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This paper describes that it is possible to estimate a viewer’s five-level subjective evaluation of video 
degradation with an estimation accuracy of 0.90 or better by using physiological data such as blood 
volume pulses of viewers. To this end, we conducted an experiment to record participants’ EEG, 
BVP, gaze, pupil diameter, and subjective evaluation values of video degradation while they watched 
videos. We then created five different datasets from the data and built estimation models using 
machine learning based on random forest or neural network. As a result, the coefficient of 
determination for the physiological data with top importance trained by random forest was 0.997. 
The results contribute to an objective, continuous, unconscious, and quantitative method for 
estimating Quality of Experience (QoE) during video viewing.  

Physiological signals. Quality of experience. Video degradation. 

1. INTRODUCTION 

This paper experimentally validates whether it is 
possible to estimate a viewer’s response to 
degradation of video resolution or frame rate from 
the viewer’s physiological signals during video 
viewing. As an experimental task, participants 
watched videos that we intentionally degraded 
partially, while continuously inputting their own 
subjective evaluation values regarding the 
degradation. During this time, EEG 
(ElectroEncephaloGraphy), Blood Volume Pulse 
(BVP), on-screen eye position, and pupil diameter 
were recorded as the physiological signals. We used 
80% of the physiological data, the genre of the 
video, and the degradation information as training 
data for machine learning to construct models for 
estimating subjective evaluation values of degraded 
videos, and used the remaining 20% as test data to 
evaluate the models. 

The contributions of this paper are as follows: 

(i) In the construction of a model for estimating 
the subjective evaluation of video 
degradation, the model with physiological 
data is far more accurate than the model 
without physiological data. 

(ii) The estimation accuracy of the model, which 
learns physiological data of high importance 

using the random forest method to estimate 
five levels of subjective ratings, was 0.997. 

(iii) BVP is strongly correlated with the 
subjective evaluation value among EEG, 
BVP, eye gaze, and pupil diameter. 

The background of this study is a problem that 
conventional network control based on Quality of 
Experience (QoE) does not directly reflect QoE of 
users (Skorin-Kapov et al., 2018). QoE has been 
defined that the degree of delight or annoyance of 
the user of an application or service (ITU, 2019). 
The current network control philosophy has shifted 
from device-centric to application-centric (Cao et 
al., 2015; Huang, 2015; Seddiki et al., 2015). 
Methods to control the network based on the user's 
network usage have also been proposed (Kolb et 
al., 2015; Bentaleb et al., 2016). However, the 
methods do not solve the problem that they do not 
directly reflect the quality of the user’s own 
experience. Most conventional methods estimate 
QoE from network quality measures (e.g., delay) 
and application quality measures (e.g., sound 
quality, image quality, response time) and reflect 
them in network control (Liotou et al., 2015; 
Hayashi, 2015).  

As a solution to the problem, we have proposed 
“affective network control system,” in which 
physiological signals that can be measured 
objectively, continuously, and unconsciously are 
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used to estimate physiological psychological 
experience quality, and networks are controlled in 
synchronization with the estimated values. As an 
experiment to obtain basic findings for the purpose, 
we attempted to build a machine learning model to 
estimate subjective evaluation values for video 
degradation based on viewers’ physiological 
responses to video degradation during video 
viewing. In this paper, Section 2 introduces related 
research and the differences between them and 
our proposal, Section 3 describes the experiment 
of recording physiological signals, Section 4 
describes the construction of the estimation model 
using machine learning, and Section 5 concludes. 

2. RELATED WORK 

Various methods have been studied to obtain or 
estimate QoE. These can be broadly classified into 
three methods: estimating QoE from quality of 
service (QoS) such as a state of network traffic and 
computer resources; obtaining QoE from user 
questionnaires such as oral examinations and 
questions; and estimating QoE from user’s 
physiological signals such as EEG, gazing, and 
facial expressions. Each method has its advantages 
and disadvantages. Estimating from QoS has the 
advantage of being easy to estimate continuously 
and quantitatively, but has the disadvantage of not 
directly reflecting the user’s condition. Obtaining 
data from questionnaires has the advantage of 
directly obtaining the user’s condition and mental 
state, but has the disadvantages of being difficult to 
obtain continuously, interfering with the user’s work, 
and causing bias due to subjectivity. Estimating from 
physiological responses has the advantage of 
continuously and objectively obtaining the user’s 
responses, but has the disadvantages of a large 
apparatus, instability of estimation accuracy, and 
individual differences. 

