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Background. Epigenetic modifications have been revealed to play an important role in tumorigenesis and tumor development.
-is study aims to analyze the role of histone modifications and the prognostic values of histone modifications in lung ade-
nocarcinoma (LUAD). -e promoters and enhancers of protein encoding genes (PCGs) were the regions of enriched histone
modifications. Methods. Expression profiles and clinical information of LUAD samples were downloaded from the Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Histone modification data of LUAD cell lines were
downloaded from Encyclopedia of DNA Elements (ENCODE) database. Limma R package was used to identify differentially
expressed PCGs. To identify molecular subtypes, consensus clustering was conducted based on the expression of dysregulated
PCGs with abnormal histone modifications. Univariate Cox regression analysis and stepwise Akaike information criterion
(stepAIC) were utilized to establish a prognostic model. Results. We identified a total of 699 epigenetic dysregulated genes with 122
of them significantly correlating with LUAD prognosis. We constructed three molecular subtypes (C1, C2, and C3) based on the
122 prognostic genes. C2 had the longest overall survival while C1 had the worst prognosis. In addition, three subtypes had
differential immune infiltration and the response to immune checkpoint inhibitors. Moreover, we identified a risk model
containing 5 epi-PCGs that had favorable performance to predict prognosis in different datasets. Conclusions. -is study further
supported the critical histonemodifications in LUAD development.-ree subtypes may provide guidance for the immunotherapy
of LUAD patients. Importantly, the prognostic model had great potential to predict LUAD prognosis.

1. Introduction

Lung cancer is the secondmost diagnosed cancer worldwide,
which contributes a lot to the cancer burden globally [1].
Lung cancer as a leading cause of cancer mortality has a less
than 20% survival rate [2]. According to the global cancer
statistics, a ratio of 39/100,000 has occurred in men that
ranking first, and 18.2/100,000 in women [1]. Lung ade-
nocarcinoma (LUAD) is the most common histological type
of nonsmall cell lung cancer (NSCLC), composing ap-
proximately 40% of malignant lung cancer cases [3]. In the
Chinese population, the proportion of LUAD patients in
lung cancer increased largely from 34.4% to 59.3% in
2003–2012, especially a massive increase in the female
population [4].

Although smoking is considered as the most common
risk factor, the number of diagnosed female patients has

been rising obviously in the recent decades. -e increasing
diagnostic rate of nonsmoking individuals in LUAD high-
lights the importance of other risk factors such as passive
smoking, cooking fumes, air pollution, and gene suscepti-
bility [4, 5]. Large-scale genomic analysis on LUAD revealed
that KRAS, EGFR, CDKN2A, TP53, and KEAP1 were
commonly mutated in LUAD patients [2]. A distinct ge-
nomic landscape is characterized between smokers and
nonsmokers, with the former presenting a higher mutation
frequency [2]. -ese differential mutations induced a dif-
ferential tumor microenvironment (TME), accounting for
the different response of patients to targeted therapies such
as nivolumab [6], pembrolizumab [7], and osimertinib [8].
About 70% patients are already advanced or metastatic when
diagnosing as lung cancer [5]. Only a small part of patients
can benefit much from traditional therapies such as che-
motherapy and radiotherapy. Although some targeted
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molecules have been developed to function a positive effect
on LUAD patients, still a large fraction of patients are
negatively responsive possibly due to disadvantageous TME
and distinct gene mutation subtypes.

Epigenetic effect has been identified as a critical factor in
modulating gene expression, which is considered to have
prognostic value in many cancers [9]. Histone modifications
are the most common modifications in DNA, and are sig-
nificantly associated with NSCLC survival and metastasis
[10]. In this study, we characterized the effects of histone
acetylation (ac) and methylation (me) (H3K9me3,
H3K27me3, H3K27ac, and H3K4me3) on LUAD patients,
and developed novel molecular subtypes and a 5-gene sig-
nature based on these modifications. Importantly, we em-
phasized the relation between histone modifications and
cancer development, and the role of these modifications in
guiding targeted therapies for LUAD patients.

2. Materials and Methods

2.1. Data Information of Gene Expression Profiles andHistone
Modification. From TCGA database and GEO database,
gene expression data with LUAD clinical information were
downloaded in September 1, 2021. For TCGA-LUAD
dataset, we removed the samples with no survival status and
overall survival. A total of 500 LUAD samples were
remained in TCGA-LUAD dataset. For five GSE cohorts
(GSE19188, GSE30219, GSE31210, GSE37745, and
GSE50081) from GEO, expression data were combined
through “removeBatchEffect” function in limma R package
[11]. PCA showed that batch effect was eliminated after
processing (Supplementary Figure S1). -e detailed infor-
mation of screened LUAD samples in TCGA and GSE
cohorts was listed in Supplementary Table S1.

