.’® Among
various treatments, the inhibition of TLRs can also be an approach to curb the COPD.#’

The involvement of TLRs in RA, an inflammatory disease, is well known. The exact mechanism of RA initiation is
yet debatable; however, it is believed that the PAMPs from commensal flora is crucial for RA initiation.?° After
initial insult, an autocrine loop perpetuates that increases matrix metalloproteinases (MMP) and worsen the
damage. Moreover, the DNA and peptidoglycan from intestinal bacteria have also been observed in RA joints.®*
This result in damaged cells that will release DAMPs such as RNAs, HMGB1, S100-A8; the presence of such
molecules activate TLRs that over-inflame the situation.

SLE is an autoimmune disease that featured autoantibodies against double-stranded DNA and nucleic acid-
bound proteins that served both as diagnostic and prognostic markers; however, the initial events are still a
mystery.? SLE patients manifest deficiency in clearing apoptotic cells that promote the formation of the immune
complex (IC), and these ICs can trigger the endosomal TLRs. The role of TLR7 (inflammatory) and TLR9 (protective)
in SLE can be different due to variation in study samples among different studies; nevertheless, TLR9™™ murine
models displayed higher TLR7-mediated inflammation concluding a regulatory role of TLR9.63-¢>

An autoimmune disease where the immune system destroys the fluid secreting glands, for instance, the salivary
gland, has a potential TLR involvement and is known as Sjogren’s syndrome (SS). The patients with SS exhibit higher
TLR expression, with increased expression of inflammatory cytokines in response to TLR7 and TLR9 activation.®®¢”

TLRs participation in cancers act as double-edge swords; their activation can regress the tumor growth or
conversely promote the tumor cells.?*¢” The accumulating data strongly advocate both aspects. Furthermore, it is now
well-acknowledged that the inflammation and cancer are strongly correlated in various diseases.® Similarly, organs with
higher PAMPs density such as gastrointestinal tract and skin are prone to TLR-mediated oncogenesis along with the
organs that expose to indirect TLR agonist such as the liver. The dual role of TLRs in cancers has a significant correlation
with the length and amplitude of receptor activation. TLR4 has been reported to promote colon cancer, and its
deficiency can alleviate the inflammation as well as tumor burden.®””® The liver cancer has also been related to TLR4
activation”’’; however, its role may be context dependent in skin cancer.”?78 Similarly, TLRs are also critical for the
cellular transformation in breast cancers, as reviewed before,** can critically modulate the metabolism in the tumor

microenvironment,”* and can regulate other signaling networks to favor pro- or anti-tumor outcomes.”>~””

5 | TLR LIGANDS: ADJUVANTS VS DRUGS

TLR signaling activates innate immunity and assists in shaping adaptive immunity. Hence, TLR ligands are attractive
for use in immunotherapy and are primarily exploited as adjuvants to specifically trigger humoral and/or cell-
mediated responses as reviewed elsewhere.”®”? They can also magnify the immune response toward certain poorly
antigenic targets. Therefore, in the majority of clinical trials, TLR ligands are evaluated as adjuvants.

The number of trials that involve TLR ligands as adjuvants (64%) are double than those considering TLR ligands

as drugs (35%). This highlights the immune-therapy role of TLRs in various diseases and their potential utilization
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FIGURE 2 TLRs targeting ligands with respect to their relative clinical trials and disease conditions. A, The total
number of clinical trials, activators (including agonists) and inhibitors (including antagonists), and the diversity of
ligands are presented. The majority of ligands have been extensively pursued in different diseases, making it
difficult to determine their exact numbers. The data indicate that total number of clinical trials exceeds the number
of active drugs, suggesting the use of single drugs in multiple clinical trials. B, Clinical trial data showing the current
status of drugs targeting TLRs from the disease perspectives. TLR ligands have been evaluated in multiple diseases
including cancers, immune disorders, and viral and bacterial diseases. The largest proportion of clinical trials
focuses on cancers, followed by immune disorders. “Mixed” indicates those cases where cancer and immune
disease have been targeted simultaneously. The category “general” covers vaccination, clinical trials involving
healthy volunteers, and those that are not covered by prior instances. This data was gathered from the clinical
trials website (clinicaltrials.gov) using various keywords (cancers, immune disorders, TLR, TLRs, TLR1, TLR2, TLR3,
TLR4, TLR5, TLR6, TLR7, TLR8, TLRY, and adjuvant) from June 2017 to Jan 2018. TLR, Toll-like receptor