In studies using QoS, Hayashi proposed using 
network quality measures such as packet loss and 
application quality measures such as audio and 
picture quality to quantify QoE (Hayashi, 2015). 
Liotou et al. listed two major QoE influence factors: 
service-independent factors such as network layer 
and physical layer, and service-dependent factors 
such as video specific and voice, and introduced a 
QoE estimation formulas based on the factors 
(Liotou et al., 2016). 

In a study using a questionnaire survey, Robitza et 
al. asked participants to watch videos of different 
quality and then to answer questions about their 
impressions of the video viewing experience and 
their behavior when the quality was poor (Robitza et 
al., 2016). The International Telecommunication 
Union (ITU) has developed recommendations on 
methodologies for subjective quality evaluation of 
video images, specifying viewing environments and 

viewing conditions with the aim of obtaining 
reproducible quality evaluation results. In particular, 
BT.500 recommends a method for subjective 
evaluation of TV video quality (ITU, 2019). 

Regarding use of physiological signals, Arndt et al. 
reviewed previous studies that have primarily used 
EEG. P300 and alpha and theta waves of video and 
audiovisual viewers have been used for the EEG 
analyses (Arndt et al., 2016). Porcu et al. surveyed 
previous studies using EEG, facial expressions, and 
eye gaze, noting that it is difficult to investigate visual 
local interest and load when EEG is the primary 
method, so they used facial expressions and eye 
gaze (Porcu et al., 2020). 

The novelty of our approach, which differs from the 
previous studies, is to combine video quality 
parameters which are QoS, with physiological data 
which are direct reactions of viewers, in order to 
estimate subjective evaluation values regarding 
video degradation, which is one of QoE. The utility 
of our approach is to be able to quantify QoE directly, 
objectively, continuously, and unconsciously, and to 
be able to flexibly control network and/or computer 
resources in synchronization with the QoE. 

3. EXPERIMENT 

The purpose of this experiment was to obtain the 
viewer’s physiological signals and subjective 
evaluation values during video degradation in order 
to construct estimation models. Experimental 
participants were instructed to use a slider to input 
their subjective evaluation of the video quality while 
watching a video. At the same time, participants’ 
EEG, fingertip BVP, and gaze were recorded. Four 
videos of different genres with playback durations 
ranging from 5 to 7 minutes were prepared as 
experimental stimulus videos. Each video contained 
scenes that were intentionally degraded by the 
experimenter in advance. 

3.1 Experiment environment 

The experiment was conducted in a private room 
with no ambient noise and no outsiders. The 
brightness of the room was adjusted to a constant 
level by closing the curtains and turning on a light, 
and the room temperature was adjusted to 22°C with 
an air conditioner in order to ensure that the 
experimental environment was the same for all 
participants. 

3.2 Experimental apparatus and physiological 
signals 

Figure 1 shows the experimental apparatus and a 
participant performing the experimental task. Each 
of the equipments is described below. 
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Figure 1: The experimental equipment and a participant 
performing the task 

3.2.1. Video playback equipment 
A laptop computer (Panasonic CF-SZ6) with a 
screen size of 12.1 inches was used to play the 
stimulus videos. Each video was fixed to 1280 x 720 
px and displayed in the center of the laptop. A neck-
mounted loudspeaker (JVCKENWOOD SP-A7WT-
B) was used to play the sound of the videos. 

3.2.2. Subjective evaluation value input device 
To obtain subjective evaluation values regarding 
video quality, the Single Stimulus Continuous 
Quality Evaluation (SSCQE) method (ITU, 2019) 
was implemented, in which a participant inputs the 
evaluation values by moving a slider (Phidgets 
1112-Slider 60, see Figure 2) while watching a 
video. The maximum movement range of the slider 
is 60 mm, and the sampling frequency is 10 Hz. The 
movement range of the slider was divided into five 
segments (12 mm each), and one of the five 
evaluation values shown in Table 1 was 
continuously input as a time-continuous value. The 
five evaluation terms are based on ITU-R BT.500 
(ITU, 2019). 

