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In brief
In this article, the merits and disadvantages 
in terms of sample size, statistical power, 
and study conclusions between two 
derived endpoints (absolute change and 
the corresponding responder analysis) are 
studied.
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as the study endpoint and a responder analysis are commonly 
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as absolute change and the corresponding responder analysis, 
a clinically meaningful difference in one endpoint does not 
directly translate to a clinically meaningful difference in another 
endpoint.

•	 A non-inferiority test using absolute change requires a larger 
sample size when compared with a corresponding responder 
analysis.
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may lead to different study conclusions.
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ABSTRACT

In clinical trials, the primary analysis is often either a test of absolute/relative change in a measured outcome or a 
corresponding responder analysis. Although each of these tests may be reasonable, determining which test is most 
suitable for a particular research study remains an open question. These tests may require different sample sizes or 
define different clinically meaningful differences; most importantly, they may lead to different study conclusions. 
The aim of this study was to compare a typical non-inferiority test using absolute change as the study endpoint 
to the corresponding responder analysis in terms of sample-size requirements, statistical power, and hypothesis-
testing results. From numerical analysis, using absolute change as an endpoint generally requires a larger sample 
size; therefore, when the sample size is the same, the responder analysis has higher power. The cut-off value and 
non-inferiority margin are critical and can meaningfully affect whether the two types of endpoints yield conflicting 
conclusions. Specifically, extreme cut-off values are more likely to yield different conclusions. However, this influence 
decreases as population variance increases. One important reason for conflicting conclusions is a non-normal 
population distribution. To eliminate conflicting results, researchers should consider the population distribution 
and cut-off value selection.

Keywords: primary endpoints, responder analysis, threshold selection

1. INTRODUCTION

In clinical trials, primary study endpoints are often ana-
lyzed to determine whether the intended studies will 
achieve the study objectives with the desired statistical 
power. In practice, investigators can consider four dif-
ferent types of primary endpoints or outcomes accord-
ing to a single study objective: (i) absolute change (i.e., 
the endpoint’s absolute change from baseline), (ii) rel-
ative change (e.g., the endpoint’s percentage change 
from baseline), (iii) responder analysis based on abso-
lute change (i.e., an individual participant is defined 
as a responder if the absolute change in the primary 
endpoint exceeds a pre-specified threshold known as 
a clinically meaningful improvement), or (iv) responder 
analysis based on relative change. Although analyses 
based on these endpoints all appear reasonable, the 
following statements are often of great concern to 
principal investigators [1]. First, a clinically meaningful 
difference in one endpoint does not directly translate 

to a clinically meaningful difference in another end-
point. Second, these derived endpoints generally have 
different sample-size requirements. Third, and most 
importantly, these derived endpoints may not yield the 
same statistical conclusion (based on the same data set). 
Consequently, determining which type of primary end-
point is most appropriate and can best inform on disease 
status and treatment effects is of particular interest.

Some researchers have criticized responder analysis 
because of a loss of information; i.e., the statistical power 
of a trial decreases if a continuous outcome is categorized 
into a binary variable [2, 3]. Although responder analysis 
may come at the expense of power, it still provides value. 
For example, the original scale (continuous) outcome is 
used to make binary decisions, such as whether a patient 
should be hospitalized. In a heterogeneous disease, a 
subset of patients may have more benefit than others, 
thus resulting in a non-normal distribution of the out-
come [4]. If the trial is aimed at investigating an addi-
tional second agent, and the proportion of patients with 
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more benefit is of interest, responder analysis is more 
suitable [4]. Because of its benefits and drawbacks, [3] 
have suggested that responder analysis be used as a 
secondary analysis to better interpret findings from the 
main analysis. However, analysis using absolute change 
as an endpoint and the corresponding responder analy-
sis have different statistical properties. Hence, investigat-
ing their differences in terms of statistical power, sample 
size, and conclusions is highly important.

