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Abstract 

Background:  Antimicrobial resistance became the leading cause of death globally, resulting in an urgent need for 
the discovery of new, safe, and efficient antibacterial agents. Compounds derived from plants can provide an essential 
source of new types of antibiotics. A. indica (neem) plant is rich in antimicrobial phytoconstituents. Here, we used the 
sensitive and reliable gas chromatography-mass spectrometry (GC–MS) approach, for the quantitative and quantita-
tive determination of bioactive constituents in methanolic extract of neem leaves grown in Sudan. Subsequently, 
antibacterial activity, pharmacokinetic and toxicological properties were utilized using in silico tools.

Results:  The methanolic extract of neem leaves was found to have antibacterial activity against all pathogenic and 
reference strains. The lowest concentration reported with bacterial activity was 3.125%, which showed zones of 
inhibition of more than 10 mm on P. aeruginosa, K. pneumoniae, Citrobacter spp., and E. coli, and 8 mm on Proteus spp., 
E. faecalis, S. epidermidis, and the pathogenic S. aureus. GC–MS analysis revealed the presence of 30 chemical com-
pounds, including fatty acids (11), hydrocarbons (9), pyridine derivatives (2), aldehydes (2), phenol group (1), aromatic 
substances (1), coumarins (1), and monoterpenes (1). In silico and in vitro tools revealed that.beta.d-Mannofuranoside, 
O-geranyl was the most active compound on different bacterial proteins. It showed the best docking energy (-8 kcal/
mol) and best stability with different bacterial essential proteins during molecular dynamic (MD) simulation. It also 
had a good minimum inhibitory concentration (MIC) (32 μg/ml and 64 μg/ml) against S. aureus (ATCC 25,923) and E. 
coli (ATCC 25,922) respectively.

Conclusion:  The methanolic extract of A. indica leaves possessed strong antibacterial activity against different types 
of bacteria. Beta.d-Mannofuranoside, O-geranyl was the most active compound and it passed 5 rules of drug-likeness 
properties. It could therefore be further processed for animal testing and clinical trials for its possible use as an anti-
bacterial agent with commercial values.
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Background
Medicinal plants are known to have a wide range of bio-
active compounds that have antimicrobial, antifungal, 
anticancer, anti-inflammatory, and antioxidant activities 
[1–3]. Many researchers have documented the potent 
activity of plants’ bioactive compounds on drug-sensi-
tive and resistant bacteria [4–6]. Although plants con-
tain a very large number of bioactive compounds, few 
have been discovered [1]. The development of extraction 
methods and the use of molecular spectroscopic tech-
niques such as GC–MS and fourier-transform infrared 
(FTIR) has led to the discovery and characterization of 
new plant bioactive compounds [1, 7–9]. Recently, in 
silico tools have emerged as promising, time and cost-
saving approaches for drug discovery [10].

Azadirachta indica (A. indica) is one of the Meliaceae 
family known as neem. It has been used in traditional 
medicine since ancient times to treat a range of human 
diseases [11]. The leaves, seeds, and roots of neem con-
tain antibacterial and antifungal agents [12, 13]. This 
biological activity of neem stems from many bioactive 
compounds that are structurally and chemically diverse, 
with more than 140 compounds found in different parts 
of the plant [14]. Several types of biological compounds 
are extracted from neem, including ketones, carote-
noids, flavonoids, steroids, and phenolic compounds [15]. 
The antibacterial activity of A. indica leaves extract has 
been documented on different bacterial species includ-
ing E. coli, Staphylococcus species, Streptococcus species, 
and Pseudomonas species [16–18].

Antimicrobial resistance is one of the major problems 
facing global health today [19], and it is a major source 
of morbidity and mortality globally [20]. Nowadays it 
is becoming the leading cause of death globally [21]. A 
large number of bacteria have acquired and developed 
antimicrobial resistance mechanisms [20], which con-
stitutes a burden on the global health system with the 
increasing financial cost [22]. With the increase in drug 
resistance, there are very few alternatives for patients, 
and as a result, the number of deaths associated with it 
has increased [23]. In America, there are 23,000 deaths 
annually related to drug resistance [20]. The  emergence 
of  infectious diseases and the development of antibiotic 
resistance in bacteria resulting in decreased action or 
failure of existing antibacterial agents [24], has resulted 
in an urgent need for the discovery of new, safe, and effi-
cient antibacterial agents [25]. Compounds derived from 
plants can provide an essential source of new types of 

antibiotics. There are many types of phytochemicals of 
plant extract that can exert potential activity on sensitive 
and multidrug-resistant bacteria [24, 26].