 

 

Figure 2: The slider for inputting subjective evaluation 
value 

 

Table 1: Subjective evaluation value for video 
degradation 

Evaluation 
value 

Evaluative phrase 

5 Deterioration is imperceptible 

4 Deterioration is perceptible, but not 
annoying 

3 Deterioration is slightly annoying 

2 Deterioration is annoying 

1 Deterioration is very annoying 

 

Because the ITU-R BT.500 describes a “fixed or 
desk-mounted position,” and to prevent participants 
from looking at their hands while concentrating on 
watching a video, the slider was hidden by a box and 
fixed to the experimental table, as the right hand of 
the participant shown in Figure 1. 

3.2.3. Physiological Sensors 
In this experiment, the viewer’s 
electroencephalograph (EEG), Blood Volume Pulse 
(BVP), on-screen eye position, and pupil diameter 
were measured and recorded. we checked the wear 
of the physiological sensors after each participant 
finished watching each video in order to obtain 
accurate data. 

3.2.3.1. EEG sensor 
EEG is a record of the oscillations of brain electric 
potentials recorded from electrodes attached to the 
human scalp (Nunez and Srinivasan, 2007). The 
theta (4-7 Hz), alpha (8-12 Hz), and beta (13-21 Hz) 
waves were extracted from the raw data, and the 
power and peak-to-peak values for each of the 
bands were calculated. It has been reported that 
alpha waves increase during relaxation, while alpha 
waves decrease and beta waves and beta/alpha 
waves increase when the mental load is high or 
when feeling discomfort (Uwano et al., 2008). In 
addition, Awang et al. reported a positive correlation 
between stress and theta waves (Awang, 2011). 

The EEG was measured at Fp1 and Fp2 of the 
frontal cortex as defined by the international 10-20 
method. The reason for measuring the EEG of the 
prefrontal cortex is based on previous studies that 
have shown that this is the region where evaluative 
emotions are most likely to be expressed (Mitsukura, 
2019). The EEG-Z sensor (Thought Technology 
Ltd., 2022) from Thought Technology was used as 
the sensor. 

3.2.3.2. BVP sensor 
BVP bounces infra-red light against a skin surface 
and measures the amount of reflected light. The 
amount varies with the amount of blood in the skin. 
From the raw data, the Inter-Beat Interval (IBI), 
which is the interval between R waves that occurs 
when blood is pumped from the left ventricle to the 
aorta (Miyata, 1998; Hori, 2008), and the Normal-to-
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Normal Interval (NN), which is the IBI without 
artifacts (Citi et al., 2012), were calculated, and the 
low frequency (LF) component (0.04-0.15 Hz) and 
the high-frequency (HF) component (0.15-0.45 Hz) 
were extracted (Hori, 2008). The HF component 
appears when the parasympathetic nervous system 
is dominant, while the LF component appears 
regardless of whether the sympathetic or 
parasympathetic nervous system is dominant. 

The BVP was measured on ball of index finger of a 
participant’s left hand. Participants were asked to 
place their left hands palm up on a desk and to move 
them as little as possible. A BVP-Flex/Pro sensor 
(Thought Technology Ltd., 2022) from Thought 
Technology was used to measure BVP. 

3.2.3.3. Eye tracker 
The eye tracker was used to measure the 
participants’ viewing position on the screen (X-Y 
coordinate) and their pupil diameters. Sawahata et 
al. investigated the relationship between viewers’ 
comprehension of a TV program and the direction of 
their gazes and reported that the variances in gaze 
direction tended to be lower for scenes for which the 
participants had better comprehension (Sawahata et 
al., 2008). Pupil diameter responds to cognitive 
processing, arousal, and increased interest (Hess 
and Polt, 1960; de Winter et al., 2021). Typically, the 
greater the level of arousal or interest, the larger the 
pupil size. A Euclidean distance of an eye movement 
between a frame and the previous frame was 
calculated from the eye coordinate values of the 
frames. 