To study the relative performance of these derived 
endpoints, in addition to mathematical derivations, we 
conducted a numerical study and real case study based 
on data on a recent rehabilitation program in lung trans-
plant candidates and recipients [5]. The 6-minute walk 
distance (6MWD), a commonly used clinical indicator for 
patients with pulmonary disease, can be used as not only 
a prognostic factor but also as a health outcome varia-
ble [6]. For example, the 6MWD has been used to meas-
ure the functional status and exercise capacity of lung 
transplant candidates or recipients [7, 8]. Some studies 
have used the endpoint of the change in 6MWD from 
baseline (absolute change) as the outcome variable to 
evaluate the performance of pulmonary disease treat-
ment [9], whereas others have performed responder 
analysis using 6MWD [10, 11]. Individuals can be defined 
as responders if they meet a pre-specified threshold of 
improvement in 6MWD and as non-responders other-
wise. In one example, [11] have classified patient perfor-
mance after rehabilitation according to the following 
criteria: good, 6MWD increase ≥50 m; moderate, ≥25 to 
<50 m; and non-response, <25 m. However, in another 
study [12], have reported that the minimum important 
change in 6MWD in chronic respiratory disease is 25 to 
33 m. [13] have used 25 m as the threshold for equiv-
alence in the change in 6MWD. Although the wider 
range of 6MWD is generally accepted as 25 to 30 m, 
the exact threshold of change in 6MWD that is clinically 
meaningful is under debate.

In this case study, for simplicity, we focused on sta-
tistical evaluation of a rehabilitation program in lung 
transplant candidates and recipients in terms of abso-
lute change in 6MWD and responder analysis based on a 
pre-specified threshold (improvement) of 6MWD on the 
basis of absolute change. A comparison between the 
absolute change and responder analysis with various 
pre-specified thresholds was performed in terms of sam-
ple-size requirement and statistical power. In the next 
section, we presented statistical methods for analysis 
using absolute change as the study endpoint as well as 
the corresponding responder analysis. Additionally, we 
compared the performance of these study endpoints in 
terms of statistical power, sample size and study results/
conclusions. In Section 3, we discussed a numerical anal-
ysis of the comparison between absolute change and 
responder analysis and a case study of a rehabilitation 
program in lung transplant candidates and recipients. 
Brief concluding remarks and recommendations were 
given in the last section of this article.

2. METHODS

2.1 Hypothesis testing for efficacy
Non-inferiority testing is commonly considered in ran-
domized clinical trials evaluating the performance of 
a new drug or new treatment versus an active control 
(e.g., standard of care). The success of a non-inferior-
ity trial depends on the selection of the study endpoint 
and the non-inferiority margin. As indicated earlier, for 
a given study endpoint, four types of primary endpoints 
exist: absolute change (e.g., endpoint change from base-
line), relative change (e.g., endpoint percentage change 
from baseline), responder analysis based on a pre-spec-
ified improvement (threshold) in absolute change, and 
responder analysis based on a pre-specified improve-
ment (threshold) in relative change. Consequently, the 
inference from responder analysis is very sensitive to the 
pre-specified threshold (cutoff) value [14]. For simplicity 
and illustration purposes, we examine the performance 
of the first two primary endpoints: absolute change and 
a corresponding responder analysis.

We assume a two-arm parallel randomized clinical 
trial comparing a test treatment (T) and an active con-
trol (C) with a 1:1 treatment allocation ratio. Let W1ij 
and W2ij be the original response of the ith patient in 
the jth treatment group at baseline and post-treat-
ment, where i = 1, …, nj and j = C, T, respectively. 
Furthermore, W1ij is assumed to follow a log-normal 
distribution j jLN 2 ( , ),µ σ  and W2ij = W1ij (1 + Δij), where 

ij ijij LN 2~  ( , ).∆ ∆∆ µ σ  Hence, the absolute change from base-
line is as follows:

	
j jij ij ij ij j jW W W LN 2 2

2 1 1  ~   ( ),,∆ ∆∆ µ µ σ σ− = + + � (1)

where W1ij and Δij are assumed to be independent. 
Let Xij = log (W2ij – W1ij) represent the log absolute 
change; then 

j jij j jX N 2 2~  ( , ).∆ ∆µ µ σ σ+ +  Let xij denote the 
observations of random variable Xij. The reason for 
using W1ij and W2ij instead of directly using Xij, following 
a normal distribution, is that the same notation can 
be used to denote relative change. For example,  
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ij
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log
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 can represent log relative change,  

 
which follows 

ij ij
N 2( , ).∆ ∆µ σ  Although the relative-change 

endpoint is not the focus of this work, this notation will 
benefit future studies.