for further exploration for immunomodulation therapy. Additionally, TLR activation can also alter other signaling
pathways and it is desirable to cotarget multiple pathways with the aim of achieving improved treatment efficacy.
Apart from many ongoing trials, Food and Drug Administration approved TLR ligands, MPLAZ® (TLR4 agonist), and
imiquimod®! (TLR7 agonist) could be highlighted to address adjuvant or drug roles. MPLA has been used in various
vaccine formulations, for instance, Fendrix (Hepatitis B vaccine, GSK), as an adjuvant and imiquimod is famously
used to cure viral diseases as a drug.8%83 The majority of TLRs produce redundant responses (inflammatory vs
antiviral); however, there are slight, but distinct, differences in outcomes®* These differences are largely

attributable to the relative roles of ligands and tissue-dependent TLRs expression.8>8¢
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6 | THERAPEUTIC INTERVENTIONS TARGETING TLRS

Given their vital roles in pathogen clearance, inflammation induction, and cancer pathogenesis, TLRs are attractive targets
for manipulation of the immune system in favor of the patients. Therefore, many research centers and pharmaceutical
companies are attempting to develop TLRs modulators (Figure 2A). Scaffolds of naturally occurring modulators are ideal
candidates for targeting these receptors; thus, these have been heavily investigated in clinical studies and are emerging as

a fruitful approach in clinical trials. An exhaustive search of the literature also supports this notion.

6.1 | TLR2 (TLR1/TLRé)

TLR2, in combination with TLR1 or TLRé, detects the lipoproteins, diacyl lipid, or triacyl lipid, respectively, which
makes it unique in forming functional heterodimers with other TLRs. Further, TLR2 interacts with modified proteins
such as glyco- and lipoproteins, peptidoglycan, and zymosan, allowing it to detect a variety of PAMPs.8” This
heterogeneity in TLR2 PAMP detection ranges across all types of pathogens, including viruses, bacteria, fungi, and
parasites. The TLR2 expression has been detected in immune, endothelial, and epithelial cells 28 indicating that it is
a functionally ubiquitous molecule. The homodimerization of TLR2 has been reported; however, further studies are
required to confirm these findings.2128? The ubiquitous nature and pivotal role of TLR2 make it an attractive drug-
target for various diseases; consequently, many clinical trials have been initiated to evaluate the efficacy of various
lipopeptide derivates. Compounds being evaluated in clinical trials include lipopeptides, lipoproteins, oxidized low-
density lipoproteins, and TLR2 specific humanized 1gG4 antibody, either alone or in various combinations (Table 2).

The most recent ligands, such as CBLB612 (synthetic lipopeptide TLR2 agonist), ISA-201 (peptide agonist for
TLR2), OPN-305 (TLR2 antagonizing 1gG4 monoclonal antibody), are in phase 2 in clinical trials primarily for
oncogenic therapy, and act both as drugs and as adjuvants (Figure 2B).”%? The chemical constituents of these
molecules are either lipoprotein or protein derivates, indicating that TLR2 can be targeted using mimetics of its
natural ligands. This is not an absolute requirement; however, it is useful to note the existing therapeutic trend
while targeting TLR2. Moreover, other than OPN-305, the majority of molecules in phase 2 trials are agonists of
TLR2, highlighting the importance of TLR2 activation in the context of malignancies. Small molecule-based
therapeutics have potential side effects that can be overcome by the application of biologics, including monoclonal
antibodies (OPN-305).7° The inhibition of TLR2 overactivation using OPN-305 has potential applications in the
treatment of inflammatory diseases.

TLR2 in TLR2/1 or TLR2/6 complexes exhibits a cavity on the binding junction of its convex side that allows the
docking of Pam3CSK4 and other TLR2-modulating ligands.*?>%2 Pam3CSK4 has two esters and one amide bound
lipid chains. The ester chains interact with TLR2, while the amide bound lipid chain can be accommodated into the
hydrophobic cavity provided by TLR1 (Figure 3).*2>7° The TLR2/1 complex can further be stabilized by interprotein
hydrogen bonding and hydrophobic interactions.'? The hydrophobic cavity in TLR1 has been mutated with bulky
amino acids (Met338 and Leu360 to Phe338/360) in TLR6 to make binding of any lipid chain unfavorable,

explaining the diacyl requirement for TLR2/6 complex formation.