Although a number of studies have reported various 
neem bioactive compounds, there hasn’t been much 
focus on.beta.d-Mannofuranoside, O-geranyl. Scanty 
information is available on this compound. In a study 
conducted in India, the authors documented the pres-
ence of this compound in mangroves associates crude 
extract with antimicrobial activity [27], and in another 
study conducted by Iga et  al., they used the isomers of 
synthetic D-mannofuranoside as antiallergic and anti-
inflammatory agents [28]. The present study focused on 
the extraction, GC–MS analysis, and investigation of the 
antimicrobial activity of crude neem methanolic extract 
on drug-resistant and sensitive bacteria. Subsequently, 
the molecular docking and MD simulation studies were 
explored for the evaluation of the activity of GC–MS-
identified compounds on different bacterial essential 
proteins. Accordingly, in vitro study was explored for the 
analysis of the antibacterial activity of the pure.beta.d-
Mannofuranoside, O-geranyl compound.

Results
Bacterial isolates
From 130 urine samples, 100 bacterial isolates were iden-
tified. From the 100 bacterial isolates, 90 were Gram-neg-
ative rods, and 10 were Gram-positive cocci. Escherichia 
coli represents the majority (70%) of isolates, followed by 
Klebsiella pneumoniae (9%), Enterococcus faecalis (8%), 
Pseudomonas aeruginosa (5%), Proteus spp. (5%), Citro-
bacter spp. (1%), Staphylococcus aureus (1%), and Staphy-
lococcus epidermidis (1%).

Antibacterial Susceptibility tests
The antibacterial susceptibility tests showed that 81.4% 
of E. coli isolates were resistant to ciprofloxacin, 75.7% 
to ceftazidime, 71.4% to cotrimoxazole, 62.9% to gen-
tamicin, and 10% to imipenem. P. aeruginosa showed 
resistance to ceftazidime (80%), ciprofloxacin (40%), 
gentamicin (40%), cotrimoxazole (40%), imipenem (0%). 
Proteus species showed high resistance to ceftazidime 
(60%), cotrimoxazole (60%) and imipenem (40%); a low 
resistance rate was also observed in ciprofloxacin (20%) 
and gentamicin (20%). K. pneumoniae was highly resist-
ant to ceftazidime (66.7%), and cotrimoxazole (55.6%), 
the resistance rate to ciprofloxacin, gentamicin, and 
imipenem was 22.2%. E. faecalis was highly resistant to 
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ceftazidime (50%), ciprofloxacin (37.5%), gentamicin 
(37.5%), imipenem (37.5%), and cotrimoxazole (25%) 
(Table 1). 

Antimicrobial activity of A. indica
In this study, methanolic extract of A. indica showed 
antimicrobial activity against strains of S. aureus, P. aer-
uginosa, E. coli, Proteus spp., S. epidermidis, Citrobacter 
spp., K. pneumoniae, E. faecalis, S. aureus ATCC 25,923, 
and E. coli ATCC 25,922. A low (6.25%) concentration of 
the extract showed activity on K. pneumoniae, Citrobac-
ter spp., P. aeruginosa, and control strains, while 12.5% 
concentration was active on E. faecalis, Proteus spp., S. 
epidermidis. The concentration of 3.125% moderately 
inhibits the bacteria, with the best activity (13 ± 1.8) 
recorded on P. aeruginosa. The concentration of 1.5% was 

not active on all bacterial strains (Table 2) (Supplemen-
tary figures S2 and S3).

Gas chromatography results
GC–MS analysis of neem leaves methanolic extract 
revealed 30 peaks, corresponding to 30 phytochemical 
compounds as shown in Table  3, including fatty acids 
(11), hydrocarbons (9), pyridine derivatives (2) and alde-
hydes (2), phenol group (1), aromatic substances (1), 
coumarins (1), and monoterpenes (1). The 1,5-Anhydro-
2-deoxy-L-arabino-hex-1-enitol was the most predomi-
nant compound with a peak area percentage of 15.6.

Molecular docking
The validation of docking protocols revealed the same 
orientation of redocked inhibitors with experimentally 
determined positions, the Root Mean Square Deviation 

Table 1  Antimicrobial susceptibility testing of commonly used antimicrobial agents on clinical isolates

Abbreviation: R= Resistant, S= Sensitive, n= Number

Bacterial isolates Ciprofloxacin Gentamicin Cotrimoxazole Ceftazidime Imipenem

S R S R S R S R S R

E. coli (n = 70) 13 (18%) 57 (82%) 26 (37%) 44 (63%) 20 (29%) 50 (71%) 17 (24%) 53 (76%) 63 (90%) 7 (10%)

K. pneumoniae (n = 9) 7 (78%) 2 (22%) 7 (78%) 2 (22%) 4 (44%) 5 (56%) 3 (33%) 6 (67%) 7 (78%) 2 (22%)

Citrobacter spp. (n = 1) 1 (100%) - 1 (100%) - - 1 (100%) - 1 (100%) 1 (100%) -
E. faecalis (n = 8) 5 (63%) 3 (37%) 5 (63%) 3 (37%) 6 (75%) 2 (25%) 4 (50%) 4 (50%) 5 (63%) 3 (37%)

P. aeruginosa (n = 5) 3 (60%) 2 (40%) 3 (60%) 2 (40%) 3 (60%) 2 (40%) 1 (20%) 4 (80%) 5 (100%) -
Proteus spp. (n = 5) 4 (80%) 1 (20%) 4 (80%) 1 (20%) 2 (40%) 3 (60%) 2 (40%) 3 (60%) 3 (60%) 2 (40%)