-e replicated narrowPeak data (hg38) of LUAD cell line
(PC-9) and normal lung fibroblasts (AG04450) containing
four types of histone modification (H3K27me3, H3K9me3,
H3K4me3, and H3K27ac) was downloaded from Encyclo-
pedia of DNA Elements database in September 1, 2021.

2.2. Identification of Protein-Coding Genes (PCGs) with
Dysregulated Epigenetic Modifications. Limma R package
was employed to filter differentially expressed PCGs with
FDR <0.05 and |fold change (FC)|> 1.5. -en based on the
peak location of histone modification, we screened differ-
ential peaks with P< 0.05. Using GTF file (GRCh38.p13)
from GENCODE database, we annotated the corresponding
genes of differential peaks. -e data of enhancers were
obtained from FANTOM5 database [12]. -e location of
promoters were determined in the region of 2 kb and 0.5 kb
in transcriptional start site (TSS) upstream and downstream,
respectively, and ChIPseeker R package was used to identify
promoters [13]. PCGs with dysregulated histone modifica-
tions were defined as epi-PCGs following with two crite-
rions: (1) PCGs were differentially expressed between
normal and tumor samples; (2) dysregulated histone
modification was existed at least in one location (promoters
or enhancers). PCGs without differential expression or

dysregulated histone modification were defined as non-epi-
PCGs.

2.3. Gene Enrichment Analysis. SGSEA is a popular method
with ability to calculate normalized enrichment score of a
gene set for each sample [14, 15]. We performed the algo-
rithm of “ssGSEA” in GSVA R package [16] to calculate the
enrichment score of eight types of epi-PCGs (four types of
dysregulated histone modifications in enhancers and pro-
moters, respectively) in normal tissues and tumor tissues.
Wilcoxon rank test compared the difference of enrichment
score in tumor and normal tissues. -e enrichment score of
KEGG pathways was also calculated via ssGSEA. -e an-
notation for significantly enriched KEGGpathways and gene
ontology terms was outputted through clusterProfiler R
package [17]. P< 0.05 was set as a cut-off to detect enriched
pathways and terms. Only the top 10 were visualized.

2.4.Molecular SubtypingBasedonEpi-PCGs. Univariate Cox
regression analysis was performed to screen epi-PCGs as-
sociated with prognosis (P< 0.05) in TCGA-LUAD and
GEO datasets. -e intersected epi-PCGs between two
datasets were used as a basis for unsupervised consensus
clustering using ConsensusClusterPlus R package [18]. -e
optimal cluster number k (k was tested from 2 to 10) was
confirmed through cumulative distribution function (CDF)
and Kaplan‒Meier survival plot.

2.5. Assessment of TME. -ree gene signatures of -1/IFN-
c, cytolytic (CYT) score, angiogenesis score were obtained
from previous studies [19–21], and the enrichment score of
them was calculated by ssGSEA [15]. From Danilova et al.
study, 47 immune checkpoints were obtained [19].
CIBERSORT estimates the fraction of 22 immune cells in a
mixture [22], and it was applied in our study to evaluate the
immune infiltration of thee subtypes. In addition, another 28
immune cells were obtained from Charoentong et al. [23],
and their enrichment score of three subtypes was calculated
by ssGSEA. ANOVA was conducted among three subtypes.

2.6. Prediction of Response to Immunotherapy. TIDE analysis
was applied to predict the response to immune checkpoint
blockade [24]. By evaluating the score of three aspects in-
cluding TIDE, T cell exclusion, and T cell dysfunction, the
sensitivity to immunotherapy could be estimated. Higher
TIDE score represents higher possibility of immune escape
and lower sensitivity to immunotherapy. Higher score Tcell
dysfunction indicates worse Tcell function, and higher Tcell
exclusion indicates lower infiltration of Tcells. Both of them
were negatively with the sensitivity to immunotherapy.
ANOVA was conducted among three subtypes.

2.7. Establishment and Validation of a Prognostic Model.
Firstly, TCGA-LUAD samples were divided into training
group and test group with a ratio of 3 : 2 through 100 times
random sampling.-e optimal training and test groups were
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confirmed according to the similar clinical information and
gene expression profiles between two groups. No difference
between two groups was shown in Chi-square test (P> 0.05,
Supplementary Table S2). In the training group, univariate
Cox regression analysis was performed on 122 epi-PCGs
(using for consensus clustering) to identify significant
prognosis-associated genes (P< 0.05). LASSO Cox regres-
sion in glmnet R package [25] and stepwise Akaike infor-
mation criterion (stepAIC) inMASS R package [26] was here
to decrease prognostic genes and construct a prognosis
model. -e model was defined by risk score�Σ (coef-
ficient(i)∗expression(i)), where LASSO coefficient was used
and i present genes.

Risk score was converted to z-score. To classify samples
into two risk groups, and z-score� 0 was set as a cut-off.
ROC curve was characterized to evaluate the effectiveness of
the model through timeROC R package [27]. -e robustness
of the prognostic model was verified in independent vali-
dation and test groups by using ROC and survival analysis.
Univariate and multivariate Cox regression analyses dem-
onstrated the risk score as an independent indicator,
comparing with other clinical features.