6.2 | TLR3

TLR3 forms homodimer and signals in an exclusively TRIF-dependent manner in response to viral infections
(double-stranded RNA [dsRNA]) and stimulates the production of IFNs. The only known agonist for this TLR is poly-
ICLC (and its derivatives), which is being investigated in various clinical trials.*?> The success and ubiquitous
nature of poly-ICLC led to the belief that this was the only realistic possibility for targeting this TLR; however,
recent studies have identified other small molecules that can either inhibit or activate TLR3.74?7 These alternatives
will not be available for clinical trials for a considerable period of time. There are a few clinical trials that involve

anti-TLR3 antibody to evaluate its efficacy in healthy individuals and asthmatic patients.”® The success of these
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FIGURE 3 TLRs with bound ligands. The ligand binding mechanism of the extracellular TLRs (left, TLR1, 2, 4, 5, 6)
and endosomal TLRs (right, TLR3, 7, 8) has been presented. Each monomer has been labeled; however, for the
homodimers, the other monomer has been labeled with asterisk (*). In the case of TLRS5, flagellin-bound single monomer
has been given. The respective protein databank (PDB) ID has also been given at the bottom of each structure. TLRs
recognize several molecules, including protein, lipopeptide, small molecules and nucleic acids, and the bound ligand with
individual TLR has been shown in 2D interaction diagram. The color code for the 2D interaction is given at the bottom
of the figure. Black arrows indicate the bound TLR-ligand. dsRNA, double-stranded RNA; TLR, Toll-like receptor; 2D,
two-dimensional [Color figure can be viewed at wileyonlinelibrary.com]

proof-of-concept studies will lay the foundation of antibody-based endosomal TLRs targeting in various diseases.
However, in rhinoviral infection, the antibody could not demonstrate any improvement in asthmatic condition.””
Targeting of TLR3 is currently used as adjuvant therapy, along with other drugs or vaccines, against a variety of
cancers; nonetheless, the sole activation of TLR3 to curb any disease has yet to be successfully explored (Table 3).
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Poly-ICLC is a synthetic complex of polyinosinic-polycytidylic acid (nucleic acid mimetics and pathway
intermediates), carboxymethylcellulose, and poly-L-lysine (stabilizers). As dsRNA is a natural ligand with relatively
low stability, its mimetics could be an affordable means of activating this TLR. Activation of TLR3 depends on
dsRNA binding at two opposite sides of its ectodomain, which favorably relocates the C-terminus of the ECD to
facilitate further interactions and increased stabilization.’°%1°1 TLR3 interacts with the nucleotide backbone,

rather than nucleotide bases, which explains its activation via multiple nucleotide combinations (Figure 3).2%°

6.3 | TLR4

TLR4 is the only TLR that can function both at the cell membrane and in the endosome, and that can signal through
MyD88- and TRIF-dependent pathways.'°21°% This has led to the evolution of additional precautions, such as an
extensive ligand detection mechanism (cluster of differentiation 14, lipid binding protein, and coreceptor myeloid
differentiation factor 2 [MD2]) and signal propagation mechanism (requirement of MAL for MyD88 and TRIF-
related adapter molecule [TRAM] for TRIF signaling pathways).

Among TLRs, only TLR4 has a suitable ligand binding pocket provided by MD2, rather than by the ectodomain
of TLR4. This also provides an additional means of TLR4 (in)activation,°* since MD2 has a large hydrophobic cavity
and lipid A derivatives are suitable binding molecules; however, other methods, such as disruption of MD2 binding
with TLR4 or inhibition of interaction with the activating ligand, have also been explored.'°® In case of MD2 and
lipid A interaction, the lipid with six acyl chains (lipid VI-A) can fully occupy the pocket and reorient the side chain
of F126 amino acid into the binding cavity. This creates a favorable environment for the other TLR4/MD2 to dock
properly (Figure 3).2°¢ However, in case of a lower number of acyl chains, their binding is unable to reorient the side
chain that, in turns, creates a steric hindrance for other heterodimer, leading to TLR4 inhibition, 14104107
Prominent ligands that activate or inhibit TLR4 include lipid VI-A and its derivatives (lipid 4A [antagonist],