The outcome variable for responder analysis based 
on a pre-specified absolute change is then given by  
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where Φ(·) is the cumulative distribution function (CDF) 
of a standard normal distribution. The hypotheses for 
non-inferority testing based on the derived endpoint of 
absolute change and the corresponding responder anal-
ysis can be set up as follows.
1. Absolute change:

	

C T

C T

0 C T 1 A

C T 1

H : ( ) ( )  v.s.  

,

H

: ( ) ( )
∆ ∆

∆ ∆

µ µ µ µ δ

µ µ µ µ δ

+ − + ≥

+ − + < �
(3)

where δ1 is the non-inferiority margin in hypothesis test-
ing using absolute change.
2. Responder analysis based on a pre-specified threshold 
(improvement) of absolute change:

	
C T C T0 A A 2 A A A 2H :p p  v.s. H :p p .δ δ− ≥ − < � (4)

where δ2 is the non-inferiority margin in hypothesis test-
ing using responder analysis.

For a non-inferority test based on the derived end-
point of absolute difference, the Z test statistic under 
the null hypothesis in Equation (3) is given by
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where xT and xC are the sample means of absolute 
change in the treatment and control groups, respec-
tively, and n1 is the sample size of the treatment or 
control group, assuming an allocation ratio of 1:1. 
Let δ1A denote the true sample mean difference. 
The corresponding statistical power can be written as 
follows:
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The sample-size requirement for the non-inferiority 
test using absolute difference can then be obtained as 
follows:

	

T C
z z

n
C T

2 2 2 2 2
1 T C

1 2
C T 1

2( ( )
.

)

[( ) ( ) ]
α β ∆ ∆

∆ ∆

σ σ σ σ

µ µ µ µ δ
− + + + +

=
+ − + −

�

(7)

For a non-inferiority test of responder analysis based 
on a pre-specified threshold (improvement) of absolute 
difference, the Z test statistic under the null hypothesis 
in Equation (4) can be derived as follows:
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n n n
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where TAr  and 
CAr  are the sample proportions in the treat-

ment and control groups, respectively, and n2 is the sam-
ple size of the treatment or control group, assuming an 
allocation ratio of 1:1. Similarly, let δ2A denote the true 
proportion difference; then the corresponding statisti-
cal power is as follows:
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(9)

where the last approximate equation holds according to 
Slutsky’s theorem [1]. The sample-size requirement for 
a non-inferiority test for responder analysis based on a 
pre-specified threshold (improvement) of absolute dif-
ference is then given by the following:

	
C C T T

C T

A A A A

A A

z z p p p p
n

p p

2
1

2 2
2

( ( ) ( ))
.

( )

2( ) 1 1α β

δ
− + − + −

=
− − � (10)

2.2 Statistical power comparison in non-
inferiority tests
Many previous studies have suggested avoiding rela-
tive difference because of statistical inefficiency [15]. 
Extending this idea, we compared statistical power 
for non-inferiority testing using absolute change and 
a responder analysis using absolute change. The com-
parisons of required sample sizes and conclusion for 
non-inferiority tests are also shown in this section. Let 
AC denote absolute change and PAC denote responder 
analysis using absolute change.
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From the formula of statistical power of a non-inferi-
ority test shown in Section 2, the power difference can 
be computed with the CDF of N(0,1). Through Taylor 
expansion, the CDF of N(0,1) Φ(·) can be written as 
follows:
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Keeping the first term of the Taylor expansion in 
Equation (11), Φ(x1) – Φ(x2) can be simplified as follows:
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To compare the statistical power of a non-inferiority 
test using the absolute-change endpoint with the sta-
tistical power for a responder analysis using the abso-
lute-change endpoint, we first simplify 

jA
p . On the basis 

of Equation (11), 
jA

p  can be written as follows:
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and

j j

j j

j j

j j

jj

j j

A A

j j

j j

jj

c c
p p

c c

1 1

2 2 2 2

2 2
1 1

2 22 2

( ) ( )1 1 1 1
1

2 22 2

( ) ( )1 1 1
.