S. epidermidis (n = 1) - 1 (100%) 1 (100%) - 1 (100%) - 1 (100%) - 1 (100%) -
S. aureus
(n = 1)

- 1 (100%) - 1 (100%) 1 (100%) - 1 (100%) - 1 (100%) -

Total (n = 100) 33 (35%) 67 (65%) 47 (45%) 53 (55%) 37 (37%) 63 (63%) 29 (29%) 71 (71%) 86 (84%) 14 (16%)

Table 2  Mean of inhibition zones (diameter in millimeters) after in vitro exposure of isolates to A. indica methanol extract in different 
concentrations

Diameters of inhibition zones were measured in millimeters. Less than 9 mm zone was considered inactive, 9–12 mm as partially active, 13–18 mm as active, and 
18 mm were very active. N.A = Not active

Methanolic extract concentrations (%)

Bacterial isolates 50 25 12.5 6.25 3.125 1.5

E. coli (n = 70) 17.5 ± 1 15.5 ± 1 13.5 ± 0.5 12 ± 0.8 10 ± 0.5 N.A

K. pneumoniae (n = 9) 19 ± 1.6 17 ± 2 15.4 ± 2 13.5 ± 1.8 11 ± 1.9 N.A

Citrobacter spp. (n = 1) 22 ± 1 20 ± 1.5 18 ± 0.5 16 ± 1.1 11 ± 0.8 N.A

E. faecalis (n = 8) 16.5 ± 1.8 14.5 ± 2.2 13 ± 2.1 9 ± 1.6 8 ± 1.9 N.A

P. aeruginosa (n = 5) 21 ± 1 19 ± 0.8 17 ± 1.3 16 ± 1.5 13 ± 1.8 N.A

Proteus spp. (n = 5) 17.5 ± 1.8 15 ± 1.6 11 ± 1.2 9 ± 0.9 8 ± 0.9 N.A

S. epidermidis (n = 1) 15 ± 1.1 14 ± 1.5 13 ± 1.2 12 ± 0.5 8 ± 0.5 N.A

S. aureus (n = 1) 13 ± 0.5 11 ± 0.8 10 ± 0.7 9 ± 0.4 8 ± 0.5 N.A

E. coli ATCC® 25,922 18 ± 0.4 16 ± 1 14 ± 1 12.5 ± 0.4 8 ± 1 NA

S. aureus ATCC® 25,923 22 ± 0.8 20 ± 1.7 18 ± 2 15 ± 2 10 ± 0.5 NA
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(RMSD) between superimposed SB-239629, 07  N, and 
cefepime were 1.2, 0.66, and 2  Å, and docking energy 
-11.6, -6.8, and -8.25 kcal/mol respectively (Fig. 1).

The molecular docking of GC–MS-identified com-
pounds in neem showed variable activities on differ-
ent bacterial proteins. The.beta.d-Mannofuranoside, 
O-geranyl showed best docking energy on the four 
selected bacterial proteins, -8, 8.3, -8, and -9.7 kcal/mol 
on tyrosyl-tRNA synthetase (PDB ID: 1JIJ), DNA gyrase 
(PDB ID: 3TTZ), Penicillin-Binding Protein 2X (PBP2X) 
(PDB ID: 5OJ0), and penicillin-binding protein 4 (PBP4) 
(PDB ID: 1TVF) respectively (Figs. 2 and 3).

Molecular Dynamics simulation
For predicting the interaction stability of ligand and pro-
tein complexes, a 50 ns simulation run was performed for 
the complex of.beta.d-Mannofuranoside, O-geranyl and 

tyrosyl-tRNA synthetase (PDB ID: 1JIJ), which showed 
the highest stability during the whole simulation time. 
The ligand was aligned with protein from the first 5  ns 
simulation until the end (50  ns) (Fig.  4A). The strong-
est molecular interaction between ligand and O-geranyl 
and tyrosyl-tRNA synthetase amino residues was found 
with Asp117 and Tyr36 (Fig.  5A). Whereas in Fig.  4B, 
which shows the interaction of.beta.d-Mannofuranoside, 
O-geranyl and DNA gyrase (PDB ID: 3TTZ), the ligand 
diverged within less than 3 Å, and with small fluctuation 
from 25-30 ns simulation time. The Glu50 of DNA gyrase 
showed 70% stable interaction during 50  ns MD simu-
lation (Fig. 5B). The RMSD plot in Fig. 4C indicates the 
50 ns trajectory of the complex of.beta.d-Mannofurano-
side, O-geranyl and PBP2X (PDB ID: 5OJ0) revealed the 
high stability of the complex in which the ligand and pro-
tein aligned throughout the whole simulation time. The 

Table 3  Compounds identified in methanolic extract of neem and their docking energy

