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Abstract

The COVID-19 pandemic renewed interest in airborne transmission of respiratory infec-

tions, particularly in congregate indoor settings, such as schools. We modeled transmission

risks of tuberculosis (caused by Mycobacterium tuberculosis, Mtb) and COVID-19 (caused

by SARS-CoV-2) in South African, Swiss and Tanzanian secondary schools. We estimated

the risks of infection with the Wells-Riley equation, expressed as the median with 2.5% and

97.5% quantiles (credible interval [CrI]), based on the ventilation rate and the duration of

exposure to infectious doses (so-called quanta). We computed the air change rate (ventila-

tion) using carbon dioxide (CO2) as a tracer gas and modeled the quanta generation rate

based on reported estimates from the literature. The share of infectious students in the

classroom is determined by country-specific estimates of pulmonary TB. For SARS-CoV-2,

the number of infectious students was estimated based on excess mortality to mitigate the

bias from country-specific reporting and testing. Average CO2 concentration (parts per mil-

lion [ppm]) was 1,610 ppm in South Africa, 1,757 ppm in Switzerland, and 648 ppm in Tan-

zania. The annual risk of infection for Mtb was 22.1% (interquartile range [IQR] 2.7%-

89.5%) in South Africa, 0.7% (IQR 0.1%-6.4%) in Switzerland, and 0.5% (IQR 0.0%-3.9%)

in Tanzania. For SARS-CoV-2, the monthly risk of infection was 6.8% (IQR 0.8%-43.8%) in

South Africa, 1.2% (IQR 0.1%-8.8%) in Switzerland, and 0.9% (IQR 0.1%-6.6%) in Tanza-

nia. The differences in transmission risks primarily reflect a higher incidence of SARS-CoV-

2 and particularly prevalence of TB in South Africa, but also higher air change rates due to

better natural ventilation of the classrooms in Tanzania. Global comparisons of the modeled

risk of infectious disease transmission in classrooms can provide high-level information for

policy-making regarding appropriate infection control strategies.
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Introduction

Increasing evidence underscores the role of airborne transmission in respiratory infections

like SARS-CoV-2 [1–5], which has been affirmed by institutions such as the Centers for Dis-

ease Control and Prevention and the World Health Organization [6, 7]. Airborne transmission

can occur when an infectious person exhales infectious respiratory particles into the air, which

enter a susceptible person’s respiratory tract after inhalation of these particles from contami-

nated air. Pathogens are predominantly found in smaller particles <5 μm [8], which can

remain in the air for several hours, travel further, and reach deeper into the respiratory tract

[2]. Current understandings of airborne transmission of respiratory infections emanate from

the groundwork in tuberculosis (TB) research [9]. Caused by the bacterium Mycobacterium
tuberculosis (Mtb), TB is a strictly airborne infection [8] and was the leading cause of death

globally for any infectious disease until the COVID-19 pandemic.

Airborne transmission of respiratory infections (includingMtb and SARS-CoV-2) is more likely

in indoor settings such as healthcare facilities, restaurants, offices, and schools [10]. School closures

were most intensely debated during the COVID-19 pandemic because it was unclear how much

they affected community and household transmission [11–13]. Infection control measures could

mitigate transmission risks [12, 14, 15] and allow schools to remain open. In particular, previous

studies have shown that the risk of indoor transmission decreases with mechanical ventilation (i.e., a

mechanical ventilation system that circulates fresh air) and natural ventilation (i.e., by opening win-

dows and doors) [16–19], which replace contaminated indoor air with fresh outdoor air. The ventila-

tion (or replacement) rate can be monitored using indoor carbon dioxide (CO2) as a tracer gas [20].

Ventilation rate is an important parameter in modeling the risk of airborne infection [15, 21–23].

This study estimated and compared the transmission risk of SARS-CoV-2 and Mtb between

three secondary schools in South Africa, Switzerland, and Tanzania. We used indoor CO2

measurements from different schools in each country over prolonged periods. We estimated

the risk of infection during school hours using the Wells-Riley equation [24], as modified by

Rudnick and Milton [25], by making assumptions about the generated rate of infectious doses

and the proportion of contagious students in the classroom.

Methods

Environmental, infrastructure and room occupancy

An overview of the data used in this study is presented in Table 1. Our study is primarily based

on data collected in secondary schools in Cape Town (South Africa, age 15–19 years) [22], the

canton of Solothurn (Switzerland, age 15–19 years) [26], and Dar-es-Salaam (Tanzania, age

15–19 years) [21]. None of the schools used mechanical ventilation to ventilate classrooms.

Instead, classrooms in South Africa and Switzerland were ventilated through opening windows

and in Tanzania through constant outdoor air exchange (no windows). Room occupancy var-

ied between schools, with 30 students in South Africa, 20 in Switzerland, and 50 in Tanzania.

We filtered the CO2 data collected in each school according to the times students occupied the

rooms (excluding lessons outside rooms, breaks, and school-free hours).