The eye tracker was placed on the hinge of the 
laptop computer for video playback, facing the 
participant’s face. Tobii’s Tobii pro nano (Tobii AB, 
2022) was used as the eye tracker. The sampling 
rate is 60 Hz, the resolution of the eye position is 
1280 x 800 px, and the unit of measurement for pupil 
diameter is 0.1 mm. 

3.3 Stimulus Video 

Four videos of different genres, ranging from 5 to 7 
minutes in duration, were prepared as stimulus 
videos to be presented to the participants. The 
genres are horror, nature, animation, and education. 
The original resolution of all videos is 1280 x 720.  

The independent variables of video quality in this 
experiment are resolution and frame rate. As a 
combination of the values of the two variables, we 
set the conditions for the nine levels of degradation 
shown in numbers 1 through 9 in Table 2. The 
condition with no degradation is shown as ‘0’ in 
Table 2, with a resolution of 1280 x 720 and a frame 
rate of 30 fps. Video quality other than resolution and 
frame rate is as follows: video codec is H.264, bit 
rate is 1800 kbps, and video decompression format 
is YUY2. The audio quality was not changed as 

follows: AAC audio codec, 192 kbps audio bit rate, 
44.1 KHz sampling rate, and PCM audio format. 

Table 2: Video degradation conditions 

Degradation  
condition 

Resolution 
[px] 

Frame rate 
[fps] 

0 (no degradation) 1280 × 720 30 

1 1280 × 720 25 

2 854 × 480 30 

3 1280 × 720 20 

4 640 × 360 30 

5 1280 × 720 15 

6 426 × 240 30 

7 1280 × 720 10 

8 320 × 180 30 

9 1280 × 720 5 

 

As shown in Figure 2, each video contains 15 
seconds of each of the degradation conditions 1 
through 9, with no-degradation time periods before 
and after the degradation conditions. The 15-second 
video sequences were generated by re-encoding 
the degraded conditions at a lower resolution and 
frame rate based on Table 2. 

 

Figure 2: The order and time of the degradation 
conditions in a video 

3.4 Procedure and task 

One by one, participants came to the laboratory to 
perform the experimental task. At the beginning, the 
experimenter explained the experiment to the 
participant and obtained informed consent from the 
participant. Next, after the participant was seated 
facing the laptop computer for video playback, the 
experimenter attached the physiological sensors 
and the neck-mounted loudspeaker to the 
participant and calibrated the eye tracker. For the 
participant’s baseline, the experimenter recorded 
his/her EEG, BVP, and pupil diameter during 30 
seconds of resting with eyes closed, followed by 1 
minute of resting while looking at a video-playing 
laptop with no display.  

The experimental task assigned to the participants 
was to watch the videos to evaluate the quality of the 
videos using a slider if they noticed any differences 
in the quality of the videos. The participants were 
instructed to keep their hands and heads as still as 
possible, and to input the evaluation values without 
looking at the slider while looking at the screen. 
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Before the start of the experimental task, the 
participant was familiarized with the slider operation 
by watching a 3-minute video for task practice, which 
was different from the stimulus videos. 

As a within-subjects design, all participants watched 
all four videos and rated the degree of degradation 
of the videos several times at their own timing. The 
order in which the participants watched the videos 
was the same: horror, nature, animation, and 
education. After each video, the participant 
completed a questionnaire about his or her 
impression of the content of the video. The 
questionnaire items were five adjectives (actually 
written in Japanese) on a five-point scale (from A to 
E) for five items describing impressions of the 
content of the video shown in Table 3. The table was 
displayed on the screen immediately after the video 
ended, and the participant respond verbally. 