Tyrosyl-tRNA synthetase (PDB ID: 1JIJ), DNA gyrase (PDB ID: 3TTZ), Penicillin-Binding Protein 2X (PBP2X) (PDB ID: 5OJ0), and penicillin-binding protein 4 (PBP4) (PDB 
ID: 1TVF)

No Group Neem ingredient compounds Area % Compound ID 1JIJ 3TTZ 5OJ0 1TVF

1 carbohydrate 1,5-Anhydro-2-deoxy-L-arabino-hex-1-enitol 15.6 CSP: 8,686,379 -6.2 -4.8 -5.2 -5.6

2 hydrocarbons 1, 3-Propanediol, 2-(hydroxymethyl)-2-nitro- 10.34 CID_31337 -4.7 -3.9 -3.9 -5.4

3 fatty acid 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 8.55 CID_5366244 -4.6 -2.9 -3.6 -3.9

4 fatty acid n-Hexadecanoic acid 7.75 CID_985 -1.5 -3.1 -5.1 -4.1

5 monoterpenes .beta.d-Mannofuranoside, O-geranyl 6.17 CID_5365843 -8 -8.3 -8 -9.7

6 hydrocarbons Phytol 4.06 CID_5280435 -0.2 -2.5 -3.1 -3.9

7 hydrocarbons 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- 3.87 CID_119838 -5.9 -3.9 -5.2 -7.6

8 hydrocarbons Dihydroxyacetone 3.38 CID_670 -3.7 -2.7 -4.2 -4.8

9 Coumarins Benzoofuran, 2, 3-dihydro- 3.06 CID_10329 -3.4 -3.6 3.9 -3.4

10 hydrocarbons 9-Eicosyne 2.38 CID_557019 -0.8 -1.1 -1.9 -1

11 dehydro-reducing sugars 5-Hydroxymethylfurlfural 2.03 CID_237332 -5 -4.2 -3.9 -5.1

12 hydrocarbons 1-Dodecanol 1.88 CID_8193 -0.4 -0.4 -1.9 -1.2

13 fatty acid 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- 1.76 CID_5280934 -0.8 -4 -5.8 -3.9

14 fatty acids Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester 1.58 CID_123409 -5.4 -5.2 -5.8 -6.8

15 fatty acid methyl esters 1, 2, 3-Propanetriol,1-acetate 1.41 CID_33510 -4.2 -3.8 3.9 -6.2

16 hydrocarbons Phytol, acetate 1.36 CID_6428538 -1.9 -4 -4.7 -3.2

17 hydrocarbons Furan, 2, 5-dimethyl- 1.33 CID_12266 -2.9 -3.2 -3 -2.7

18 aromatic substances 2-Methoxy-4-vinylphenol 1.29 CID_332 -4.6 -4.6 -4.4 -4.2

19 fatty acids Dodeccanoic acid 1.23 CID_3893 -1.9 -2.1 -5.6 -1.2

20 pyridine derivatives 5-Pyrimidinol, 2-methyl-4-(methylthio)- 1.22 CID_593599 -4 -2.8 -3.6 -4

21 aldehydes 4-Methyl-2, 5-dimethoxybenzaldehyde 1.18 CID_602019 -4.8 -4.8 -5 -4.9

22 pyridine derivatives 4(H)-Pyridine, N-acetyl- 1.09 CID_556800 -4.1 -3.7 3.8 -3.7

23 phenol group Phenol, 2, 6-dimethoxy- 1.07 CID_7041 -5 -4.7 -4.6 -4.4

24 fatty acids Tetradecanoic acid 0.96 CID_11005 -2 -3.4 -5.1 -5.2

25 fatty acids Octadecanoic acid 0.82 CID_5281 -0.9 -3.3 -4.4 -5.6

26 hydrocarbons 2, 5-Dimethyl-4-hydroxy-3(2H)-furanone 0.66 CID_19309 -5 -3.2 -6.5 -6.8

27 fatty acid methyl esters Pentanedioic acid, 3, 3-dimethyl-, monomethylester 0.65 SID_249925496 -2.8 -2.9 -3.4 -4.9

28 fatty acids Pentanoic acid, 4-oxo- 0.65 CID_11579 -3.6 -3 -4.9 -6

29 aldehydes Octadecanal 0.64 CID_12533 0.73 -1.6 1.8 -1.8

30 fatty acid methyl esters Hexadecanoic acid, methyl ester 0.48 CID_8181 2.37 -1 -2.5 -2
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Phe450, Lys340, and Asn397 of the PBP2X had the most 
stable interaction during the simulation time (Fig.  5C). 
The complex of PBP4 (PDB ID: 1TVF) and.beta.d-Man-
nofuranoside, O-geranyl was stable within 1.2  Å, from 
2.4–3.6  Å, this stability occurred after 15  ns simula-
tion time (Fig.  4D). Three residues (Glu83, Ser116, and 
Ser262) of PBP4 protein showed more than 70% stable 
interaction with the ligand during the simulation period 
(Fig. 5D).