Statistical analyses and modeling

We used the Wells-Riley equation as modified by Rudnick and Milton [25] to model the risk of

airborne transmission for Mtb and SARS-CoV-2. The risk of infection P (in %) is estimated as

P ¼
D
S
¼ 1 � exp �

�f Iqt
n

� �

;
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where D is the number of diseased cases, S is the number of susceptibles, �f is the time-weighted

average fraction of rebreathed air (in %), I is the number of infectious students; n is the total

number of students in the room, q is the rate of infectious doses (quanta) generated by infec-

tious individuals (in quanta h-1), and t is the duration of exposure (in h). We computed the

average rebreathed air fraction as �f ¼ ð�C � COÞ=Ca using the average of the indoor CO2 mea-

surements (C in parts per million [ppm]) and assuming a CO2 level of Co = 400 ppm in the out-

door air [20, 22, 27–30] as well as Ca = 31,500 ppm in the exhaled air [25, 31].

In addition, we computed the ventilation rate (in L s-1 per individual) as Q ¼ G=ð�C � CoÞ

and the air change rate (in air changes h-1) as ACH ¼ ð3; 600 � Q � nÞ=V using the the daily

maximum of the CO2 measurements �C as the steady-state levels [20]. We assumed a CO2 gen-

eration rate of G ¼ 1=ð60 � 106Þ � b � Ca ¼ 0:0042 L/s per individual in a lecture classroom

[31] as well as a breathing rate of b = 8 L/min per individual [25]. Of note, the time points and

classrooms of the CO2 levels collected in South Africa and Tanzania were usually unknown.

Therefore, the daily maximum CO2 levels �C were determined with a quantile-based approach

by evaluating the inverse of the empirical distribution function F−1(y) in South Africa �cSA ¼
F� 1
SA ðyCHÞ and Tanzania �cTZ ¼ F� 1

TZ ðyCHÞ at the quantiles of the daily maxima in Switzerland

yCH ¼ FCHð�cCHÞ.
We estimated the annual risk of transmission for Mtb and the monthly risk for SARS-CoV-

2. We assumed tyear = 919 and tmonth = 919/12 = 77 school-hours, corresponding to the OECD

average for lower secondary schools [32]. We used Monte Carlo simulation to estimate uncer-

tainty in the quanta generation rate q and the number of infectious persons per classroom I
(see below). We performed 4,000 simulations and estimated the risk of infection P based on

randomly drawn samples from the distributions of q and I. We summarized our simulation

Table 1. Overview of study setting and collected data.

South Africa Switzerland Tanzania

Location Cape Town Canton of Solothurn Dar-es-Salaam

Year 2013 2023 2015

Volume of classrooms (m3), vol 180 233 162

Number of students (average), n 30 20 50

Age of students (range) 15–19 13–15 15–19

CO2 (ppm), C
Mean, overall 1,610 1,757 648

Mean (SD), daily mean 1,421 (451) 1,702 (370) 600 (58)

Mean (SD), daily max 2,728 (1,131) 2,373 (539) 951 (587)

Ventilation rate (L s-1), Q
Mean (SD), daily max C 2.47 (1.81) 2.29 (0.88) 12.36 (7.46)

Air change rate (h-1), ACH
Mean (SD), daily max C 1.48 (1.08) 0.71 (0.27) 13.74 (8.29)

Rebreathed air fraction (%), �f�

Mean, overall C 3.8 4.3 0.8

Mean (SD), daily mean C 3.2 (1.4) 4.1 (1.2) 0.6 (0.2)

Sampling duration and frequency 91 days during a school year 35 days over 7 weeks (Jan–Mar) 5 days over 2 weeks (Jul)

Sampling setting Several schools and classrooms One school and several classrooms Four schools and classrooms

Reference Richardson et al. [22] Banholzer et al. [26] Hella et al. [21]

CO2, carbon dioxide; IQR, interquartile range; ppm, parts per minute; SD, standard deviation

https://doi.org/10.1371/journal.pgph.0002800.t001
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results with boxplots showing the median, interquartile range (IQR or 50%-credible interval

[CrI]), and 95%-CrI. We performed all analyses with R software (version 4.2.2).

Modeling assumptions

Infectious quanta. The range of estimates for the quanta generation rate q is large for

both SARS-CoV-2 and Mtb [33–38]. There are two approaches to estimating q. One approach

is to solve the Wells-Riley equation for q using data on the number of susceptible and diseased

cases [35–38]. Another more recently developed approach is to predict q from the viral or bac-

terial load in sputum [34] using the equation

q ¼ cv � ci � IR � Vd;

where cv is the viral or bacillay load (RNA copies mL-1 or CFU mL-1), ci is a conversion factor

(quanta RNA copies-1 or quanta CFU-1), IR is the inhalation rate (m3 h-1), and Vd is the droplet

volume concentration expelled by the infectious person (mL m3). The product of IR×Vd is the

droplet emission rate.