2.8. Application of the Prognostic Model in Clinical.
Constructing a nomogram is a popular method to visualize a
prognostic model for clinical use. Analysis on multivariate
Cox regression analysis determined that risk factors of
P< 0.05 were used as an input to construct a nomogram
through rms R package. -e 1-year, 3-year, and 5-year death
rates could be indicated from the total points. DCA in
ggplot2 R package was applied to evaluate the efficiency of
the nomogram by comparing with other indicators [28].
DCA predicts the relative benefits to manage a true positive
case and harms to treat a false positive case judging by
threshold possibility.

2.9. Comparison with Other Prognostic Models. Five prog-
nostic models for LUAD were selected from previous studies,
including a 7-gene signature from Al-Dherasi et al. [29], an 8-
gene signature from Li et al. [30], a 3-gene signature from Liu
et al. [31], a 4-gene signature from Sun et al. [32], and a 12-
gene signature from Xue et al. [33]. To fairly compare their
efficiency, the same dataset (TCGA-LUAD) was used, and
ROC analysis was performed individually for five signatures.

2.10. Statistical Analysis. R (v4.1.0) software was used in this
study to conduct all statistical analysis. Parameters not showing
were default. Wilcoxon test was for two group analysis, and
ANOVA was for three-group analysis. Log-rank test was
conducted in survival analysis and Cox regression analysis.
P< 0.05 was considered as significant. Ns, no significance.
∗∗∗∗P< 0.0001, ∗∗∗P< 0.001, ∗∗P< 0.01, and ∗P< 0.05.

3. Results

3.1. �e Number and Length of PCG Transcripts and Exons
maybeAffect byHistoneModifications. A line of studies have

demonstrated that the histone modifications in enhancers
and promoters can regulate the expression of a gene and
therefore results in cascade effects in oncogenic pathways.
We thus focus on the effect of histone modifications in
enhancers and promoters to tumorigenesis in LUAD. Firstly,
in TCGA-LUAD dataset, we identified the differentially
expressed PCGs in tumor and normal lung tissues. A total of
5454 differentially expressed PCGs were identified (FDR
<0.05). Within 5454 PCGs, we further compared the histone
modifications of these PCGs in tumor samples with those in
TCGA-LUAD dataset. Groups of epi-PCG and non-epi-
PCG were defined to represent dysregulated and normal
histone modifications, respectively. Finally, 699 epi-PCGs
were screened counting for a proportion of 3.58% in 5454
PCGs.

-en we tried to clarify the relation between dysregu-
lated histone modifications and the activity of gene ex-
pression or the length of gene transcripts. -e result showed
no difference on transcript numbers between epi-PCG and
non-epi-PCG groups (P> 0.05, Figure 1(a)). However,
significant difference was observed on the length of tran-
script between two groups (P< 0.001, Figure 1(b)). In regard
to exons, we also calculated their number and length, and
both of which manifested significant difference between two
groups (P< 0.05, Figures 1(c) and 1(d)). Epi-PCG group had
more exon numbers than non-epi-PCG group, while the
exon length in epi-PCG group was a few less than non-epi-
PCG group.

In addition, we visualized the distribution of 699 epi-
PCGs in a genomemap. It could be apparently observed that
four major types of histone modifications consisted the
majority histone dysregulations including H3K9me3,
H3K27me3, H3K27ac, and H3K4me3 (Figure 2(a)). Except
for Y chromosome, other 23 chromosomes were all re-
sponsible for the contribution of dysregulated histone
modifications. Furthermore, these dysregulated modifica-
tions with H3K27ac as the most affected were accumulated
in promoters with a small fraction in enhancers
(Figure 2(b)). We suspected that the dysregulation of epi-
PCGs may be largely induced by the dysregulated H3K27ac
in their promoters.

3.2. Enriched Pathways and GO terms of Epi-PCGs. To in-
vestigate the role of epi-PCGs in the tumorigenesis, we
calculated the enrichment score of each dysregulated histone
modification per sample. In all four types of histone
modifications in enhancers and promoters, significantly
differential enrichment was presented (P< 0.001,
Figure 3(a)). Besides H3K27ac_promoter and H3K4me3_-
promoter were more enriched in tumor samples, the en-
richment of other six modifications were markedly
decreased in tumor samples, indicating that these six
modifications may serve as suppressive roles in tumori-
genesis (Figure 3(a)).