108 and glucopyranosyl lipid adjuvant [GLA, an agonist]),**” and

monophosphoryl lipid A [MPLA, a weak agonist],
recent studies have also evaluated antibody or peptide-based drugs.2°>® Among the TLRs, TLR4 has been
extensively evaluated in the highest number of clinical trials and is of interest as a target for treatment of a variety
of pathologies including cancers, viral infection, immune diseases, and inflammation. Both the agonistic and
antagonistic aspects of TLR4 signaling pathways are being explored (Table 4). In addition to inhibition of MD2-
mediated TLR4 signaling, the interaction of HMGB1 with TLR4 has also been considered in recent trials to improve
the efficacy of anticancer drugs (https://clinicaltrials.gov/ct2/show/NCT02995655). Besides direct modulation, the
addition of a constitutively active form of TLR4 as a vaccine substitute (https://clinicaltrials.gov/ct2/show/
NCT02888756) and inhibition of dipeptidyl peptidase-4 (DPP4) that induces IL-6 expression through TLR4 are also

the subjects of therapeutic evaluations.!*!

64 | TLR5

TLR5 detects the bacterial monomeric flagella and mounts an immune response.**?*%3 |t triggers the MyD88-
dependent pathway in response to enterobacterial invasion and maintains intestinal homeostasis. TLR5 is
expressed in almost all cell types with prominent expression in mucosal dendritic cells (DC); however, literature
discussing TLR5 is scarce.****%> From a therapeutic perspective, all clinical trials targeting TLR5 include use of
recombinant flagellin protein.*6-1%? Additionally, small molecules to block the TLR5-flagellin interaction are being
tested in preclinical studies.?° In the majority of therapeutic settings, ligands for TLR5 act as adjuvants rather than
as stand-alone drugs, enhancing the efficacy and potency of vaccine candidates (Table 5). TLR5 can be an attractive
target because it detects only protein. Short peptides derived from flagellin can be used as activators, while
modified forms of such peptides can inhibit TLR5.118121 Recently, the crystal structure of zebrafish TLR5 with
flagellin was determined, providing insights into its mode of activation (Figure 3).222 The leucine-rich repeat 9

(LRR9) region in TLR5 has a critical role, and Arg89, Glu114, and Leu93 from flagellin form a hotspot with chemical


https://clinicaltrials.gov/ct2/show/NCT02995655
https://clinicaltrials.gov/ct2/show/NCT02888756
https://clinicaltrials.gov/ct2/show/NCT02888756
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and geometric complementarity.*?? These regions on both proteins should be explored further to design novel

therapeutics.

6.5 | TLR7/8

TLR7 and TLR8 are functionally active in the endosomal compartment, use MyD88 adapter molecules and are
activated by single-stranded RNA (ssRNA).*23124 Majority of ligands in clinical trials that target TLR7/8 are small
molecules (eg, imiquimod [R837], resiquimod, or GSK2245035), and most are derivatives of imidazoquinoline, a

125-127 (Tables 6-8). There are functional differences between these two TLRs; for

tricyclic organic molecule.
example, plasmacytoid DC and monocytes can be directly activated by TLR7 agonists; however, other than
monocytes, TLR8 agonists can directly activate mDCs and monocyte-derived DCs. TLR7 agonists were more potent
when compared with TLR8 agonists regarding antiviral responses in the form of IFN, I-TAC (IFN-inducible T-cell «
chemoattractant), and IFN-regulated cytokines from human peripheral blood mononuclear cells (PBMC).128
Proinflammatory responses, such as expression of IL-12, TNF-a, and macrophage inflammatory proteins-1a
(MIP-1a) were enhanced by TLR8 agonism when compared with TLR7, leading to characteristic differential cell
induction profiles.

TLR7 agonists have been actively studied in phase 1 and 2 trials aiming to curb the persistent viral load in HIV-
and HBV-infected individuals.*?’ Moreover, various prodrug (pharmacologically active after metabolism)
approaches have also targeted TLR7 (RO6870868 [single prodrug] or RO6864018 [double prodrug]), and use of
these as TLR7 agonists was useful in treating hepatitis B infection in phase 1 clinical trials. The results of this trial
were promising and paved the way for phase 2 trials (https://clinicaltrials.gov/ct2/show/NCT02015715).