We applied the predictive approach using the viral load distributions and conversion fac-

tors for SARS-CoV-2 and Mtb as reported by Mikszewski et al. for the original SARS-CoV-2

strain and untreated TB patients [33]. We assumed the IR of a sitting person [39] and used the

droplet emission rate of a loud-speaking person [40] to estimate the droplet emission rates for

other activity levels by assuming the relative Vd for breathing, speaking, and loud speaking

[41]. We considered three scenarios for the time-weighted quanta generation rates in the class-

room: low (70% breathing, 25% speaking, 5% loud speaking), medium (50% breathing, 40%

speaking, 10% loud speaking), and high activity (30% breathing, 50% speaking, 20% loud

speaking). The quanta generation rates corresponding to these scenarios are shown in Table 2.

Table 2. Modeling assumption for the quanta generation rate. The quanta generation rates q are derived using the

approach of Buonanno et al., which predicts q from sputum viral load. Viral loads and conversion factors for SARS-

CoV-2 and Mtb are taken from Table 1 in Mikszewski et al. [33]. The droplet emission rates were recalculated based on

values reported by Mikszewski et al. using the inhalation rate of a sitting person [39] for all activity levels. The activity-

specific quanta generation rates were weighted by the proportion of time each activity occurs in the classroom. Three

scenarios were considered: low (70% breathing, 25% speaking, 5% loud speaking), medium (50% breathing, 40% speak-

ing, 10% loud speaking), and high activity (30% breathing, 50% speaking, 20% loud speaking).

SARS-CoV-2 Mtb
Viral/bacillary load, log10 cV mean (SD) 5.6 (1.2) RNA copies mL-1 5.5 (1.3) CFU mL-1

Conversion factor, ci 1.4 × 10−3 quanta RNA copies-1 2.0×10−3 quanta CFU-1

Droplet emission rate (mL h-1), IR×Vd,
Breathing 3.18×10−2 same as for SARS-CoV-2
Speaking 1.04×10−3

Loud speaking 4.39×10−3

Quanta generation rate (quanta h-1), q median (IQR) by activity level

Breathing 0.6 (0.1–3.7) 0.7 (0.1–4.9)

Speaking 2.4 (0.4–15.7) 2.8 (0.4–20.9)

Loud speaking 17.8 (2.8–114.8) 20.2 (2.7–151.9)

Quanta generation rate (quanta h-1), q median (IQR) for different scenarios

Low activity 1.0 (0.1–6.8) 1.1 (0.1–9.1)

Medium activity 1.4 (0.2–10.5) 1.6 (0.2–13.9)

High activity 2.3 (0.3–18.0) 2.6 (0.3–23.3)

Mtb, Mycobacterium tuberculosis; SD, standard deviation; IR, inhalation rate (m3 h-1); Vd droplet volume

concentration (mL m-3); IQR, interquartile range

https://doi.org/10.1371/journal.pgph.0002800.t002
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They are roughly consistent with estimates from the literature [33–38]. For example, our

medium scenario for Mtb assumes a q = 1.6 quanta h-1 (interquartile range 0.2 to 13.9), which

covers the lower q = 0.27 quanta h-1 and upper q = 5.69 quanta h-1 reported by Andrews et al.

[35] as well as other estimates from studies using the Wells-Riley approach to estimate q (S1

Table).

Infectious cases. For Mtb, we calculated the number of infectious students in each class-

room from country-specific estimates of the prevalence of bacteriologically confirmed pulmo-

nary TB in the 15–24 age group (Table 3). Estimates for Tanzania and South Africa were based

on two national prevalence surveys conducted between 2011 and 2012 and between 2017 and

2019, respectively [42, 43]. We modeled the prevalence in these countries with a Normal distri-

bution using the reported mean estimates and confidence intervals. Because a national preva-

lence survey was not available for Switzerland, we approximated the prevalence using the

number of new TB notifications in the same age group [44], which implicitly assumes a dura-

tion of infectiousness of one year. We again modeled the prevalence with a Normal distribu-

tion using the mean and standard deviation of the reported notifications between 2015 and

2019.

For SARS-CoV-2, we approximated the prevalence using the weekly incidence of COVID-

19. However, the reporting and testing practices varied substantially across countries. For

example, cases and deaths from COVID-19 were barely reported in Tanzania [45, 46]. There-

fore, we employed a consistent approach for estimating the weekly incidence of SARS-CoV-2

using published estimates of weekly excess deaths and the country-specific, time-updated

infection fatality rates (IFRs; S2 Table). We used crude excess mortalities and IFRs, which

account for differences in the age structure of each population, but assume that infectious indi-

viduals are equally distributed across age groups within countries. Specifically, we used the

Table 3. Modeling assumptions for infectious diseases incidence. Estimated prevalence (cases per 100,000 people) of Mtb in the young (age group of the 15 to 24-year-

olds) and the general population [42–44]. Estimated incidence (new cases per 100,000 people) of SARS-CoV-2 using a consistent approach (see Methods) based on esti-

mates of excess mortality [47] and time-updated, country-specifc infection-fatality ratios [48]. Reported incidence (new cases per 100,000 people) of SARS-CoV-2 in the

young age group of the 10 to 20-year-olds) of Switzerland [51] and in the general population of South Africa [50] and Switzerland [51]. Incidence of SARS-CoV-2 in Tanza-

nia is not shown because it has barely been reported [45, 46].