Drug likeness, ADME, and Toxicity prediction
In silico tool is used for prediction of.beta.d-Mannofura-
noside, O-geranyl drug-likeness, absorption and distribu-
tion, Ames test, and carcinogenicity. As shown in Table 4, 
the compound showed some side effects with remarkable 
potential to be developed as an antibacterial agent.

Minimum Inhibitory Concentration (MIC)
The MIC revealed the.beta.d-Mannofuranoside, O-gera-
nyl compound had good activity (MIC 32  μg/ml and 
64  μg/ml)  against S. aureus (ATCC 25,923) and E. coli 
(ATCC 25,922) respectively (Supplementary figure S4).

Discussion
Plants are now one of the most important sources for 
finding a new bioactive molecule to treat human diseases 
caused by pathogenic bacteria [1, 7–9] since more than 
80% of people worldwide depend on herbal medicine for 
their basic healthcare requirements [29]. Neem trees have 

received worldwide attention as holy trees with remark-
able therapeutic benefits such as immunomodulatory, 
anticancer, antibacterial, and hepatoprotective proper-
ties [30]. Neem activity could be due to the presence of a 
wide array of bioactive phytoconstituents, which include 
fatty acids, flavonoids, carbohydrates, anthocyanin, car-
diac glycosides, phenols, and alkaloids [31]. The present 
analysis indicates the presence of different phytochemi-
cals in neem extract, including fatty acids, pyridine deriv-
atives, coumarins, and hydrocarbons. Fatty acids have a 
variety of health benefits and are commonly employed 
in the pharma industry, and they also have strong anti-
oxidant properties [32]. The coumarin (benzoofuran, 2, 
3-dihydro-) was reported to be anti-inflammatory [33].

Neem extract is rich in antimicrobial phytocon-
stituents such as alkaloids, glycosides flavonoids, 
phenolic compounds, steroids, triterpenoids, carot-
enoids, and tetra-triterpenoids azadirachtin [34]. In 
this study, the GC–MS analysis revealed the pres-
ence of 30 phytochemicals in the methanolic extract 
of neem leaves, the top detected phytochemical com-
pounds were reported previously with antibacterial 
activity: 1,5-Anhydro-2-deoxy-L-arabino-hex-1-enitol 
[35], 3,7,11,15-Tetramethyl-2-hexadecane-1-ol [36] 
1,3-Propanediol,2-(hydroxymethyl)-2-nitro- [37], n-Hex-
adecanoic acid [38],.beta. d-Mannofuranoside, O-geranyl 
[27], and phytol [39].

The methanolic extract of neem leaves used in this 
study had shown a potent antibacterial activity on 

Fig. 1.  3D interaction of superimposed crystal structure of protein inhibitors and that after redocking the same inhibitors with Maestro. The dashed 
lines indicate dashed lines Pi-cation (green), H-bonds (blue), bad contact (brown), and ugly contact (red). Active site residues (labeled in brown) 
showed interaction with reference co-crystallized ligands (white) and re-docked the same ligands (violet). A. 1JIJ and SB-239629 inhibitor. B. 3TTZ 
and 07 N inhibitor and C. 5OJ0 and cefepime



Page 6 of 14Altayb et al. BMC Plant Biology          (2022) 22:262 

different bacteria types. The antibacterial activity of 
crude neem extract was reported previously in many 
studies worldwide [40–42]. Methanol can extract a 
broad polarity range of compounds with antimicro-
bial activity [43, 43]. In this study, the activity of neem 
extract was observed on different uropathogens includ-
ing S. aureus, E.  coli, K. pneumoniae, Citrobacter spp., 
E. faecalis, P. aeruginosa, Proteus spp., and S. epider-
midis. The activity of neem leaves ethanolic extract 
on urine isolates was documented in Sudan [18, 45], 

Pakistan [46], and India [47]. Additionally, Okemo et al. 
[48] and Pokhrel et  al. [40] reported that the crude 
extract of the neem plant was very effective against 
S. aureus and E. coli. Our results are different from 
those obtained by Francine and his colleagues [49] in 
Rwanda. They reported the activity of neem methanolic 
extract only on S. aureus but not on E. coli. This varia-
tion could be due to differences in neem plants’ active 
constituents and due to differences in environment, 
genetic factors, and climates [50, 51].

Fig. 2.  3D structures of the interaction of.beta.d-Mannofuranoside, O-geranyl (green) at protein binding sites. The protein backbones are colored 
blue, residues associated with the interaction are labeled in black, H-bonds (green), bad interactions (brown). A. tyrosyl-tRNA synthetase (PDB ID: 
1JIJ). B. DNA gyrase (PDB ID: 3TTZ). C. Penicillin-Binding Protein 2X (PBP2X) (PDB ID: 5OJ0), and D. Penicillin-binding protein 4 (PBP4) (PDB ID: 1TVF)