To characterize the function of these dysregulated epi-
PCGs, we performed ssGSEA to evaluate the enrichment of
each KEGG pathway in TCGA-LUAD samples. Pearson
correlation analysis revealed the 41 most significantly
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enriched and correlated pathways in eight types of histone
modifications (P< 0.05, Figure 3(b)). Oncogenic pathways
such as p53 signaling pathway, ERBB signaling pathway,
chemokine signaling pathway, JAK-STAT signaling path-
way, and cell adhesion molecules, metabolism-related
pathways such as galactose metabolism, pyrimidine meta-
bolism, pyrimidine metabolism, and drug metabolism other
enzymes, and immune-related pathways such as cytokine-
cytokine receptor interaction, chemokine signaling pathway,
and leukocyte transendothelial migration were enriched and
all significantly correlated with eight modifications. -e
majority of pathways were found to be positively related to
the enrichment of four histone modifications. However, two
pathways including pyrimidine metabolism and cell cycle
exhibited an obviously negative correlation.

Furthermore, we used clusterProfiler to annotate GO
terms and KEGG pathways, and obtained the coincident

result. -e top 10 enriched GO terms and KEGG
pathways were visualized (P< 0.05, Supplementary
Figure S2). Immune-related terms such as cytokine secre-
tion, neutrophil-related immune response and myeloid
leukocyte mediated immunity were enriched (Supplemen-
tary Figures S2A–S2C). -e pathway of cell adhesion
molecules was also annotated (Supplementary Figure S2D).
-e abovementioned results supported that histone
modifications contributed an important role in LUAD
tumorigenesis.

3.3. Molecular Subtyping Based on Epi-PCGs. Next we tried
to construct a molecular subtyping system for LUAD based
on epi-PCGs. Before that, we firstly assess the association
between 699 epi-PCGs and LUAD prognosis in both TCGA-
LUAD and GEO datasets through univariate Cox regression
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Figure 1: -e genomic features of epi-PCGs and non-epi-PCGs. (a‒b) the number and length of transcripts in epi-PCGs and non-epi-
PCGs. (c‒d) the number and length of exons in epi-PCGs and non-epi-PCGs. Wilcoxon test was performed. NS, no significance. ∗P< 0.05,
∗∗P< 0.01, and ∗∗∗P< 0.001.
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analysis. As a result, 122 epi-PCGs were identified, and their
expression in tumor samples to normal samples were
compared with significant difference (Supplementary
Figure S3).-en 122 epi-PCGs were selected as candidates to
construct molecular subtypes (Figure 4(a)). Unsupervised
consensus clustering was conducted through Consensu-
sClusterPlus, and cluster number k from 2 to 10 was eval-
uated by CDF (Figure 4(b)). Finally, we determined k� 3 as
the indicator to define three molecular subtypes (C1, C2, and
C3, Figure 4(c)). Kaplan‒Meier survival analysis presented
the differential prognosis among three molecular subtypes in
both TCGA-LUAD and GEO datasets, where the longest
survival was shown in C2 subtype and the worst prognosis
was shown in C1 subtype (P � 0.00061 and P< 0.0001,
respectively, Figure 4(d)).

3.4. Distinct TME among �ree Subtypes. TME is a critical
feature of tumor progression and immune response to
against tumor cells. We attempted to unravel if there was a
difference of TME among three subtypes according to a
series of indicators such as the distribution of immune cells,
chemokines, chemokine receptors, tumor-related signa-
tures, and immune checkpoints.

We performed CIBERSORT to characterize the esti-
mated fraction of 22 immune cells in tumor tissues, and
observed that 12 of 22 immune cells were differentially
enriched among three subtypes (P< 0.05, Figures 5(a) and
5(b)). C3 subtype had a higher proportion of CD8 Tcells, but
significantly higher macrophages were also shown simul-
taneously (Figure 5(b)). In addition, we obtained the sig-
natures of 28 immune cells from the previous study, and
analyzed their proportions in TCGA-LUAD dataset. Simi-
larly, distinct distributions of all 28 immune cells from

ssGSEA results were exhibited among three subtypes
(P< 0.05, Figure 5(c)). Moreover, we applied MCP-counter
to evaluate the immune infiltration of 10 immune cells.
-ree subtypes showed a similar enrichment pattern of CD8
T cells with CIBERSORT and ssGSEA results, and other
immune cells also differentially enriched in three subtypes,
indicating that there was a huge difference of TME among
them and thus resulted in discrepant prognosis.

Chemokines and chemokine receptors are a group of
factors that orchestrate the migration or cell-cell signaling
between different cell types, which are secreted by tumor
cells or immune cells. We used ssGSEA to calculate their
normalized gene expression in TCGA-LUAD dataset. A
large fraction of chemokines (90.24%, 37 of 44) and che-
mokine receptors (72.22%, 13 of 28) manifested differential
expression among three subtypes (P< 0.05, Figures 6(a) and
6(b)). It has been demonstrated that interferon-gamma
(IFN-c), cytolytic activity, and angiogenesis serve as in-
dicative biomarkers in anti-tumor response and cancer
progression [34–36].