Infectious disease (Median [95%-CrI]) South Africa Switzerland Tanzania

Mtb
Estimated prevalence

Age group 15-24y 432 (232–632) 12 (5–20) 42 (11–73)

General population 852 (679–1,026) 57 (44–70) 293 (228–358)

Infectious students, I
Age group 15-24y 0.130 (0.071–0.189) 0.002 (0.001–0.004) 0.021 (0.006–0.037)

General population 0.256 (0.203–0.308) 0.011 (0.009–0.014) 0.147 (0.114–0.179)

SARS-CoV-2

Estimated Incidence

IFR-based approach 1,557 (474–9,156) 360 (105–4,570) 928 (362–11,731)

Reported incidence

Age group 10-20y 31 (2–754)

General population 24 (0–190) 84 (4–1,713)

Infectious students, I
IFR-based approach 0.474 (0.143–2.730) 0.054 (0.013–0.111) 0.486 (0.297–1.157)

Age group 10-20y 0.006 (0.000–0.151)

General population 0.007 (0.000–0.057) 0.017 (0.001–0.343)

Mtb, Mycobacterium tuberculosis; CrI, credible

https://doi.org/10.1371/journal.pgph.0002800.t003
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central estimates from The Economist’s excess death model [47] and divided them by the IFR

estimates from the COVID-19 Forecasting Team [48]. We sampled with replacement from the

weekly estimated excess deaths and from a Normal distribution for the IFRs using the reported

mean and 95%-confidence intervals. We then averaged each incidence sample across time

periods and used these averages to estimate the risk of SARS-CoV-2 transmission for each

country. The estimated incidences using our IFR-based approach are shown in Table 3. Since

time-updated IFR estimates were only available until January 2021, our modeled transmission

risks are for the early period of SARS-CoV-2, i.e. before widespread vaccination and the domi-

nance of new SARS-CoV-2 variants such as delta and omicron. Note that by using weekly inci-

dence as the prevalence of SARS-CoV-2, we implicitly assume a duration of infectiousness of

one week.

Sensitivity analyses

In the main analysis, we estimated the transmission risk of Mtb using the prevalence in the

young population (age group 15–24 years). Because this age group has been found to have the

most pronounced prevalence-to-notification gap [49], we performed a sensitivity check using

the prevalence in the general population. Second, we compared the transmission risk of

SARS-CoV-2 using the estimated incidence from our IFR-based approach with the transmis-

sion risk using the reported incidence [50, 51]. This comparison was only possible in Switzer-

land and South Africa, as national incidence was rarely reported in Tanzania [45, 46]. Third,

we assessed the impact of assuming an outdoor CO2 level of Co = 600 ppm instead of Co =
400 ppm in each countries. Although many studies use Co = 400 ppm [20, 22, 27–30], the out-

door CO2 levels can be Co = 500 ppm or higher in urban areas, especially in the early morning,

mainly due to traffic-related emissions [20].

Additional analysis

In a further analysis, we considered an outbreak with one infectious person per classroom

(one infectious person scaled to the class size) and estimated the weekly risk of transmission

for both Mtb and SARS-CoV-2. In this hypothetical outbreak scenario, we also used the daily

average rebreathed air fractions instead of overall average rebreathed air fractions to account

for variations in daily ventilation.

Ethics statement

Data from schools in South Africa and Tanzania were previously published [21, 22]. The Can-

ton of Bern Ethics Committee reviewed and approved data collection from schools in Switzer-

land (KEK; reference no. 2021–02377).

Results

Ventilation of classrooms

The ventilation of classrooms varied considerably between countries (Table 1). The average

CO2 level was 1,610 ppm in South Africa, 1,757 ppm in Switzerland, and 648 ppm in Tanzania.

These correspond to average rebreathed air fractions of 3.8% in South Africa, 4.3% in Switzer-

land, and 0.8% in Tanzania. There was considerable variation in CO2 levels over the study

period (Fig 1). Based on the daily maximum CO2 levels, the ventilation rate was (mean±stan-

dard deviation [SD]) 2.47±1.81 L s-1 (1.48±1.08 air changes h-1) in South Africa, 2.29±0.88 L s-

1 (0.71±0.27 air changes h-1) in Switzerland, and 12.36±7.46 L s-1 (13.74±8.29 air changes h-1)

in Tanzania.
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Risk of Mtb transmission

The annual transmission risk for Mtb is shown in Fig 2. Assuming medium classroom activiy,

the median risk was 22.1% (interquartile range [IQR] 2.7–89.5%) in South Africa, 0.7% (IQR

0.1–6.4%) in Switzerland, and 0.5% (0.0–3.9%) in Tanzania. Assuming low or high activity, the

median risk was 14.8% or 33.0% in South Africa, 0.5% or 1.2% in Switzerland, and 0.3% or

0.7% in Tanzania. Regardless of the assumption for the activity level, the 95%-credible intervals

(CrI) typically ranged from 0% to 100% in all countries due to the wide range of the distribu-

tion of the infectious quanta generation rate (i.e. we accounted for large heterogeneity in

patient infectiousness).