Page 7 of 14Altayb et al. BMC Plant Biology          (2022) 22:262 	

Fig. 3.  2D interaction of.beta.d-Mannofuranoside, O-geranyl (black) and proteins binding site residues during molecular docking. H-bonds (violet), 
pi-cation (red), active site residues are colored red (negatively charged), deep blue (positively charged), green (hydrophobic), pale yellow 
(glycin), and pale blue (polar) A. tyrosyl-tRNA synthetase (PDB ID: 1JIJ) B. DNA gyrase (PDB ID: 3TTZ) C. Penicillin-Binding Protein 2X (PBP2X) (PDB ID: 
5OJ0), and D. Penicillin-binding protein 4 (PBP4) (PDB ID: 1TVF)
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Fig. 4  RMSD analysis of MD simulation trajectories generated from the interaction of.beta.d-Mannofuranoside, O-geranyl and backbones of 
proteins: A. tyrosyl-tRNA synthetase (PDB ID: 1JIJ) B. DNA gyrase (PDB ID: 3TTZ) C. Penicillin-Binding Protein 2X (PBP2X) (PDB ID: 5OJ0), and D. 
Penicillin-binding protein 4 (PBP4) (PDB ID: 1TVF), during 50 ns simulation time. The ligand is shown in red, and alpha carbon atoms of protein 
backbones are shown in blue color

Fig. 5.  2D interaction of.beta.d-Mannofuranoside, O-geranyl (colored black in the center), and the proteins binding sites residues, showing the 
percentage of H-bonds (violet) during 50 ns of MD simulation time. Active site residues are colored red (negatively charged), deep blue (positively 
charged), green (hydrophobic), pale yellow (glycin), pale blue (polar), and water molecules (gray). A. tyrosyl-tRNA synthetase (PDB ID: 1JIJ) B. DNA 
gyrase (PDB ID: 3TTZ) C. Penicillin-Binding Protein 2X (PBP2X) (PDB ID: 5OJ0), and D. Penicillin-binding protein 4 (PBP4) (PDB ID: 1TVF)



Page 9 of 14Altayb et al. BMC Plant Biology          (2022) 22:262 	

The lowest concentration of neem extract reported 
with bacterial activity was 3.125%, which showed zones 
of inhibition of more than 10 mm on P. aeruginosa, K. 
pneumoniae, Citrobacter spp., and E. coli, and 8  mm 
on Proteus spp. and Staphylococcus spp. These findings 
are better than Faujdar et  al. [47], who also used the 
same concentrations of neem methanolic extract as in 
our study, and reported at 6.25  mg/dl concentration a 
7 mm zone of inhibition on E. coli and Proteus spp, and 
0 mm on P. aeruginosa. Our finding is in concordance 
with a previous study conducted in Sudan, in which the 
6.25 mg/dl concentration was more active on P. aerugi-
nosa, and K. pneumoniae [45]. This could be due to the 
presence of the same phytoconstituents in neem plants 
grown in our environment [18, 50, 51].

Our study showed a high activity of neem extract on 
bacteria resistant to B-lactam, quinolones, and ami-
noglycosides, which is consistent with previous find-
ings [45, 47]. Although neem was active on pathogenic 
E. coli and S. aureus, we noticed better activity on the 
control strains of E. coli and S. aureus than on the 
pathogenic ones. This could be due to the presence of 

resistance mechanisms in pathogenic bacteria such as 
efflux pumps [52, 53].

The molecular docking study showed that.beta.d-Man-
nofuranoside, O-geranyl had potent activity on essen-
tial bacterial proteins. The.beta.d-Mannofuranoside, 
O-geranyl showed hydrogen bonds with residues that 
are closely interacted with active sites [54]. The Tyr36, 
Asp40, Tyr170, and Asp177 of S. aureus tyrosyl-tRNA 
synthetase protein was documented to also have hydro-
gen bonds with the known co-crystallized protein inhibi-
tor (SB-239629). This activity is concise with our in vitro 
study and with another in  vitro study, in which the 
authors identified mangrove associates extract with good 
antibacterial activity, the GC–MS analysis of this extract 
revealed the presence of a high concentration of.beta.d-
Mannofuranoside, O-geranyl [27].

We further evaluated the docking complexes’ stabil-
ity using molecular dynamic simulation, which showed 
the stability of these complexes during simulation time 
(50 ns). The ligand was aligned with protein backbones, 
with a fluctuation of less than 3 Å at most of the simula-
tion period. Usually, changes of the order of 1–3  Å are 

Table 4  Drug likeness, ADME, and Toxicity prediction of.beta.d-Mannofuranoside, O-geranyl

Drug likeness Prediction

  Rule of five Qualified

  Lead like rule violation 0

  Rule of five violation 0

  CMC like rule Qualified

  CMC like rule violation 0

  MDDR like rule At the mid structure

  MDDR like rule violation fields No rings

  MDDR like rule violation 2

  WDI like rule Out of 90% cutoff

  WDI like rule violation 2

  WDI like rule violation fields Balaban_index_JX, kier_alpha_03

ADME Prediction (Absorption and distribution)
  HIA 71.06%

  Caco-2 1.6

  MDCK 83.2

  Skin permeability -3.9

  Blood–brain barrier penetration (BBB) 0.16

  Plasma_Protein_Binding (%) 72

Toxicity Prediction (Ames test and carcinogenicity)