-erefore, we searched a series of gene signatures of three
features from previous studies [19–21], and characterized
their enrichment score in three subtypes. -e result showed
that C1 subtype had the highest score of IFN-c and C3
subtype manifested the lowest angiogenesis score, while no
obvious difference of CYT score was shown among three
subtypes (Figures 6(c)–6(e)). High expression of IFN-c was
reported to be associated with progressive tumor and worse
prognosis by elevating IDO1 expression [37, 38]. It was
sensible that C1 subtype with the highest IFN-c score had
unfavorable prognosis, although C1 presented a bit high CYT
to against tumor cells. Moreover, we assessed the expression
of 47 immune checkpoint obtained from Danilova et al. [19].
35 of 47 immune checkpoints had the distinct expression
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among three subtypes (P< 0.05, Figure 6(f)), which may
affect the efficacy of immunotherapy. Notably, IDO1 was the
most expressed in C1 subtype and the least in C3 subtype,
which was accordant with the abovementioned results.

3.5. C2 Subtype Is the Most Sensitive to Immunotherapy
Predicted by TIDE Analysis. As significantly differential

TME was delineated in three subtypes, we then tried to
understand their response to immune checkpoint blockade.
TIDE analysis was implemented to calculate three scores
including TIDE score, T cell dysfunction and T cell exclu-
sion. As a result, C2 subtype had the lowest TIDE score
among them, suggesting that C2 was predicted to be the
most sensitive to immunotherapy (Figure 7(a)). Although
T cell function was less damaged in C3 subtype, high T cell
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Figure 5:-e distribution of immune-related cells in TME. (a) A heatmap presenting the distribution of 22 immune cells in three subtypes.
(b) Enrichment score of 22 immune cells in three subtypes assessed by CIBERSORT. (c) Enrichment score of 28 immune cells in three
subtypes assessed by ssGSEA. (d) Enrichment score of 10 immune cells analyzed byMCP-counter analysis. ANOVA test was conducted.NS,
no significance. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, and ∗∗∗∗P< 0.0001.
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exclusion was present in C3 subtypes simultaneously
(Figures 7(b) and 7(c)), which possibly lead to worse
prognosis.

3.6. Establishing a Prognostic Model Based on Epi-PCGs.
500 TCGA-LUAD samples were randomly divided into
training and test groups with a ratio of 3 : 2. No significant
difference was detected between two groups using Chi-
square test (P> 0.05, Supplementary Table S2). In the

training group, we applied univariate Cox regression
analysis to screen 71 epi-PCGs from 122 epi-PCGs that were
included in consensus clustering (P< 0.05). To reach an
optimal model without too many prognostic genes, we
performed LASSO Cox regression analysis to deduct the
unnecessary genes. -e coefficients of genes were close to
zero with the increasing lambda (Supplementary Figure S4).
When lambda� 0.0905, the optimal model was generated,
and 10 epi-PCGs were remained. -en stepAIC was con-
ducted to further decrease the number of genes and simplify
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Figure 6: Characterizing the different TME among three subtypes. (a‒b) Gene expression of chemokines and chemokine receptors in three
subtypes. (c‒e) Enrichment score of IFN-c, CYTand angiogenesis in three subtypes. (f ) -e expression of 47 immune checkpoints in three
subtypes. ANOVA test was conducted. NS, no significance. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, and ∗∗∗∗P< 0.0001.
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the model. Finally, 5 epi-PCGs were determined to construct
the prognostic model with coefficients from LASSO. -e 5-
gene prognostic model was defined as: risk
score� 0.456∗LDHA+0.278 ∗

EIF3B + 0.09∗TNS4 + 0.08∗LY6K− 0.385∗PDIK1L.
According to the prognostic model, we calculated the

risk score for each sample in the training group. Samples
were stratified into high-risk and low-risk groups by the cut-
off of the z-score = 0 (Figure 8(a)). Obviously, samples with
dead status were apparently enriched in high-risk group.
Besides PDIK1L, other four epi-PCGs were relatively higher
expressed in high-risk group (Figure 8(a)). ROC analysis
revealed that the prognostic model had favorable perfor-
mance in predicting 1-year, 3-year, and 5-year prognosis
with AUC of 0.71, 0.72, and 0.69, respectively, (Figure 8(b)).
High-risk group of 138 samples and low-risk group of 162
samples had a significant difference of overall survival
(P< 0.0001, Figure 8(c)).

In the test group, we performed the same analysis to
confirm the ability of the prognostic model for predicting
prognosis. A similar result was presented that high-risk
group with 100 samples had worse survival than low-risk
group with 100 samples (P � 0.014, Supplementary
Figure S5). Using all samples in TCGA-LUAD dataset, we
delineated the distribution of their survival status and 5 gene
expression ranking by risk score (Supplementary Figure S6).
-e prognostic model was able to stratify samples into high-
risk and low-risk groups with distinct overall survival
(P< 0.0001, Supplementary Figure S6). To verify the ro-
bustness of the model, GEO dataset was introduced as an
independent validation group. A total of 289 and 293
samples were grouped into high-risk and low-risk groups,
respectively, with differential overall survival (P � 0.0019,
Figure 9). Favorable AUC of 1-year, 3-year, and 5-year
prognosis were shown with 0.79, 0.63, and 0.63, respectively.
-e abovementioned results validated the robust perfor-
mance of the 5-gene prognostic model for predicting
prognosis of LUAD patients.