As a sensitivity analysis, we estimated the annual risk of Mtb transmission using the preva-

lence in the general population instead of the young population. In this case, the risk of infection

would be higher in all countries, but the relative differences between countries remained similar

(S1 Fig). We also examined the impact of assuming an outdoor CO2 level of 600 pm instead of

400 ppm. A higher outdoor CO2 level slightly reduced the estimated risk of transmission in all

countries but the relative differences between countries remained similar even when the out-

door CO2 level would be 200 pm higher in one country than in the others (S2 Fig).

As an additional analysis, we assumed an outbreak with one infectious patient per class-

room (hypothetical scenario shown in Fig 3). Assuming medium activity, the median risk of

infection during a one-week outbreak would be 2.8% (IQR 0.3–23.5%) in South Africa, 3.8%

(IQR 0.4–29.3%) in Switzerland, and 0.6% (IQR 0.1–5.3%) in Tanzania.

Risk of SARS-CoV-2 transmission

The monthly transmission risk for SARS-CoV-2 is shown in Fig 4. Assuming medium class-

room activiy, the median risk was 6.8% (interquartile range [IQR] 0.8–43.8%) in South Africa,

1.2% (IQR 0.1–5.6%) in Switzerland, and 0.9% (0.1–10.5%) in Tanzania. Assuming low or

high activity, the median risk was 4.6% or 27.6% in South Africa, 0.8% or 1.8% in Switzerland,

Mean=1,610ppm Mean=1,757ppm Mean=  648ppm

South Africa Switzerland Tanzania

500 1,500 2,500 3,500 500 1,500 2,500 3,500 500 1,500 2,500 3,500
0
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D
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Fig 1. Carbon dioxide (CO2) levels in the classrooms of schools in South Africa, Switzerland, and Tanzania. Histogram of the measured CO2

levels (in parts per million [ppm]) in each country. All distributions are truncated at 400ppm (left) and 4,000ppm (right).

https://doi.org/10.1371/journal.pgph.0002800.g001
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and 0.6% or 1.3% in Tanzania. Again, the 95%-credible intervals [CrI] ranged from 0% to

100% in all countries due to the wide range of the infectious quanta rate distribution.

As a sensitivity analysis, we estimated the monthly risk of SARS-CoV-2 transmission using

the reported incidence in South Africa and Switzerland instead of the incidence estimated

using our IFR-based approach. In this case, the risk of infection would be considerably lower

in South Africa (S3 Fig), indicating significant underreporting of SARS-CoV-2 cases. Further-

more, and similar to Mtb, assuming a higher outdoor CO2 level in one country slightly reduced

the risk of transmission but the relative differences between countries remained similar

(S4 Fig).

Similar to Mtb, the risk of SARS-CoV-2 infection during a one-week outbreak with one

infectious person per classroom would be more comparable between countries (hypothetical

scenario shown in Fig 5). Assuming medium activity, the median risk of infection would be

2.6% (IQR 0.3–18.2%) in South Africa, 3.4% (IQR 0.4–24.0%) in Switzerland, and 0.8% (IQR

0.1–6.1%) in Tanzania.

Discussion

We modeled the airborne transmission risk of Mtb and SARS-CoV-2 in secondary schools in

South Africa, Switzerland, and Tanzania. The annual risk of infection for Mtb and SARS-CoV-

2 during school was higher in South Africa than in Switzerland and Tanzania. Assuming a

one-week outbreak with one infectious person per classroom, the risk of transmission in South

Africa and Switzerland would be comparable, but still higher than in Tanzania because of bet-

ter classroom ventilation in Tanzania.
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Fig 2. Modeled transmission risk of Mycobacterium tuberculosis (Mtb) in schools in South Africa, Switzerland, and Tanzania. Annual

transmission risk (median as dots, interquartile range as boxes, and 95%-CrI as lines) of Mtb. Three scenarios are considered: low (70%

breathing, 25% speaking, 5% loud speaking), medium (50% breathing, 40% speaking, 10% loud speaking), and high activity (30% breathing, 50%

speaking, 20% loud speaking).

https://doi.org/10.1371/journal.pgph.0002800.g002
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A few caveats about our results. First, we model the transmission risk during school hours.