TLR8 can also be activated by ssRNA as natural ligand and by VTX-2337 (motolimod), a synthetic small
molecule selective for TLR8 and is being evaluated in clinical trials.22#13° TLR8 is a less studied receptor, as its roles
overlap with those of TLR7, with which it shares multiple features. When treated with VTX-2337, TLR8 stimulates
TNF-a and IL-12 production at lower concentrations in human PBMCs. It also induces TNF-a and IL-12 secretion
from monocytes and myeloid DCs through the NF-xB pathway. IFNy secretion was observed when NK cells were
treated with VTX-2337, which can enhance the lytic capability and antibody-dependent cell-mediated cytotoxicity
of NK cells.*®° VTX-2337 also improves the efficacy of pegylated liposomal doxorubicin in treatment of ovarian
cancer in a mouse model with humanized immune system that has been reconstituted with human CD34" cells.*3!
This is the only ligand molecule that has been actively evaluated for treatment of a variety of cancers, including
head and neck cancer, colorectal, pancreatic, melanoma, breast, renal cell carcinoma, nonsmall-cell lung carcinoma,
and other solid neoplasms. In the majority of cases, VTX-2337 was used in combination with other drugs; however,
it is also being evaluated as a stand-alone drug for treatment of lymphoma.*3°

TLR7 and TLR8 share similar activation patterns, both have z-loops involved in ssRNA recognition, and both
possess two binding sites; the first binding site binds guanosine and uridine in TLR7 and TLR8, respectively, while
the second binds ssRNA in both cases (Figure 3).*32 In TLR7 ssRNA binding primes the receptor for guanosine
binding and subsequent dimerization, while synthetic molecules, such as R848, can activate TLR7 without the need
for ssRNA.133134 |mportantly, TLR7 remains monomeric in the absence of any ligand and dimerizes in response to
ligand binding; however, its dimer conformation is similar to TLR8 and TLR9. TLRS8, on the other hand, is a naturally
occurring weak dimer that undergoes conformational change upon ligand binding. The Z-loop may have an
important regulatory role; when it is cleaved from TLR8, TLR8 forms a tight dimer and initiates signaling in the

absence of ligand.*®®

6.6 | TLRY

TLR9Y senses CpG DNA in endosomes and induces the IFN response.'®¢1%” TLR9 is involved in numerous diseases

and has been targeted by various therapeutic approaches. All of the ligands tested in clinical trials that exclusively


https://clinicaltrials.gov/ct2/show/NCT02015715
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target TLR9 are either nucleotides or nucleotide derivatives. There are various types of CpG DNAs that are being
evaluated in different trials for treatment of diverse conditions. AZD1419 is a C-type CpG-based inhaled TLR9
agonist for treatment of asthma and to stimulate IFNs production in lungs. This treatment was classified as well-
tolerated and safe in phase 1 human trials with potential disease-modifying characteristics and is a promising new
therapeutic for use in various immune diseases.’®® CYT003 was initially found to be effective; however, its effects
were not confirmed in phase 2 clinical trials where 35 patients were treated with varying doses of CYT003.%?
Another TLR? agonist, EMD 1201081, was evaluated in phase 2, open-label, randomized trial in patients with head
and neck cancer, and was found to be ineffective in the tested dose regimen.**® GNKG168 is another CpG-based
molecule that can induce CD8" T cell antitumor cytotoxic responses; however, it was withdrawn in clinical phase 1
because of sponsor reluctance to further support the study#* (NCT01743807) (Tables 7 and 9).

Similar to other TLRs, TLRY forms a symmetrical complex with CpG-DNA; nonetheless, during inhibitory DNA
interactions, it remains in a monomeric form. CpG-DNA binding with TLR9 is symmetric and they form a
stoichiometric complex of 2:2, as DNA is recognized by both TLR9 monomers, particularly via the amino-terminal
fragment (LRRNT-LRR10) from one protomer and the carboxy-terminal fragment (LRR20-LRR22) from the
other.2*? CpG-DNA-based TLRY inhibition is mediated by binding to the concave surface formed by LRR2-LRR10,
thereby inhibiting its signaling.