3.7. Risk Score IsDifferentiallyDistributed inDifferentClinical
Features. As risk score was proved to be significantly as-
sociated with prognosis, we next evaluated the relation
between risk score and clinical features including TNM
stage, ages and genders (Figure 10). It was obviously
exhibited that with the increased severity of stages, the risk
score elevated accordingly in T stage, N stage and stage
(P< 0.0001, Figures 10(a) and 10(b) and 10(d)). A higher
median risk score was observed in M1, but no difference was
shown between M0 and M1 stages, which was possibly due
to the small fraction of M1 samples (Figure 10(c)). In ad-
dition, ages and genders seemed not the factor resulting in
the distribution of risk score (Figures 10(d) and 10(e)). We
also examined the risk score in stratifying samples with
different clinical features. Consequently, all samples with
different clinical features could be stratified into high-risk
and low-risk groups with discrepant overall survival
(P< 0.05, Supplementary Figure S7).

3.8. Identifying Functional Pathways Associated with Risk
Score. Risk score calculated based on epi-PCGs was able to
distinguish high-risk patients, and a close association was
also observed between risk score and stages. We suspected
that these five epi-PCGs were highly involved in tumori-
genesis or tumor progression. -erefore, to understand
which functional pathways these epi-PCGs were enriched,
we employed ssGSEA to calculate the enrichment score of
KEGG pathways for each sample in TCGA-LUAD dataset.
-en Pearson correlation analysis was used to screen cor-
relative KEGG pathways with risk score (|correlation
coefficient|> 0.3). -e top 30 KEGG pathways were visu-
alized with 25 positively 5 negatively related to risk score
(Figure 11). A fraction of tumor-related pathways were
highly enriched, such as bladder cancer, small cell lung
cancer, and p53 signaling pathway. A number of cell pro-
liferation-related pathways such as cell cycle, DNA repli-
cation, and mismatch repair were identified. Furthermore,
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Figure 7: TIDE analysis for predicting the response to immunotherapy indicated by TIDE score (a), T cell dysfunction (b), and T cell
exclusion (c). ANOVA test was conducted. NS, no significance. ∗P< 0.05 and ∗∗∗∗P< 0.0001.
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we used the same method to analyze the enrichment scores
of Wiki pathways and their relationships to risk score.
Similar results were outputted that cell cycle, DNA repair-
related pathways and tumor-related pathways were also
significantly enriched (Supplementary Figure S8A). -ese
pathways were positively correlated with risk score (Sup-
plementary Figure S8B). -ese enriched pathways indirectly
supported that dysregulated histone modifications on these
epi-PCGs made a strong effect on a series of oncogenic
pathways that were involved in tumorigenesis.

3.9. Constructing a Nomogram Based on Risk Score for Ap-
plication inClinicalManagement. Given that the satisfactory
performance of the 5-gene prognostic model, we attempted
construct a nomogram based on the risk score. Before that,
univariate and multivariate Cox regression analysis were
conducted to assess the independence of the prognostic
model (named as risk type in Figure 12) together with other
clinical features. -e result manifested that N stage and risk
type were both the independent risk factor of LUAD, with
HR� 1.76 (95%CI� 1.16–2.66) and HR� 1.62 (95%
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Figure 8:-e performance of 5-gene prognostic model in the training group. (a)-e survival and expression of each sample ranking by risk
score. Horizontal axis represents samples. (b) ROC analysis for evaluating the efficiency in predicting 1-year, 3-year, and 5-year survival.
(c) Kaplan‒Meier survival analysis for high-risk and low-risk groups. Log-rank test was conducted. HR, hazard ratio. AUC, area under ROC
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CI� 1.31–1.96), respectively, in multivariate analysis (Fig-
ure 12).-en we used N stage and risk score to construct the
nomogram based on samples in TCGA-LUAD dataset. A
patient could obtain a total points according to risk score
and N stage, and the corresponding 1-year, 3-year, and 5-
year death rates were indicated in the nomogram
(Figure 13(a)). -e comparison between predicted overall
survival and observed overall survival shown the reliability
of the nomogram (Figure 13(b)). Moreover, DCA was
performed to evaluate the effectiveness and benefit that

LUAD patients could obtain from the nomogram, risk score,
and N stage (Figure 13(c)). It could be concluded that LUAD
patients could reach the optimal outcome using the least cost
with the assistant of the nomogram in clinical.