  Ames_test Mutagen

  TA100_10RLI Negative

  TA100_NA Positive

  TA1535_10RLI Positive

  TA1535_NA Negative

  Carcinogenicity (Mouse) Positive

  Carcinogenicity (Rat) Negative
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perfectly acceptable [55]. During the simulation, time 
residues (Lys340, Trp374, Asn397, and Gln452) of peni-
cillin-binding protein 2X (PDB ID: 5OJ0) showed inter-
action with protein inhibitor (cefepime) showed a stable 
interaction with.beta. d-Mannofuranoside, O-geranyl, 
indicates stability is maintained [56]. On the other hand, 
the active compounds of neem (.beta.d-Mannofura-
noside, O-geranyl) showed a stable interaction with S. 
aureus penicillin-binding protein 4 (PDB ID: 1TVF); the 
compound formed a stable water bridge with the cata-
lytic residue of the SXXK motif of the penicillin-binding 
protein 4 [57].

Conclusion
Methanolic extract of A. indica leaves revealed a potent 
antimicrobial activity to different types of gram-negative, 
gram-positive, and control strains. In  vitro and in silico 
experiments revealed the.beta. d-Mannofuranoside, 
O-geranyl is the most active compound on control strains 
and different bacterial essential proteins. Using in silico 
ADME/T prediction, the compound passed 5 rules of 
drug-likeness properties, so it could be further processed 
for animal testing and clinical trials for its possible use as 
an antibacterial agent with commercial values. Moreover, 
the GC–MS analysis of neem extract revealed the pres-
ence of a large number of bioactive components, and the 
most common were fatty acids (11), hydrocarbons (9), 
pyridine derivatives (2), and aldehydes (2), which played 
different biological activities in addition to their nutri-
tional benefits. Based on these findings, the neem plant 
could help us produce safe and effective medications 
for a variety of diseases. More in-depth research into 
these identified phytochemicals will aid pharmaceutical 
explorations.

Materials and methods
Collection and identification of bacterial isolates
A total of 130 urine samples indicated for urine culture 
and sensitivity testing were collected randomly from 
patients at East Nile Hospital and Ribat University Hos-
pital in Khartoum state, from January to April 2017. The 
urine samples were cultured on Cystine Lactose Electro-
lyte Deficient (CLED) agar media (Hi-Media laboratories 
PV + Ltd, India), and the clinical isolates were identified 
using conventional biochemical tests [58].

Antibacterial susceptibility testing
The Kirby-Bauer disk diffusion method [59] was used 
to test isolated organisms against various antibiotics 
including ceftazidime (30 mcg), imipenem (10 mcg), gen-
tamicin (10 mcg), cotrimoxazole (25 mcg), and ciproflox-
acin (10 mcg) (Hi-Media labs PV + Ltd, India) (5mcg). 
Results were interpreted according to the Clinical and 

Laboratory Standard Institute  (CLSI) document M100 
[59]. The following strains were used for quality control: 
S. aureus (ATCC 25,923) and E. coli (ATCC 25,922), to 
assess the media and antimicrobials disk efficiency.

Plant collection and extraction
Fresh leaves of wild neem were collected from Algazira 
(Alkamleen city) in central Sudan in March 2017. Leaves 
were collected from the same tree into clean, dry, labeled 
plastic bags. Samples were kept frozen at -80 °C until the 
time of their use [60]. A taxonomist authenticated the 
plant at Medicinal and Aromatic Plants and Traditional 
Medicine Research Institute (MAPRI) National Center 
for Research, Khartoum, Sudan. At MAPRI herbarium, 
a voucher sample (No. MAP/2017/4) was deposited. The 
collected leaves were washed and rinsed to remove dust 
and other impurities. They were then air-dried and then a 
total of 50 g of leaves were grounded using a mortar and 
pestle (Supplementary figure S1), 80% methanol was then 
used to soak the leaves for three days with daily filtration 
and evaporation. Then by using a rotary evaporator appa-
ratus under reduced pressure, the solvent was evaporated 
to dryness [61].

Antibacterial activity of neem extract
The antibacterial activity of neem leaves was tested using 
the agar well diffusion method on Muller Hinton Agar 
(MHA) medium against the isolated bacteria and con-
trol strains (S. aureus (ATCC 25,923) and E. coli (ATCC 
25,922)). Three colonies with similar features were dis-
solved in 1 mL normal saline and turbidity adjusted to 0.5 
McFarland. The isolates  were then streaked on the sur-
face of the MHA plate with a sterile swab. Using a cork 
borer, 6 mm wells were created aseptically on MHA. At 
sterile conditions, 100 µl of each 50, 25, 12.5, 6.25, 3.125, 
and 1.5% concentrations of neem extract  were poured 
into media wells [62]. The plates were placed refriger-
ated for  1  h to allow for  extract diffusion before being 
incubated at 37 °C for 24 h. Methanol alone was used as 
a negative control. The zone of inhibition was measured 
(in mm), and the mean was calculated [63]. Three repli-
cates were carried out for the activity of extracted neem 
against tested organisms. Then the data were presented 
as mean and standard deviation.