Table 3: The answers regarding impressions of a video 

A B C D E 

Very like Slightly like Neit
her 

Slightly 
dislike 

Very 
dislike 

Very 
interesting 

Slightly 
interesting 

Neit
her 

Slightly 
boring 

Very 
boring 

Very tense Slightly 
tense 

Neit
her 

Slightly 
calm 

Very 
calm 

Very 
pleasant 

Slightly 
pleasant 

Neit
her 

Slightly 
afraid 

Very 
scared 

Very 
dynamic 

Slightly 
dynamic 

Neit
her 

Slightly 
static 

Very 
static 

 

Participants were 11 college students (7 males and 
4 females) between the ages of 20 and 24. After 
watching all the videos, each participant completed 
a questionnaire survey about his/her daily video 
viewing. 

4. CONSTRUCTION OF AN ESTIMATION 
MODEL USING MACHINE LEARNING 

We construct models to estimate a subjective 
evaluation value of video degradation based on the 
physiological signals, degradation conditions, video 
genre, and video impressions recorded in the 
experiment in Section 3. In this study, 33 types of 
data (hereinafter referred to as “physiological data”), 
including recorded raw data and data calculated 
from the raw data, were prepared as explanatory 
variables, and subjective evaluation values of video 
degradation were used as objective variables. We 
prepared five data sets from which we selected 
types of the explanatory variables to be used, and 
compared the differences among the datasets. 

We built regression models by using Random 
Forests (RF) and Neural Networks (NN) for 
supervised machine learnings using subjective 
evaluation values as the correct data. All recorded 
data were resampled at 16 Hz. Eighty percent of the 

data, randomly selected from all the data, was used 
as training data, and the remaining twenty percent 
of the data was used as model evaluation data. 

4.1 Dataset 

Table 4 shows five datasets used for training to build 
a model and for evaluating the model. The 
combination of data types in each dataset is based 
on the test of the difference in estimation accuracy 
depending on the presence or absence of 
physiological signals and on the test of whether 
estimation is possible with a small number of 
physiological signal types. There are a total of 29 
types of raw physiological signal data and data 
calculated from the raw data. The “top 15 most 
important physiological data” refers to the 15 types 
of the most important physiological data among the 
29 types calculated by the random forest as 
described in section 4.3. 

Table 4: Types of data in datasets for machine learning 

No. of 
dataset 

Overview of data types 

1 Degradation condition, video genre, video 
impression 

2 Degradation condition, video genre, All 
types of physiological data 

3 Degradation condition, video genre, All 
types of physiological data, video 
impression 

4 Degradation condition, video genre, top 15 
most important physiological data 

5 Degradation condition, video genre, top 15 
most important physiological data, video 
impression 

 

4.2 Pre-processing 

4.2.1. Coding of values related to video 
To code the degradation conditions, the condition 
numbers from 1 to 9 shown in Figure 2 were set to 
one-tenth (i.e., 0.1, 0.2, ..., 0.9). On the other hand, 
for the zeros representing the no-degradation 
condition, the zeros were assigned between the 
degradation conditions to distinguish the respective 
zeros before and after each degradation condition. 
For example, degradation condition 2 was coded 
0.2, degradation condition 3 was coded 0.3, and 0 
between these conditions was coded 0.25. 

The four video genres were assigned the values 
0.25, 0.50, 0.75, and 1.00. In addition, responses to 
each of the five types of five-level adjectives (Table 
3) regarding impressions of the video content were 
assigned a score of 0.1, 0.2, 0.3, 0.4, and 0.5. 

For the objective variable, the subjective rating value 
of video degradation, participants rated the video on 
a 5-point scale (Table 1), but since the slider itself has 
a resolution of 1000 steps, we attempted to subdivide 
the responses into a higher resolution of 21 steps, 
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with values ranging from 0.00 to 5.00 in increments of 
0.25. Figure 3 shows the distribution of the subdivided 
subjective evaluation values of all participants for 
each degradation condition. The plots outside the 
box-and-whisker diagrams are outliers. 

 

Figure 3: Box-and-whisker diagram of subjective 
evaluation values for the subdivision of the degradation 

conditions 

4.2.2. Coding of values for physiological signals 
The percentage of the total LF power values and the 
percentage of the total HF power values of the BVP 
were recorded as values between 0 and 100, so they 
were linearly transformed and standardized to fit 
between -1.0 and 1.0 after dividing the values by 100. 