3.10. Comparison with Other Prognostic Models of LUAD.
Given that other studies have also explored a series of
prognostic signatures for LUAD, we included some signa-
tures from the following five studies including Li et al. [30],
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Figure 9: -e performance of 5-gene prognostic model in the validation group. (a) -e survival and expression of each sample ranking by
risk score. Horizontal axis represents samples. (b) ROC analysis for evaluating the efficiency in predicting 1-year, 3-year, and 5-year survival.
(c) Kaplan‒Meier survival analysis for high-risk and low-risk groups. Log-rank test was conducted. HR, hazard ratio. AUC, area under
ROC curve.
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Figure 10: -e distribution of risk score in different clinical features including T stage (a), N stage (b), M stage (c), stage (d), ages (e), and
genders (f ). Kruskal‒Wallis test was conducted among four groups and Wilcoxon test was conducted between two groups.
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Figure 11: Identification of KEGG pathways highly associated with risk score. (a) Pearson correlation analysis between risk score and 30
KEGG pathways. Red means positive correlation and blue means negative correlation. (b) A heatmap of enrichment score of 30 KEGG
pathways ranking by risk score (horizontal axis). Red indicates relatively high enrichment and blue indicates relatively low enrichment.
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Xue et al. [33], Liu et al. [31], Sun et al. [32], and Al-Dherasi
et al. [29], and used the same method in our study to fairly
compare the ability of these signatures to ours. By using the
same dataset of TCGA-LUAD, five prognostic signatures

were all efficient to classify samples into high-risk and low-
risk groups with favorable AUC score and distinct survival as
well (P< 0.0001, Figure 14). However, our 5-gene signature
still performed the highest AUC of 1-year and 3-year
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survival prediction with 0.74 (95%CI� 0.67–0.81) and
0.70 (95%CI� 0.64–0.77), respectively, (Supplementary
Figure S6). Although an 8-gene signature from Li et al. and a
4-gene signature from Sun et al. had a bit higher AUC than
our 5-gene signature (Supplementary Figures S6A and S6G),
their risk score had a lower HR than ours (HR� 1.84, 95%
CI� 1.57–2.15). Overall, our 5-gene signature showed the
best performance in predicting LUAD prognosis in TCGA-
LUAD dataset.

4. Discussion

Extensive studies have demonstrated the important role of
histone modifications on DNA transcription machinery and
accessibility of other regulators [39]. Not surprisingly, the
alternations of histonemodification can affect the expression
or post-translational modification of genes associated with

cancer development. We investigated the state of histone
modifications locating enhancers and promoters in LUAD,
and observed distinct expression of the genes with dysre-
gulated histone modifications between normal tissues and
tumor tissues, suggesting that histone modifications espe-
cially in promoters were involved in tumorigenesis through
regulating expression level.

H3K9me3 and H3K27me3 modifications seem to have a
protective effect that significantly higher rate of modifica-
tions were shown in normal tissues. Abundant evidences
have shown that the aberrant H3K9me3 modification is
associated with tumorigenesis, but may vary in different
cancer types. -e methyltransferase of H3K9me3,
SUV39H1, was up-regulated in colorectal cancer cells, and
cancer cell migration was inhibited by the knockdown of
SUV39H1 [40]. In breast cancer, Li et al. demonstrated that
reduced H3K9me3 lead to the increased sensitivity to DNA
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Figure 14: Comparison with other gene signatures of LUAD obtained from other studies including Li et al. (a‒b), Xue et al. (c‒d), Liu et al.
(e‒f ), Sun et al. (g‒h), and Al-Dherasi et al. (i‒j). A, C, E, G, and J represent ROC curves and B, D, F, H, and J represents Kaplan‒Meier
survival plots. Log-rank test was conducted.
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damage and thus result in breast cancer transformation [41].
High expression level of H3K9 demethylases such as LSD1
or JMJD2C promoted melanomagenesis, and targeted in-
hibition on the demethylases restored immune response and
controlled tumor cell growth [42]. In the mouse model of
lung cancer, LSD1 inhibitor (SP2509) increased H3K9me3
level and predominantly inhibit the proliferation of lung
cancer cells with menin-low expression, supporting that
decreased H3K9me3 was a risk factor in lung cancer [43].
Ávila‒Moreno et al. found decreased level of H3K9me3 in
the promoter of MEOX2 and TWIST1, whose over-
expression was associated with poor prognosis in lung
cancer [44]. High expression of H3K9me3 was considered as
an indicator to represent better prognosis for NSCLC pa-
tients [45], which was consistent with our result.

-e levels of H3K27ac and H3K4me3 were opposite in
enhancers and promoters compared with normal ones, with
both of them had decreased levels in promoters, indicating
that they served as different mechanisms in regulating gene
expression. In the relation between different modifications
and pathways, tumor-related pathways and immune-related
pathways were highly enriched, which supported the critical
role of these modifications in tumorigenesis and anti-tumor
immune response. According to the abovementioned ob-
servations, we constructed a molecular subtyping system
based on epi-PCGs.