The overall transmission risk for students may be higher because they may also be exposed to

SARS-CoV-2 and Mtb outside of school. Second, the Wells-Riley equation only models the

risk of airborne transmission, but other routes of transmission are possible. For example, some

studies have suggested transmission of SARS-CoV-2 via droplets and fomites [52, 53],

although their contribution to overall transmission is thought to be small [54–56]. Third, we

modeled the infectious quanta generation rate q with a Lognormal distribution based on previ-

ous literature [33]. This distribution also covers a wide range of patient- and outbreak-specific

estimates reported in the literature [33–38]. The variation in q is the result of variation in

patient-specific infectiousness. As a result, the annual risk of transmission is typically low to

moderate (see our IQR estimates), but can be extremely high (see our 95%-CrI estimates) if

there is prolonged exposure to a highly infectious individual.

Several studies have modeled transmission risks of respiratory infections in indoor settings

within countries [15, 21–23, 30, 57]. However, to our knowledge, comparisons of transmission

risks in schools between countries are lacking. Our comparison of the risk of transmission

between schools in different countries sheds light on the impact that different incidences of

infectious diseases and natural ventilation have on the risk of infection with Mtb and SARS-

CoV-2. The results are consistent with our previously published modeled estimates for Tanza-

nia and South Africa [21, 22]. Empirical estimates for the risk of infection are scarce. Based on

population-level observational data, the cumulative risk SARS-CoV-2 infection among stu-

dents in Germany was shown to be between 1% and 10%, depending on the phase of the pan-

demic [12]. A systematic review concluded that the risk of infection following a SARS-CoV-2
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Fig 3. Modeled transmission risk during a hypothetical Mtb outbreak in schools in South Africa, Switzerland, and Tanzania. Weekly Mtb
transmission risk (median as dots, interquartile range as boxes, and 95%-CrI as lines) if there was one infectious person per classroom

(hypothetical outbreak scenario). Three scenarios are considered: low (70% breathing, 25% speaking, 5% loud speaking), medium (50%

breathing, 40% speaking, 10% loud speaking), and high activity (30% breathing, 50% speaking, 20% loud speaking).

https://doi.org/10.1371/journal.pgph.0002800.g003
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outbreak in a high-incidence setting was 1.7–28% for school teachers, which was usually higher

than for students [58]. Furthermore, seroprevalence was 2.1–6.2% in Swiss schoolchildren

(aged 6–16 years) during June-September 2020 [59], and 0–7% in rural and 11–29% in urban

South African adolescents (aged 13–18 years) during July-September 2020, respectively [60].

Seroprevalence studies for Tanzania were not available [61].

Mtb transmission is more difficult to estimate because of the lack of an appropriate in vitro

test assay to measure infection [62]. Interferon-γ release blood tests (IGRAs) and tuberculin

skin tests (TST) are commonly used to diagnose Mtb infection, but school-based surveys are

rare. A recent study reported a TB infection incidence rate of 17.1 per 100 person-years among

adolescents and young adults in South African communities of a cluster randomized trial [63].

The prevalence of TB infection among 12 to 18-year-olds is approximately 50% [64]. Using

longitudinal IGRA data in a cross-sectional manner, the annual risk of infection has been

shown to be as high as 14% [64]. In contrast to South Africa, which has one of the highest TB

burdens in the world, the risk of infection in Tanzania is likely to be lower. Using IGRA data,

the overall prevalence of TB in the 12 to 16-year-olds was estimated to be approximately 20%

[65]. The annual risk of infection among 5 to 12-year-olds may be 5–10%, comparable to the

risk in most high-burden countries [66], although survey data are lacking. A recent transmis-

sion modeling study calibrated to TB prevalence and notification data estimated the annual

risk of Mtb infection to be up to 15% in South Africa and about 2.5% in Tanzania [67]. A simi-

lar modeling study using the Wells-Riley model with indoor CO2 levels and estimated TB

prevalence found an estimated annual risk of infection of 11% in classrooms in KwaZulu-

Natal, a high TB burden community in South Africa [57]. Overall, the empirical estimates for
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Fig 4. Modeled transmission risk of SARS-CoV-2 in schools in South Africa, Switzerland, and Tanzania. Monthly transmission risk (median

as dots, interquartile range as boxes, and 95%-CrI as lines) of SARS-CoV-2. Three scenarios are considered: low (70% breathing, 25% speaking, 5%

loud speaking), medium (50% breathing, 40% speaking, 10% loud speaking), and high activity (30% breathing, 50% speaking, 20% loud speaking).
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SARS-CoV-2 and Mtb are roughly in line with our modeled estimates, given the uncertainty

surrounding these estimates. For Mtb in South Africa, however, estimates from the literature

appear to be more consistent with our lower scenario estimates.

Environmental factors play an important role in the control of respiratory infections [68].

Previous studies have shown that inadequate ventilation facilitates the spread of Mtb in clinics

and other public locations [21, 22, 30]. Based on our data, only Tanzania achieved air change

rates above recommended levels [22]. Air change rates were below recommended levels in

South Africa and Switzerland. Both countries ventilate their classrooms through window

opening. Countries with limited resources may need to rely on natural ventilation and extend

the times when doors and windows are open. In contrast, resource-rich countries can invest in

improved building designs, mechanical ventilation systems, or hybrid solutions [69].