On the other hand, values calculated from 
physiological signals and physiological signals other 
than the total LF/HF power value were checked for 
normality by the Anderson-Darling test (Gross and 
Ligges, 2015). Since normality could not be 
confirmed (p<0.05), the data were standardized by 
robust Z-score. 

4.3 Random Forest (RF) 

In random forests, it is possible to calculate the 
importance of explanatory variables using Mean 
Decrease Gini. In the model building, we used the 
top 15 physiological data types of importance based 
on Mean Decrease Gini for datasets 4 and 5 (Table 
4), since the number of data for training is not large. 
The top 15 physiological data in order of importance 
were: NN interval of BVP, HF power ratio of BVP, LF 
power ratio of BVP, amplitude of BVP, IBI of BVP, 
power value of theta wave of EEG Fp1, power value 
of theta wave of EEG Fp2, pupil diameter of right 
eye, power value of beta wave of EEG Fp2, pupil 
diameter of left eye, power value of beta wave of 
EEG Fp1, power value of alpha wave of EEG Fp1, 

power value of alpha wave of EEG Fp2, raw data of 
EEG Fp2, and raw data of EEG Fp1. 

The R randomForest package was used for the 
implementation. All parameters used the default 
values of the package. The number of features, 
mtry, was set to n/3 (n being the number of 
explanatory variable data types), and the number of 
decision trees to be created, ntree, was set to 500. 

Figure 4 (a) to (e) show graphs comparing the 
estimated subjective evaluation values by the 
regression model constructed using the RF for each 
of the five datasets, with the actual measured 
subjective evaluation values from the experiment. We 
find that the plots in the datasets that use physiological 
data (datasets 2 to 5) converge on the diagonal and 
improve the accuracy of estimation compared to 
dataset 1, which does not use physiological data. 

 

(a) Dataset 1 

 

(b) Dataset 2 

 

(c) Dataset 3 
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(d) Dataset 4 

 

(e) Dataset 5 

Figure 4: Estimation results of regression model with 
random forest 

 

4.4 Neural Network (NN) 

Sony Neural Network Console was used for 
implementation (Sony, 2022). The basic structure of 
the layers consists of three layers of Affines and two 
layers of ReLUs. Additionally, two layers of Dropouts 
were inserted to prevent over-learning. For the 
output layer, a HuberLoss layer was used to solve 
the regression problem. The data used were the 
same as for the aforementioned RF, including the 
top 15 most important physiological data. 

Figure 5 (a) to (e) show graphs comparing the 
estimated subjective evaluation values by the 
regression model constructed using the NN for each 
of the five datasets with the actual measured 
subjective evaluation values from the experiment. 
We find that the plots in the datasets that use 
physiological data (datasets 2 to 5) converge on the 
diagonal and improve the accuracy of estimation 
compared to dataset 1, which does not use 
physiological data. Furthermore, we find that the 
convergence of the NN results to the diagonal is 
weak compared to the graph of the RF results shown 
in section 4.3. 

 

(a) Dataset 1 

 

(b) Dataset 2 

 

(c) Dataset 3 

 

(d) Dataset 4 
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(e) Dataset 5 

Figure 5: Estimation results of regression model with 
neural network 

4.5 Accuracy of the estimated model 

Coefficient of determination (R2), Root Mean 
Squared Error (RMSE), and Mean Error (ME) were 
used as metrics for estimation accuracy of the 
estimation models. Table 5 shows the values of the 
metrics for each dataset in RF and NN. The highest 
R2 of all is 0.997 for the RF method using dataset 5. 
The lowest RMSE is 0.073 for the RF method using 
dataset 5, and the lowest absolute value of ME is 
0.00 for the RF method using dataset 4. For NN, the 
highest R2 and RMSE are for dataset 3, and the 
lowest absolute ME is for dataset 5. 