-reemolecular subtypes had distinct prognosis with the
best in C2 subtype and the worst in C3 subtype. Importantly,
differential TME was shown among three subtypes, which
lead to discrepant survival and response to immunotherapy
to large extent. -e enrichment of CD8 Tcells was higher in
C1 and C3 subtypes, which may lead to favorable immune
response theoretically. However, an extremely higher en-
richment of M0 macrophages was also presented in the two
subtypes, where M0 was reported to be associated with
unfavorable prognosis [46–48]. -e role of macrophages in
stromal and tumor is complicated, which is modulated by
various factors such as cytokines and chemokines. Overall,
different TME and immune response among three subtypes
suggested that histone modifications did a nonnegligible
effect on prognosis, but needing further demonstration to
verify their specific roles and mechanisms in tumorigenesis.

In addition, as the important role of epi-PCGs was il-
lustrated, we further established a prognostic model based
on epi-PCGs. Five genes were screened as prognostic genes,
including LDHA, EIF3B, TNS4, LY6K, and PDIK1L. Besides
PDIK1L playing a protective role, the expression of other
four genes were all negatively correlated with poor survival.
Human lactate dehydrogenase A (LDHA) was reported to be
negatively associated prognosis that high LDHA expression
predicted poor prognosis in LUAD [49]. Ooi et al. found that
disrupting LDHA showed synergistic anti-tumor effects
when combining with other chemotherapeutic drugs [50].
Eukaryotic initiation factor 3b (eIF3b) was discovered to
promote tumor cell proliferation and progression in NSCLC
[51], and also correlated with advanced stages in bladder and
prostate cancer [52]. Lymphocyte antigen 6 complex locus K
(LY6K) was considered as a molecular target to treat bladder
cancer [53].

-e 5-gene signature was robust to classify LUAD pa-
tients into high-risk and low-risk groups, and was highly
associated with stage progression. Notably, oncogenic
pathways such as p53 signaling, cell cycle, and DNA repair
were massively enriched in LUAD patients with high-risk
scores. -ese five prognostic genes may serve as molecular
targets for exploring new therapeutic drugs and tumori-
genesis mechanisms in LUAD. In addition, compared with
other prognostic models in the previous research, our 5-gene
signature exhibited the most favorable performance in
predicting prognosis. Notably, to our knowledge, no re-
search has proposed molecular subtypes or prognostic
signatures based on histone modifications for LUAD till
now. However, this study only based on pure bioinformatics
analysis, the signature based on epigenetic modifications
needs to be further verified in more clinical samples.

In conclusion, we established three novel molecular
subtypes and a 5-gene signature based on epi-PCGs with
dysregulated histone modifications. We further illustrated
the nonnegligible role of histone modifications in orches-
trating different TME contributing for different immune
response. -ese novel molecular subtypes and the prog-
nostic model could provide a guidance in assisting decision-
makings for LUAD treatment.
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expression of 122 epi-PCGs in normal and tumor samples.
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LASSO Cox regression analysis for optimizing the prog-
nostic model. (A) -e trajectory of coefficients varied by the
increasing lambda. (B) Partial likelihood deviance of each
lambda. Red dotted line and red dot indicate
lambda = 0.0485. Supplementary Figure S5. -e perfor-
mance of 5-gene prognostic model in the test group. (A)-e
survival and expression of each sample ranking by risk score.
Horizontal axis represents samples. (B) ROC analysis for
evaluating the efficiency in predicting 1-year, 3-year, and 5-
year survival. (C) Kaplan‒Meier survival analysis for high-
risk and low-risk groups. Log-rank test was conducted. HR,
hazard ratio. AUC, area under ROC curve. Supplementary
Figure S6. -e performance of 5-gene prognostic model in
TCGA-LUAD dataset. (A) -e survival and expression of
each sample ranking by risk score. Horizontal axis repre-
sents samples. (B) ROC analysis for evaluating the efficiency
in predicting 1-year, 3-year, and 5-year survival. (C)
Kaplan‒Meier survival analysis for high-risk and low-risk
groups. Log-rank test was conducted. HR, hazard ratio.
AUC, area under ROC curve. Supplementary Figure S7.
Kaplan‒Meier survival plots of high-risk and low-risk
groups with different clinical features. Log-rank test was
conducted. Supplementary Figure S8. (A) A heatmap of
significantly enriched Wiki pathways in TCGA dataset.
Horizontal axis indicates the samples and the vertical axis
indicates the enriched pathways. -e z-score of ssGSEA was
used. (B) -e correlation analysis between risk score and
enriched Wiki pathways. Red and blue indicate positive and
negative correlations, respectively. Supplementary Table S1.
Clinical information of TCGA-LUAD and GEO datasets.
Supplementary Table S2. Clinical information of training
and test groups. (Supplementary Materials)
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