Our study has limitations. First, for SARS-CoV-2, we approximated the prevalence of infec-

tious students in the room with disease incidence. While this approximation may bias the

magnitude of the country-specific estimates, the biases will be in the same direction and thus

have little impact on the comparison of transmission risks between countries. Second, we esti-

mated incidence with a consistent approach using excess mortality and country-specific, time-

updated infection-fatality ratios (IFR-based approach). On the one hand, this approach

reduces substantial biases due to differences in reporting and testing practices between coun-

tries, which can also be seen in the lower transmission risk of SARS-CoV-2 when using the

reported instead of the estimated incidence (S1 Fig). On the other hand, the estimated inci-

dence was modeled and our IFR-based approach may still underestimate the true incidence
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Fig 5. Modeled transmission risk during a hypothetical SARS-CoV-2 outbreak in schools in South Africa, Switzerland, and Tanzania.

Weekly transmission risk (median as dots, interquartile range as boxes, and 95%-CrI as lines) of SARS-CoV-2 if there was one infectious person

per classroom (hypothetical outbreak scenario). Three scenarios are considered: low (70% breathing, 25% speaking, 5% loud speaking), medium

(50% breathing, 40% speaking, 10% loud speaking), and high activity (30% breathing, 50% speaking, 20% loud speaking).

https://doi.org/10.1371/journal.pgph.0002800.g005
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because positive effects such as reduced road traffic may partly offset the effect of COVID-19

on excess mortality [70]. Third, due to data limitations, we could only model the transmission

risk of SARS-CoV-2 for the early period through January 2021. For example, related work sug-

gests that the viral load (and thus the quanta generation rate) are higher for the SARS-CoV-2

delta variant [71, 72].

The CO2 measurements were collected during different time periods (South Africa: 2013,

Switzerland: 2023, Tanzania: 2015). However, all data were collected during non-pandemic

times and conditions and the schools in South Africa and Tanzania were structurally still the

same (no relevant building work, renovations, or improvements). Notably, no evidence for

exogenous CO2 sources was found in the classrooms. Although systematic national survey

data are lacking, the local investigators [21, 22, 26] considered the data collection to be repre-

sentative of the overall situation in each country. Moreover, the CO2 levels in the Swiss school

are very similar to those found in a recent survey of 100 classrooms in Switzerland [73], as well

as in other European countries [74–78]. Fifth, we assumed a fixed number of students per

classroom. The sensitivity of this assumption is difficult to assess because changes in room

occupancy are likely to be accompanied by changes in CO2 levels, but to different degrees

depending on the ventilation setting. Finally, our modeling approach assumed a well-mixed

airspace and constant outdoor air supply. We acknowledge that environmental characteristics

introduce spatiotemporal variation in the concentration of infectious particles and, corre-

spondingly, in the risk of infection [2, 79, 80].

In conclusion, we modeled and compared Mtb and SARS-CoV-2 transmission risks in

schools in South Africa, Switzerland, and Tanzania. Country-specific risks of infection primar-

ily reflect differences in the number of infectious students and natural ventilation. Global com-

parisons identify high-risk settings and can inform prevention and mitigation strategies such

as improved ventilation and other infection control measures.

Supporting information

S1 Table. Reported estimates in the literature for the infectious quanta generation rate (q)

of Mycobacterium tuberculosis (Mtb).
(DOCX)

S2 Table. Excess death estimates and time-updated, country-specific infection-fatality

ratios (IFRs) used to estimate the incidence of SARS-CoV-2.

(DOCX)

S1 Fig. Sensitivity analysis showing the risk of Mtb transmission using the prevalence of

Mtb in the general population.

(DOCX)

S2 Fig. Sensitivity analysis showing the risk of Mtb transmission risk assuming an outdoor

CO2 level of 600 ppm in each country separately.

(DOCX)

S3 Fig. Sensitivity analysis showing the transmission risk of SARS-CoV-2 using the

reported incidence of SARS-CoV-2.

(DOCX)

S4 Fig. Sensitivity analysis showing the transmission risk of SARS-CoV-2 assuming an out-

door CO2 level of 600 parts per million [ppm] in each country separately.

(DOCX)

PLOS GLOBAL PUBLIC HEALTH Airborne transmission in schools in Africa and Switzerland

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0002800 January 18, 2024 12 / 17

http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0002800.s001
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0002800.s002
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0002800.s003
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0002800.s004
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0002800.s005
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0002800.s006
https://doi.org/10.1371/journal.pgph.0002800


Acknowledgments

We thank staff members involved in collecting environmental data.

Author Contributions

Conceptualization: Nicolas Banholzer, Robin Wood, Lukas Fenner.

Data curation: Remo Schmutz, Keren Middelkoop, Jerry Hella.

Formal analysis: Nicolas Banholzer, Remo Schmutz.