Table 5: Estimation accuracy by learning method and 
dataset 

Training 
model 

No. of 
Dataset 

R2 RMSE ME 

RF 1 0.597 0.858 0.004 

2 0.992 0.119 0.003 

3 0.996 0.084 0.003 

4 0.997 0.076 -0.000 

5 0.997 0.073 0.001 

NN 1 0.652 0.797 -0.037 

2 0.853 0.519 -0.043 

3 0.906 0.414 -0.049 

4 0.825 0.566 -0.056 

5 0.905 0.417 -0.031 

 

5. DISCUSSIONS 

5.1 Machine learning results 

Table 5 shows that datasets 2 through 5, which 
include physiological signals, have significantly 
higher estimation accuracy than dataset 1 which 
does not include any physiological signals, both in 
the RF and in the NN. The results validate our 
hypothesis that physiological signals such as EEG, 

BVP, and eye gaze are useful for estimating viewers’ 
subjective evaluation of video degradation. The 
reason for this may be that the physiological 
responses of humans change in accordance with 
their stress or discomfort. We believe that the 
responses of the viewers differ according to the 
degree of degradation of the video. Therefore, as a 
future work, it is necessary to analyse the detailed 
relationships among the degree of video 
degradation, the degree of stress or discomfort, and 
the physiological responses. 

Physiological data based on BVP ranked higher in 
importance than EEG and gaze in the calculation of 
Gini impurity for the RF. The result differs from our 
hypothesis that EEG is more important than other 
physiological signals because it is more directly 
related to visual processing. Although we have not 
yet elucidated the reason for the result, we 
hypothesize that the BVP responded to stress 
caused by the degradation, while the EEG was 
primarily related to the processing of the video 
content and did not respond well to the degradation. 

Comparison of the dataset of the top 15 most 
important physiological data with the dataset of all 
physiological data shows that even the top 15 
datasets have sufficient accuracy to obtain an R2 
greater than 0.90. This indicates that physiological 
data, mainly BVP, may be sufficient to estimate 
subjective evaluation values for the deterioration. 
Furthermore, the BVP sensor is simpler in structure 
and less expensive than EEG and gaze sensors, 
making it highly valuable both as an implementation 
and as a use of physiological psychological data for 
our proposed affective network control system. 

5.2 Design of affective network control system 

Based on our analyses and discussions described 
above, this section describes a design proposal for 
affective network control system, which we have 
proposed as the basic background for this paper. 
The Affective network control system is a switching 
system that estimates subjective responses of 
network users from their physiological signals and 
controls the network parameters based on the 
estimated results, such as the subjective evaluation 
values in this paper. We believe that this will not only 
keep user’s QoE above a certain standard, but also 
enable effective use of network resources. 

Specifically, for example, as in the experiment, if the 
system can automatically estimate each user’s 
subjective evaluation of video degradation based on 
their physiological signals, it is possible to control 
bandwidth to extent that an evaluation of a user with 
a high evaluation does not become low, and to use 
the resulting resources as incremental resources for 
another user with a low evaluation. Or, even for a 
single user, for example, if the system can estimate 
that the user is dissatisfied with degradation of a 
video he/she is watching on his/her smartphone, the 



Paper title 
Author 1 ● Author 2 

9 

system automatically switches the playback device 
to another device with higher bandwidth and 
resolution that is closer to the user. 

6. CONCLUSION 

We conclude that physiological signals are useful by 
experimentally validating that the use of 
physiological signals can estimate the subjective 
evaluation of video degradation by video viewers 
with a higher accuracy of a coefficient of 
determination of 0.997 than the case without 
physiological signals. Moreover, we experimentally 
derived the result that BVP is more important for this 
estimation among BVP, EEG, and eye gaze. We 
also derived that random forests can estimate 
subjective evaluation values with higher accuracy 
than simple neural networks. In our analysis, we 
showed that sufficient estimation accuracy can be 
obtained in random forests by using only the 
physiological data of high importance instead of all 
the physiological data. 

As our future work, we plan to conduct a more 
detailed analyses of relationships among video 
quality, subjective evaluation values, and 
physiological data. Then, we plan to build a machine 
learning model with higher estimation accuracy 
using fewer types of data. Finally, based on the 
findings, we plan to implement our proposed 
affective network control system and validate its 
usefulness. 
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