6.7 | TLR10-13

Other than TLR1-9, humans also have TLR10 and TLR11, whereas they lack TLR12 and TLR13.1*3 The expression
of TLR10 has been confirmed in humans (spleen, lymph node, B cells, monocytes, and neutrophils)**% nonetheless,
its function and specific ligand are yet to be determined. Recently, it was suggested that TLR10 may act as an anti-
inflammatory TLR, rather than a conventional inflammatory receptor and that it modulates TLR2-mediated
responses through the formation of heterodimers with TLR1 or TLR6.24> Humans have a pseudogene homologous
to TLR11 that includes a premature stop codon, resulting in lack of protein expression.2*¢ TLR11 and TLR12 have
been studied in mouse and they have shown to detect profilin from Toxoplasma gondii and be capable of forming

heterodimers.*4®

7 | INTERDEPENDENT AND CROSS-TALK AMONG TLR PATHWAYS

Since TLRs overlap in their structures and signaling pathways, it is rational to assume that one single ligand can
activate multiple TLRs; however, this is less common among plasma membrane expressed TLRs, TLR2/1, TLR2/6,
TLR4, and TLR5, and there are a few ligands that can share targets, particularly for TLR2 and TLR4. This situation is
very common among endosomal TLRs, partly because they are all involved in sensing nucleic acids, and endosomes
have a specific pH range that is also thought to contribute to their activation. Various ligands exert their actions on
multiple endosomal TLRs (eg, TLR7/8 or TLR7/8/9), which may imply a combination of multiple pathways in their
activity, a common mode of activation, and, to some extent, H* interference of these TLRs being a common
factor'4”:148 (Tables 7 and 10). TLR7 and TLR8 detect ssRNA, which may explain why one ligand is equally effective
against both TLRs. Some studies have also explored the independent targeting for either TLR7**° or TLR8.1°° The
expression patterns of various TLRs differ among tissues, and the extent to which they respond to various ligands
may contribute to unexpected results of clinical trials (mostly failure and toxicity issues). TLR2/TLR4 (cell surface)
can be regulated by a single ligand, and there are many examples of endosomal TLRs being regulated by single
ligands, suggesting that they may have similar sensing and regulatory mechanisms that could be exploited for
therapeutic purposes.

TLRs may antagonize one another under certain physiological conditions. For example, TLR2 and TLR9

antagonize each other in a mouse model for oral infection with Salmonella enterica.*>* TLR9 deficiency is manifested
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as reduced survival, exaggerated cytokine responses, and salmonella hepatitis, while TLR2 deficiency produces the
opposite effects. Deficiency of either TLR may disrupt NK cell cytotoxicity, and IFN-y and ROS production.'®?

Synergism is very common in TLRs. When monocyte-derived DCs have been triggered with a TLR8 ligand, TLR3
or TLR4 are also activated, resulting in expression of IL-6, IL-10, IL-12, and TNF-« elevation. These results were also
confirmed by increased binding of IRF and signal transducers and activators of transcription (STAT) transcription
factors to their respective DNA binding sites, which was abolished when NF-xB, p38, and phosphoinositide 3-kinase
(P13K) inhibitors were used.*>? These data suggest that co-operation among TLRs is perpetuated, not only at the
top level but also among different signaling pathways to ensure proper and balanced expressions of target genes.

Synergy and tolerance of TLRs are long-established and are critical to the innate immune response. The
coadministration of LPS (TLR4 agonist) and MALP-2 (TLR2 agonist) to mouse macrophages resulted in increased
TNF-a production.?>® Repeated treatment with LPS or MALP-2 resulted in a hyporesponse, also termed tolerance.
Intriguingly, pretreatment with any ligand results in lower responses on exposure to the second ligand.*>3 LPS may
cause downregulation of the cell surface expression of TLR4 after the second LPS treatment; however, MALP-2-
mediated reduction in responses involve modulation of downstream signaling. The acute immune tolerance and
cross-tolerance between TLR4 and TLRY have been studied,*>* indicating that LPS selectively inhibits
proinflammatory cytokines, while CpG suppresses both pro- and anti-inflammatory responses. IRAK-M is critical
for the induction of this differential response, and its expression is modulated by IL-7.2%%

The mycobacterium extract,*®>>*>¢ and autophagosome-enriched cancer vaccine (DRibbles),*>” which likely
contain multiple biological molecules and can trigger numerous TLRs, is being evaluated in clinical trials; however,
caution is required when considering the use of such substances in the clinic due to synergy and differential
responsiveness of TLRs to various ligands. Moreover, DC vaccines that have been matured using TLR ligands are

also therapeutically relevant, owing to the use of TLR ligands in their production.t5815?