4 2 4

( )

[

2 ( )

]

∆ ∆

∆ ∆

∆ ∆

∆∆

µ µ µ µ

π πσ σ σ σ

µ µ µ µ

π π σ σσ σ

− + − +   
− = − ⋅ + ⋅      + +   

− + − + 
= − = −  + +   

�

(14)

Hence,
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and
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If the sample sizes of a non-inferiority test using abso-
lute change and the corresponding responder analysis 

are assumed to be the same, denoted n, on the basis 
of Equation (12), the difference between power1 and 
power2 can be written as follows:
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2.3 Sample-size comparison in non-inferiority 
tests
From Equation (15) and (16), the sample size for the 
responder analysis using the absolute-change endpoint 
in Equation (10) can be written as follows:
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When the significance level and desired statistical power 
are the same, the necessary sample sizes for a responder 
analysis and a test from absolute change can be com-
pared with the following ratio:
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2.4 Conflict probability in non-inferiority tests
In this section, we investigate the probabilities of a 
non-inferority test using absolute change as the end-
point and the corresponding responder analysis having 
similar or different conclusions. We assume that the 
samples used to conduct these two types of non-infer-
ority test are the same. Thus, four types of events are 
possible:
Both AC and PAC reject H0

0 0P(AC reject H  and PAC reject H )
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AC fails to reject H0, whereas PAC rejects H0

0 0P(AC fail to reject H  and PAC reject H )
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AC rejects H0, whereas PAC does not reject H0

0 0P(AC reject H  and PAC fail to reject H )
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Both AC and PAC do not reject H0

0 0P(AC fail to reject H  and PAC fail to reject H )

P Z z Z z1 1 2 1( , )α α− −= ≤ ≤

T C

x x
P z z

nn

T C

T T C

A A 2T C 1
1 12 2 2 2

A A A ACT C
( )

r r
, .

r (1 r ) r 1 rα α

∆ ∆

δδ

σ σ σ σ
− −

− + − += ≤ ≤ − + −+ + +   
 

� (23)

3. RESULTS

In this section, a numerical analysis using simulated 
data is conducted to investigate the difference between 
using absolute change as an endpoint and the corre-
sponding responder analysis in terms of sample-size 
requirement, statistical power, and non-inferiority-test 
conclusions. Responses are assumed to follow a normal 
distribution. The allocation ratio is 1:1. The simulation is 
conducted 1000 times. Additionally, a case study is used 
to investigate the difference between a typical non-in-
feriority test and responder analysis by using real clinical 
data from [5]. Again, AC denotes a typical non-inferi-
ority test using absolute change as the endpoint, and 
PAC denotes the corresponding responder analysis. The 
significance level is 0.05, and the desired power is 0.80.

3.1 Numerical analysis
According to Equation (7), the sample size of AC is asso-
ciated with the population mean, population variance, 
and non-inferiority margin. The treatment-group popu-
lation mean is set to 0.2 or 0.3, the control-group pop-
ulation mean is set to 0, and the population variance 
of both groups is 1.0, 2.0, or 3.0. Table 1 presents the 
required sample size of AC to achieve 80% statistical 
power. The sample size is associated with the effect size 
and the non-inferiority margin. When the effect size is 
fixed, a larger non-inferiority margin leads to a smaller 
sample size in AC; when the non-inferiority margin is 
fixed, a larger effect size leads to a smaller sample size in 
AC. Similarly, according to Equation (10), the sample size 
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of PAC is additionally associated with the cut-off value 
(threshold) used to determine responders. As shown in 
Table 2, the influences of effect size and non-inferiority 
margin on the sample size are the same as in Table 1 
when the cut-off value is fixed. However, the influence 
of the cut-off value on the sample-size calculation is 
quite complex, because its effects are associated with 
not only its absolute value but also the population mean 
and variance.