Investigation: Jerry Hella, Matthias Egger, Robin Wood, Lukas Fenner.

Methodology: Nicolas Banholzer, Remo Schmutz, Lukas Fenner.

Project administration: Keren Middelkoop.

Resources: Matthias Egger, Robin Wood, Lukas Fenner.

Supervision: Lukas Fenner.

Writing – original draft: Nicolas Banholzer, Remo Schmutz, Lukas Fenner.

Writing – review & editing: Nicolas Banholzer, Remo Schmutz, Keren Middelkoop, Jerry

Hella, Matthias Egger, Robin Wood, Lukas Fenner.

References
1. Coleman KK, Tay DJW, Tan KS, Ong SWX, Than TS, Koh MH, et al. Viral load of Severe Acute Respi-

ratory Syndrome Coronavirus 2 (SARS-CoV-2) in respiratory aerosols emitted by patients with Corona-

virus Disease 2019 (COVID-19) while breathing, talking, and singing. Clin Infect Dis. 2022; 74: 1722–

1728. https://doi.org/10.1093/cid/ciab691 PMID: 34358292

2. Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al. Airborne transmission

of respiratory viruses. Science. 2021; 373: eabd9149. https://doi.org/10.1126/science.abd9149 PMID:

34446582

3. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, et al. Immediate psychological responses and associated

factors during the initial stage of the 2019 Coronavirus Disease (COVID-19) epidemic among the gen-

eral population in China. Int J Environ Res Public Health. 2020; 17: 1729. https://doi.org/10.3390/

ijerph17051729 PMID: 32155789

4. Greenhalgh T, Peng Z, Jimenez JL, Bahnfleth W, Dancer SJ, Bourouiba L. Quantifying transmission

risk of SARS-CoV-2 in different situations. BMJ. 2022; 376: o106. https://doi.org/10.1136/bmj.o106

PMID: 35058231

5. Randall K, Ewing ET, Marr LC, Jimenez JL, Bourouiba L. How did we get here: What are droplets and

aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious

diseases. Interface Focus. 2021; 11: 20210049. https://doi.org/10.1098/rsfs.2021.0049 PMID:

34956601

6. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). 11 Feb 2020

[cited 7 Sep 2023]. Available: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-

cov-2-transmission.html

7. World Health Organization. Coronavirus disease (COVID-19): How is it transmitted? 23 Dec 2021 [cited

7 Sep 2023]. Available: https://www.who.int/news-room/questions-and-answers/item/coronavirus-

disease-covid-19-how-is-it-transmitted

8. Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. Lancet Respir Med.

2020; 8: 914–924. https://doi.org/10.1016/S2213-2600(20)30323-4 PMID: 32717211

9. Rieder HL, Zwahlen M. Resurrecting historical lessons from tuberculosis research on airborne transmis-

sion relevant to SARS-CoV-2. Swiss Med Wkly. 2021; 151: w30096. https://doi.org/10.4414/smw.2021.

w30096 PMID: 34846112

10. Shen J, Kong M, Dong B, Birnkrant MJ, Zhang J. Airborne transmission of SARS-CoV-2 in indoor envi-

ronments: A comprehensive review. Sci Technol Built Environ. 2021; 27: 1331–1367. https://doi.org/10.

1080/23744731.2021.1977693

PLOS GLOBAL PUBLIC HEALTH Airborne transmission in schools in Africa and Switzerland

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0002800 January 18, 2024 13 / 17

https://doi.org/10.1093/cid/ciab691
http://www.ncbi.nlm.nih.gov/pubmed/34358292
https://doi.org/10.1126/science.abd9149
http://www.ncbi.nlm.nih.gov/pubmed/34446582
https://doi.org/10.3390/ijerph17051729
https://doi.org/10.3390/ijerph17051729
http://www.ncbi.nlm.nih.gov/pubmed/32155789
https://doi.org/10.1136/bmj.o106
http://www.ncbi.nlm.nih.gov/pubmed/35058231
https://doi.org/10.1098/rsfs.2021.0049
http://www.ncbi.nlm.nih.gov/pubmed/34956601
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html
https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted
https://doi.org/10.1016/S2213-2600%2820%2930323-4
http://www.ncbi.nlm.nih.gov/pubmed/32717211
https://doi.org/10.4414/smw.2021.w30096
https://doi.org/10.4414/smw.2021.w30096
http://www.ncbi.nlm.nih.gov/pubmed/34846112
https://doi.org/10.1080/23744731.2021.1977693
https://doi.org/10.1080/23744731.2021.1977693
https://doi.org/10.1371/journal.pgph.0002800


11. Walsh S, Chowdhury A, Braithwaite V, Russell S, Birch JM, Ward JL, et al. Do school closures and

school reopenings affect community transmission of COVID-19? A systematic review of observational

studies. BMJ Open. 2021; 11: e053371. https://doi.org/10.1136/bmjopen-2021-053371 PMID:

34404718
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