8 | FAILED CLINICAL TRIALS

The proportion of failures of clinical trials depends on the clinical stage, as well as the type of disease; particularly,
failure at phase 3 is an impediment to the development of successful therapy for various diseases and TLRs are no
exception. For example, eritoran, a TLR4 antagonist, that was being evaluated for treatment of sepsis could not
meet its target end-point in phase 3 when data from ~2000 patients were analyzed.'®® Among the reasons of
failure of eritoran, there were oversights in study design, patient population differences, improved patient care
methods, and mixed bacterial infections.'*® Similarly, imiquimod, a TLR7 agonist, produced a divergent result in
phase 3 when evaluated for treatment of the skin disorder, molluscum contagiosum (MC) lesions, in children.t!
Imiquimod was first approved by the Food and Drug Administration in 1997 for treatment of genital warts. This
approval has prejudiced its subsequent off-label use as the treatment of MC in children, since it was already shown
to be effective against viral-based diseases and its use is supported by several research and clinical
investigations.®28% This off-labeled use of imiquimod is still debatable.83% Similarly, in a meta-analysis, Qin
et al (2014) has systematically analyzed the TLR9 agonist effects as observed by other clinical investigations. It has
been concluded that the safety profile of TLRY agonists is acceptable if they are not combine with
immunosuppressive drugs. 2

The success rate of transition among different clinical phases (phase 1, 2, 3, and occasionally 4) is highly
variable. The likelihood of a molecule passing phase 1 is 63.2%, which is the highest probability for any phase. Phase
2 has the lowest success rate (30.7%), while phase 3 has a success rate of 58.1%.163164 Biologics have twice the
final success rate (18%), compared with that of small molecules (9%). The transition failure can comprise of drugs
that have not met their specific endpoints, and there are cases where particular drugs did not show any improved
effect over an existing treatment of a particular condition. The situation is exacerbated when similar molecules are

evaluated in multiple interventions, causing an elevated number of failed trials.
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Lack of recruitment (23%) and unstated reasons (such as unknown reasons for termination, unable to begin the
study, unavailability of a drug, or protocol modification resulting in cessation of a trial; 26%) comprise the majority
of reasons for failure of clinical trials targeting TLRs, followed by safety issues (18%) and financial concerns (where
a sponsor withdraws the drug; 15%). Moreover, 15% of trials do not show any efficacy in subsequent clinical trials.
The inadequate understanding of the biology of TLRs may also contribute to drug failure,**° underlining the need
for further studies, increased understanding of the theoretical background of disease etiology and progression,
modification of protocols to address problems, and trial redesign.

While many factors contribute to a failed clinical trial, a common reason underlying failure is a lack of serious
focus on biomarker discovery and implementation. There is a clear trend of success among those trials including
biomarker selection (25.9%) compared with those lacking selection biomarkers (8.4%).1%* There are several
methods that can be used to reduce failure rates, such as early identification of false drug candidates, stratification
of patients, development of diagnostics, proper use of pharmacogenomics through machine learning, and other
analysis tools that can provide improvements and efficiencies in patient categorization. Focusing on neglected
disease areas can also help to reduce the failure burden. In recent years, the Drugs for Neglected Diseases Initiative
has approved six treatments within a decade, with many more in the pipeline. This is not only dramatically reducing
the cost of drug development, but also providing hope for individuals affected by neglected diseases and
incentivizing the pharmaceutical industry to continue their search for new drugs.

Financial and commercial reasons are also major contributors to trial failures because sponsors are “unwilling,” or
there are “failure to pursue” investigational drugs for commercially important diseases. This can be reduced if
pharmaceutical companies focus on diseases that lack adequate therapeutic intervention, as drugs that show positive
effects will soon be marketable. Additionally, if such a trial does fail, it has a lower cost impact on the company.

Drug development is a lengthy process that starts with lead molecule identification and progresses through
optimization, animal modeling studies, pharmacokinetic and pharmacodynamic studies, and preclinical and clinical stage
trials. Therefore, if a drug fails to show any effect or shows toxicity in clinical studies, there must have been a series of
oversights during earlier experimental stages. It is hard to give a single reason for any failure and failures may
encompass complex issues, such as the use of subjective, composite, or surrogate endpoints.’®> Moreover, biases in
outcome reporting and publications; underreporting of adverse events; failure to select an appropriate patient group;
preference for relative outcomes, rather than absolute values; no defined core outcome sets; lack of transparency and
basic science; inappropriate study population size; and lack of data integrity are among the reasons for trial failures.
Finally, during clinical trials involving humans, factors that influence the drug metabolism, distribution, and secretion are

diverse that predispose the pharmacokinetically and pharmacodynamically optimized drug molecules to failure.