Phytochemical screening of A. indica (neem) extract
The GM-MS method was used to conduct a qualitative 
and quantitative characterization of neem extract, using 
the model (GC–MS-QP2010-Ultra) from Shimadzu 
Company, Japan, with a capillary column Rtx®-5MS 
column  (30  m,  0.25  mm,  0.25  µm) [64]. The split mode 
was used for sample injection, and operated in electron 
ionization (EI) mode at 70 eV, inflow rate of 1.69 ml/min. 



Page 11 of 14Altayb et al. BMC Plant Biology          (2022) 22:262 	

Helium gas was used as carrier gas. The injector temper-
ature was set at 300 °C, the temperature of the ion source 
was 200  °C, and 250  °C was used as interface tempera-
ture. The oven temperature program was as follows: the 
initial temperature at 50 °C rising at 7 °C /min to 180 °C, 
then the rate changed 10 °C/min reaching the final tem-
perature at 280  °C with 2  min as hold time. In a total 
22 min run, the sample was analyzed by the scan mode 
in a range of 40 to 500  m/z charges to ratio. The neem 
extract’s components were identified by comparing the 
retention times and mass fragmentation patents with the 
National Institute of Standards and Technology (NIST) 
library, and then the results were recorded [65, 66].

In silico analysis
Molecular docking
Proteins selection and preparation
The crystal structures of four essential bacterial proteins 
were obtained from RCSB PDB database [67] accord-
ing to their essential role in bacterial cell wall synthesis 
and protein production in most of our studied isolates, 
and according to published data [68–71]. These proteins 
were Staphylococcus aureus tyrosyl-tRNA synthetase 
(PDB ID: 1JIJ), DNA gyrase (PDB ID: 3TTZ), Penicillin-
Binding Protein 2X (PBP2X) from Streptococcus pneu-
moniae (PDB ID: 5OJ0), and penicillin-binding protein 
4 (PBP4) from Staphylococcus aureus (PDB ID: 1TVF). 
The proteins’ 3D structures were prepared with the Pro-
tein Preparation Wizard in Maestro using the default 
setting. For validation of the docking method, the co-
crystalized ligands, SB-239629, 07 N, and cefepime, with 
their respective structures (1JIJ, 3TTZ, and 5OJ0, respec-
tively), were redocked again using Maestro software [72].

Ligands preparation
The structures of compounds identified by GC–MS 
(Table  3) were obtained from NCBI PubChem and 
ChemSpider databases. The ligand’s energy was mini-
mized using LigPrep (Schrodinger software, version 
2020–3).

Molecular docking
Proteins’ active sites were predicted using the Receptor 
Grid Generation module in Schrodinger. The grids were 
specified around the co-crystalized ligands or using the 
SiteMap module to predict S. aureus (PDB ID: 1TVF) 
protein according to published data [69]. The prepared 
molecules were docked on protein active sites using extra 
precision (XP) docking of Schrödinger Maestro software 
[72]. Ligands were set flexible while proteins were set 
rigid.

Molecular Dynamic (MD) simulation
Desmond package in the Schrödinger Maestro software 
[72] was used for MD simulation. The complexes with the 
best interaction and docking energy were first solvated 
into the TIP3P water model, an orthorhombic box with 
boundary 10  Å beyond any of the complex’s atoms. 
Charges were neutralized and OPLS3e force field was 
used. The particle mesh Ewald method was used for the 
calculation of long-range electrostatic interactions [73] 
and cutoff of 12  Å. The molecular dynamic simulation 
was done in the NPT ensemble at a temperature of 300 K 
and 1.013 bar pressure over 50 ns and 30 ps for trajectory 
and 100 ps relaxation time. The trajectories were recorded 
in 50 ps intervals. After job completion, Root Mean Square 
Deviation (RMSD) and Root Mean Square Fluctuation 
(RMSF) were used to examine complexes’ stability.

Drug‑likeness, ADME & Toxicity Prediction Studies
The ADME profiles and toxicity analysis were carried out 
using PreADMET (http://​pread​met.​bmdrc.​org).

Minimum Inhibitory Concentration (MIC)
Antibacterial activity of the most stable ligand (.beta.d-
Mannofuranoside, O-geranyl) from the in silico study 
was evaluated using in vitro method. The compound was 
purchased from Apollo Scientific (UK), the compound 
ID: MolPort-019–937-357, purity 95%, and the Molecular 
weight was 316.394. The MIC of the compound was eval-
uated against S. aureus (ATCC 25,923) and E. coli (ATCC 
25,922) using the microtitre broth dilution method [74]. 
A twofold serial dilution of the compound was prepared 
in broth media (Muller-Hinton), using 96-well micro-
plates flat-bottom plates. One 100  μL of culture media 
containing bacterial growth adjusted to 5–105  CFU/ml 
was poured into each well. The MIC of the compound 
was determined at a concentration ranging from 0.5 to 
256 μg/ml [75].
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