A comparison of sample sizes in Tables 1 and 2 indi-
cates that when the non-inferiority margin is fixed, the 
required sample size of AC is much larger than that of 
PAC. One important assumption is that the non-inferi-
ority margins of the two tests are the same. The reason 
for this assumption is that many researchers have sug-
gested using responder analysis as a secondary analy-
sis [3]; i.e., the sample size is computed on the basis of 
the primary analysis, and statistical analysis of a typical 
non-inferiority test and the responder analysis are con-
ducted on the same dataset. However, in practice, the 
non-inferiority margins in these two tests are likely to 
differ, because these two tests have different meanings. 
Therefore, when conducting responder analysis is the 
secondary analysis, the power of the secondary analysis 
might potentially be insufficient.

Next, we compare the statistical power of AC and PAC 
by using Equations (6) and (9), when the sample size is 
fixed. In the simulation process, the sample size used to 
generate random samples is the minimum of all possible 
sample sizes, given the population mean and standard 
deviation. Here, the population means of the treat-
ment and control groups are 0.2 and 0; the population 
variance of the treatment group is 2; the population 

variance of the control group ranges from 1 to 3; and the 
cut-off value ranges from 0.1 to 0.8. To make the power 
comparable, the non-inferiority margins of AC and PAC 
are assumed to be the same. As shown in Figure 1, with 
a fixed sample size, the statistical power of AC is small-
est, thus suggesting that a larger sample size is required 
to achieve the desired power with AC than PAC. This 
finding is consistent with the results in Tables 1 and 2. 
Additionally, in PAC, the statistical power values when 
different cut-off values are used become closer to one 
another as the population variance increases. The sta-
tistical power of PAC is either slightly lower than 80% 
or above 80%, regardless of the cut-off value. The 
statistical power of AC is always below 60%. Hence, if 
researchers conduct a sample-size calculation based on 
responder analysis but ultimately use a typical non-in-
feriority test, they will not be able to achieve sufficient 
statistical power.

To illustrate the relationships among required sam-
ple sizes, we assume that the non-inferiority margins 
of using the absolute-change endpoint and responder 
analysis are the same. The setting is the same as that in 
Figure 1. In Figure 2, the ratio of the PAC sample size 
to AC is used to represent the relationship between the 
AC and PAC sample size, where N1 denotes the sam-
ple size of AC, and N2 denotes the sample size of PAC. 
Under the settings used here, N2/N1 is always smaller 
than 0.35, thus suggesting that the sample size of AC is 
much larger than that of PAC. When the non-inferior-
ity margin increases, ratios with different cut-off values 
become not only smaller but also closer to one another. 
Comparison of Figure 2a–c indicates that the ratio of 
sample sizes decreases, and the sample-size ratios with 

Table 1  |  Sample sizes for non-inferiority tests using the absolute-change endpoint (AC).
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CC ∆σ σ+ 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0

 δ1 = 0.25 246 368 490 368 490 612 490 612 734 164 246 328 246 328 410 328 410 492

 δ1 = 0.30 198 298 396 298 396 496 396 496 594 138 208 276 208 276 344 276 344 414

 δ1 = 0.35 164 246 328 246 328 410 328 410 492 118 176 236 176 236 294 236 294 352

 δ1 = 0.40 138 208 276 208 276 344 276 344 414 102 152 202 152 202 254 202 254 304

 δ1 = 0.45 118 176 236 176 236 294 236 294 352 88 132 176 132 176 220 176 220 264

 δ1 = 0.50 102 152 202 152 202 254 202 254 304 78 116 156 116 156 194 156 194 232

 δ1 = 0.55 88 132 176 132 176 220 176 220 264 70 104 138 104 138 172 138 172 206

 δ1 = 0.60 78 116 156 116 156 194 156 194 232 62 92 124 92 124 154 124 154 184

 δ1 = 0.65 70 104 138 104 138 172 138 172 206 56 84 110 84 110 138 110 138 166

 δ1 = 0.70 62 92 124 92 124 154 124 154 184 50 76 100 76 100 124 100 124 150
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different cut-off values become closer to one another 
when the variance of the control group increases.