9 | PERSPECTIVES IN TLR TARGETING

Researchers are expending extensive efforts to generate appropriate solutions for various inflammatory, autoimmune,
and malignant conditions; however, the process is not straightforward, rather it is littered with unexpected events and
outcomes, along with unknown obstructions that severely undermine the efforts of the research community.

In the majority of studies targeting TLRs, the investigated compounds are related to or derived from natural ligands;
particularly those targeting TLR3, TLR4, TLR5, and TLR9, and somewhat those for TLR2. TLR7 and TLR8 have the
benefit of being targeted by small molecules rather than ssRNA. The instability of ssRNA molecules can hinder their use
for TLRs activation. However, since RNAi technology is being evaluated in more than 100 clinical trials,*%® stability
should not be an issue, rather, tuning of small molecules is far easier than tuning biologics for therapeutic purposes.

Other than molecules derived from natural ligands, it is necessary to focus on the chemical space that can be
used to target TLRs.2%%18 This broadening of the chemical space will provide more potent, specific, and less toxic
molecules, resulting in fewer trial failures. Biologics are gaining popularity, as they have a higher ratio of success,

and are comparatively safe and specific.'¢”"171 |t is estimated that the biologics will soon become the norm in
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therapeutics, in addition to being responsible for the majority of revenue.*’? For different TLRs, the therapeutic
trend can vary; however, a rise in antibody-mediated TLR inhibition (TLR2, TLR3, and TLR4) and novel molecular
backbone (independent of PAMPs) have been seen in recent therapeutics.

The evaluation of various drugs for similar or different conditions is also an optimal approach, which can
facilitate the development of single drugs for multiple diseases. In this context, research laboratories can screen the
outcomes of phase 2 failures that have been abandoned by their sponsors to evaluate them for other symptoms.t”3
Such an approach can dramatically reduce the cost, speed up the process, and will encourage pharmaceutical
companies to share their data with research laboratories for application to other disease targets.

Rather than directly inhibiting TLRs, it may be more appropriate to target the transcription regulation of TLRs
to suppress their expression,*’# as described in a study where the authors used GST-21 for cytokine inhibition,
which could be reversed by the janus kinase 2 inhibitor, AG490. Since the majority of TLRs regulate the similar
pathway, targeting of their downstream inhibitory signaling mechanisms should also be explored to further
intensify the benefits of their inhibition.

Lack of clinical data is an impediment to the development of clinical research. It is estimated that approximately
half of all clinical trials are not reported in either peer-reviewed journals or clinical trial websites (clinicaltrials.gov;
http://apps.who.int/trialsearch/).1”>17¢

It is now necessary to develop additional TLR ligands that should not mimic PAMPs, explore new biomarkers for
disease progression, revise protocols, and clinical trials, target small subsets of patients, improve the understanding
of the basic biology of diseases, and improve final outcomes, which must legitimately refer to the progress of the

disease and the effect of the compound being applied.

10 | CONCLUSIONS

TLRs are among the ideal targets for exploitation in immunotherapy; however, their biology still needs to be better
understood in the context of target diseases. These receptors are capable of inhibiting disease pathophysiology, as well as
exacerbating inflammatory diseases. Given this dual role, it is imperative to fine tune their activation using a multidrug
approach. Cumulative evidence suggests the participation of TLRs in almost all diseases is unique and can be exploited by
including their ligands as adjuvant treatment during regular immunotherapy or as part of other therapeutic regimens.
It is vital to create superior disease models that assist in early phase evaluation of drugs, improve diagnostics
and evaluation of disease progression, and facilitate identification of novel biomarkers that reliably indicate disease
progression and real-time disease monitoring. Finally, the availability of clinical trial data should be ensured to
guide the scientific community in their endeavors. This would also assist in the refinement of targets and lead
molecules and improve the pathophysiological manifestations of diseases. Using a combination of computational
power, next-generation sequencing and proteomic data, machine learning approaches, and improved availability of
results, we are hopeful that a dramatic increase in new therapeutic options for various inflammatory diseases and

cancers involving TLRs and a decline in clinical trial failures will be achieved.
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