Another essential parameter of interest in responder 
analysis is the cut-off value (threshold) to determine 
whether an observation indicates a responder. Let the 
population mean of the treatment group range from 
0.10 to 0.30. To make the results comparable, the non-in-
feriority margins in AC and PAC are set to 0. The range 
of the cut-off value is set to be larger than before, from 
-3 to 3. The simulation process initially randomly gen-
erates continuous samples from a normal distribution, 
where the sample size is computed with the AC sam-
ple-size formula in Equation (7). Then, using the cut-off 

value, we label each participant as either a responder 
or a non-responder. As shown in Figure 3, the cut-off 
value can indeed drive the conclusion in a different 
direction. In Figure 3a, a negative cut-off value provides 
conflicting results; in Figure 3b, a more extreme cut-
off value provides conflicting results; the same findings 
are indicated in Figure 3c. Additionally, the influence 
of the cut-off value on the hypothesis-testing result 
is associated with the population mean and variance; 
however, the overall pattern is similar. Hence, a more 
extreme cut-off value, i.e., a cut-off farther away from 
the population mean, is more likely to lead to conflict-
ing conclusions.

Table 2  |  Sample sizes for responder analysis using the absolute-change endpoint (PAC).
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TT ∆µ µ+ =
 

0.3
TT ∆µ µ+ =
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 CC
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∆σ σ+ 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0

Cut-off value = 0.1

 δ2 = 0.25 114 122 126 122 132 136 126 136 142 90 38 100 104 110 114 110 118 122

 δ2 = 0.30 86 92 94 92 98 100 94 100 104 70 96 76 80 84 86 84 88 92

 δ2 = 0.35 68 72 74 72 76 78 74 78 80 56 74 60 62 66 68 66 70 72

 δ2 = 0.40 54 58 58 58 60 62 58 62 64 46 60 50 50 54 54 54 56 56

 δ2 = 0.45 44 46 48 46 50 50 48 50 52 90 48 40 42 44 44 44 46 46

Cut-off value = 0.2

 δ2 = 0.25 114 132 142 114 132 142 114 132 142 90 104 110 96 110 118 100 114 122

 δ2 = 0.30 86 98 104 86 98 104 86 98 104 70 80 84 74 84 88 76 86 92

 δ2 = 0.35 68 76 80 68 76 80 68 76 80 56 62 66 60 66 70 60 68 72

 δ2 = 0.40 54 60 62 54 60 62 54 60 62 46 50 54 48 54 56 50 54 56

 δ2 = 0.45 44 48 52 44 48 52 44 48 52 38 42 44 40 44 46 40 44 46

Cut-off value = 0.3

 δ2 = 0.25 112 142 158 104 132 146 102 126 140 90 110 122 90 110 122 90 110 122

 δ2 = 0.30 84 104 114 80 98 106 78 94 104 70 84 92 70 84 92 70 84 92

 δ2 = 0.35 66 80 86 64 74 82 62 74 80 56 66 70 56 66 70 56 66 70

 δ2 = 0.40 54 62 68 52 60 64 50 58 62 46 54 56 46 54 56 46 54 56

 δ2 = 0.45 44 50 54 42 48 52 42 48 50 38 44 46 38 44 46 38 44 46

Cut-off value = 0.4

 δ2 = 0.25 110 150 176 96 130 150 92 122 140 88 118 134 84 110 124 82 106 120

 δ2 = 0.30 84 108 124 74 96 108 70 90 102 68 88 100 66 82 94 64 80 90

 δ2 = 0.35 64 82 92 58 74 82 56 70 78 56 68 76 52 66 72 52 64 70

 δ2 = 0.40 52 64 72 48 58 64 46 56 62 46 56 60 44 52 58 42 52 56

 δ2 = 0.45 42 52 58 40 48 52 38 46 50 38 46 50 36 44 48 36 42 46
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3.2 Case study
In Section 3.1, we studied the effects of essential para-
meters on sample-size requirements, statistical power, 
and test conclusions by using simulated data. To pro-
vide a clearer illustration of the influence of the cut-off 
value on non-inferiority-test results, we conducted a 
case study using real clinical data from an observational 
study on rehabilitation in patients who had received 
lung transplants [5]. That study’s primary aim was to 
compare the performance of individual rehabilitation 
and group rehabilitation in participants both pre-oper-
atively and post-operatively, measured by a primary out-
come variable of the change in 6MWD (detailed infor-
mation in Table 3).

In this section, the non-inferiority test was used to 
study the circumstances in which AC and PAC may lead 
to different conclusions. According to previous stud-
ies [12, 13], a clinically meaningful change in 6MWD 
is between 25 m and 33 m. The cut-off value herein 
ranged from 20 m to 35 m, to provide more comprehen-
sive understanding of the effects of cut-off value selec-
tion on study conclusions. The non-inferiority margin of 
AC ranged from -0.3 to 0.3, and the non-inferiority mar-
gin of PAC ranged from 0 to 0.03. As shown in Figure 
4, for pre-operative patients, some cut-off values may 
lead to different conclusions. For instance, in Figure 4a, 
a cut-off value larger than 27 yielded conflicting results. 
However, for post-operative patients, if the cut-off 

Figure 1  |  Statistical power comparison of non-inferiority tests using absolute change as an endpoint (AC) and corresponding 
responder analysis (PAC).
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value was between 20 and 35, both AC and PAC always 
yielded consistent results. Closer examination of the 
data indicated that, for most post-operative patients, 
the change in 6MWD was either extremely large (above 
35) or extremely small (below 20). That is, in this sce-
nario, an extreme cut-off value (ranging from 20 to 35) 
did not significantly affect the proportion of respond-
ers among post-operative patients. These results sug-
gest that cut-off value selection may cause responder 

analysis and typical non-inferiority tests to yield conflict-
ing findings under certain circumstances.

As described in Section 1, a responder analysis 
answers a different question from a typical non-infe-
riority test. Specifically, if an extreme cut-off value is 
selected, responder analysis investigates whether the 
test treatment might provide substantial clinical bene-
fits to patients. For example, in Figure 4a, AC yields an 
insignificant conclusion, i.e., individual rehabilitation is 

Figure 2  |  Sample-size comparison of non-inferiority tests using absolute change as an endpoint (AC) and corresponding 
responder analysis (PAC).
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inferior to group rehabilitation, whereas PAC yields a 
significant conclusion when the cut-off value is large. 
These findings suggest that individual rehabilitation is 
non-inferior to group rehabilitation only for a small pro-
portion of patients and provides a benefit of substantial 

improvement. The large cut-off value allowed us to 
focus on a smaller proportion of patients with substan-
tial improvement, but this difference may not be detect-
able in typical non-inferiority tests, thus yielding con-
flicting findings.

Figure 3  |  Comparison of non-inferiority-test results of typical tests using absolute change as an endpoint (AC) and correspond-
ing responder analysis (PAC).

Table 3  |  Changes in 6MWD in pre-operative and post-operative participants in [5].

Pre-operative Post-operative

Rehabilitation Group Individual Group Individual

Sample size 93 81 110 105

Mean (SD) 51.6 (81.3) 56.6 (62.9) 174 (97.6) 160 (89.4)

Median [Q1, Q3] 44.5 [6.40,102] 59.7 [25.0,93.9] 168 [106, 232] 159 [104, 208]
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4. DISCUSSION

One of the most important steps in any clinical trial is 
determining the primary study endpoint, which may 
influence aspects including establishment of hypotheses, 
selection of statistical models, and calculation of sam-
ple size. In general, four types of study endpoints exist: 
(i) absolute change, (ii) relative change, (iii) responder 
analysis using absolute change, and (iv) responder anal-
ysis using relative change. To demonstrate a comparison 
of different study endpoints, this work focused on the 
comparison of endpoints (i) and (iii) in non-inferiority 
tests, in terms of the sample-size requirement, statistical 
power, and whether different endpoints might lead to 
different conclusions. However, the comparison process 
in this study could also be generalized to compare any 
two study endpoints described above.

In the numerical study section, both a simulation 
study and a case study using data from [5] were con-
ducted. According to the simulation study, the required 
sample size of a non-inferiority test using AC is associ-
ated with the population mean, variance of the treat-
ment and control groups, and non-inferiority margin. 
The sample size of the corresponding PAC is addition-
ally associated with the cut-off value used to determine 
responders. After fixing all parameters, we observed 
that PAC requires a smaller sample size than AC. That is, 

for the same sample size, PAC will always have greater 
statistical power than AC, as shown in Figure 1. When 
the desired statistical power is the same, the sample-size 
ratio of PAC to AC is always smaller than 1, an aspect 
also associated with the non-inferiority margin and cut-
off value. However, the effects of these two parameters 
decrease with increasing population variance. As the 
cut-off value becomes more extreme, the likelihood of 
obtaining conflicting conclusions from a non-inferiority 
hypothesis test increases. This aspect was observed in 
both the simulation study and the case study. Our find-
ings indicated that the selection of cut-off value selec-
tion is highly important, because it may lead to conflict-
ing results when the mean and median in the treatment 
and control groups are close to the cut-off value.

Without a loss of generalizability, similar conclusions 
may be found in superiority and equivalence tests. The 
fundamental reason why typical non-inferiority/supe-
riority/equivalence tests using absolute change as an 
endpoint and corresponding responder analysis provide 
conflicting conclusions is the distribution of the target 
population. If the samples follow a normal distribution, 
typical tests and responder analysis are highly likely to 
yield the same conclusion when the cut-off value is close 
to the population mean. Otherwise, these two types of 
analysis would provide conflicting results, particularly 
when the cut-off value is far from the population mean.

Figure 4  |  Comparison of non-inferiority-test results of typical tests using absolute change as an endpoint (AC) and correspond-
ing responder analysis (PAC) in a study examining a rehabilitation program after lung transplantation [5].
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Because of the great importance of cut-off value selec-
tion and the possibility of obtaining conflict conclusions, 
we suggest determining cut-off values on the basis of 
existing knowledge in combination with statistical analy-
sis of the collected sample in conducting responder anal-
ysis. Although the clinically important difference (MCID) 
is always used as the cut-off value [4], some studies have 
proposed some guidance or approaches for the selec-
tion of cut-off values [16, 17]. Additionally, because the 
sample-size requirements of AC and PAC are different, 
the sample size must be verified to be sufficiently large 
to achieve the desired statistical power. Notably, typ-
ical tests and responder analysis may require different 
sample sizes, differ in power, and yield different study 
conclusions; moreover, tests using absolute instead of 
relative change as a study endpoint may face the same 
challenges. Some studies have reported that absolute- 
and relative-change endpoints may lead to conflicting 
conclusions [1, 18]. In addition, these endpoints are 
viewed differently among drug approval administra-
tions. According to the non-inferiority-test guidance 
from the US Food and Drug Administration (FDA), study 
constancy is expected to be based on the constancy of 
relative effects, not absolute effects [19]. However, the 
European Medicines Agency’s (EMA) guidance uses abso-
lute difference to illustrate instructions for non-inferior-
ity tests [20]. Hence, a drug approved by the FDA might 
not be approved by the EMA, or vice versa, because the 
required sample size and statistical power of using abso-
lute change and relative change as a study endpoint 
differ [1]. Hence, providing the confidence intervals of 
cut-off values may be useful when a typical non-inferior-
ity test and responder analysis might lead to consistent 
conclusions. Moreover, the circumstances in which both 
absolute- and relative-change endpoints provide the 
same non-inferiority-test results should be investigated.
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