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Cancer has been a signifcant threat to human health and well-being, posing the biggest obstacle in the history of human sickness.
Te high death rate in cancer patients is primarily due to the complexity of the disease and the wide range of clinical outcomes.
Increasing the accuracy of the prediction is equally crucial as predicting the survival rate of cancer patients, which has become a
key issue of cancer research. Many models have been suggested at the moment. However, most of them simply use single genetic
data or clinical data to construct prediction models for cancer survival. Tere is a lot of emphasis in present survival studies on
determining whether or not a patient will survive fve years. Te personal issue of how long a lung cancer patient will survive
remains unanswered. Te proposed technique Naive Bayes and SSA is estimating the overall survival time with lung cancer. Two
machine learning challenges are derived from a single customized query. To begin with, determining whether a patient will survive
for more than fve years is a simple binary question. Te second step is to develop a fve-year survival model using regression
analysis. When asked to forecast how long a lung cancer patient would survive within fve years, the mean absolute error (MAE) of
this technique’s predictions is accurate within a month. Several biomarker genes have been associated with lung cancers. Te
accuracy, recall, and precision achieved from this algorithm are 98.78%, 98.4%, and 98.6%, respectively.

1. Introduction

Due to a close relationship between tumor formation and
altered nuclei morphology, nuclear changes have been
crucial for cancer diagnosis [1]. Light microscopy (e.g.,
haematoxylin and eosin) may be used to visually analyze
nuclear morphology in clinical diagnosis [2]. In many tu-
mors, pathologists can identify specifc nucleus alterations
that may be used to guide their treatment options. Nu-
merous numerical parameters [3] that defne intrinsic
morphological qualities of nuclei, such as their size and
shape (e.g., perimeter, area, curvature, and symmetry), as
well as nuclear texture, are used in computer-aided diag-
nostic (CAD) systems to quantify the structure of nuclei [4].
Most of the time, diagnostic labels are only provided for
tissue samples, not individual nuclei. A predictive model is

required for the set detection issue in order to learn from sets
of nuclei without nuclei-level annotations and to anticipate
the diagnostic label for a fresh set of nuclei. When a model
has to forecast a patient’s chance of survival based on a set of
measurable nuclei, it is known as the “set detection problem”
in cancer diagnosis [5]. Training and testing samples in the
set detection scenario are sets, each of which comprises a
distinct number of unlabeled nucleus images, while in classic
image detection, training and testing samples are labeled
single-shot photographs. Tere is no viable supervised
machine learning solution for solving the set detection issue.
Tese nucleus set detection systems and their drawbacks are
samples of what is now available in themarket. Although it is
common for predictive models to make explicit assump-
tions, this is often done implicitly. A common method for
predicting sets is to employ the majority voting strategy,
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which assumes that at least half of the instances in a col-
lection refect the category to which the set belongs [6].
Voting thresholds were used to grade hepatocellular cancer
tumors in [7]. If want to get the best results, voting
thresholds for each class need to be predefned on the basis
of on experience in each topic. To be regarded positively, a
set must include at least one instance of the positive; oth-
erwise, it is considered negative in the MIL framework [8].
Tere has been an increasing use of MIL in medical diag-
nostics [9]. Because of tumor heterogeneity [10], it is often
necessary to have prior knowledge of the subject matter to
create an accurate prediction model.Te prediction model is
learned at the set level by using set detection, which takes
into consideration the full set of data. Individual nuclei can
still be classifed, but groupings of nuclei cannot. Te most
popular and straightforward way [11, 12] is to combine
many statistics (STATS) on nuclear feature features into a
single set. Tere are several statistics included in the feature
vector that describe the qualities of the nucleus set. Because
of this, the efectiveness of STATS is strongly dependent on
the experimental data’s predesigned statistics. With the help
of bag-of-words (BoWs), a method often used in the feld of
set detection may learn the composition of one set while
taking into account the vocabulary included within the
training set’s collection of sample instances or dictionaries
[13].

Figure 1 depicts the working of the squirrel search al-
gorithm which explains how the squirrels are moving from
normal trees to hickory as well as on acorn trees in the search
of food. In SSA, each squirrel moves from one position to
another position which is a better position. Among all the 3
trees, the hickory tree is considered to be the best tree for
food.

Te main objectives of this paper are as follows:

(1) Provide an efcient Feature selection technique
using biomarker genes to fnd out whether a cancer
patient will survive or not.

(2) Establish a new method with SSA. If a patient will
survive, then the duration is more than fve years or
not.

(3) Design an efective technique to predict the overall
survival time with lung cancer.

Te structure of this document is as follows. Section 1
illustrates the introductory part of SSA and the various
optimization techniques, and Section 2 outlines some related
and motivational work to develop the proposed method.
Section 3 gives a detailed description of the proposed
technique, Section 4 depicts the derived results of the
proposed technique, and Section 5 provides the conclusion
of the proposed work.

2. Literature Review

DNA methylation, a critical biomarker in cancer diagnosis,
has attracted considerable attention from researchers, who
have used a selection of features on the data generated by this
biomarker to improve prediction accuracy [15]. In the work

of [16], researchers utilized a feature selection strategy. Based
on the features of clinical DNA methylation data, a three-
step feature selection approach was utilized to identify
diferent cancer- and lymph node-related gene biomarkers.
Te outcome of this approach reveals a remarkable im-
provement in the accuracy of prediction in recognizing LN
metastasis. Te suggested technique employing the
K-Nearest Neighbors classifcation beat previous algorithms
on all criteria, and it was able to reliably forecast the ex-
pression of individual genes using just DNA methylation
data. In addition to being overrepresented in gene ontology
concepts related to the control of several biological pro-
cesses, these DNA methylation-sensitive genes were also
shown to be highly expressed. For example, the study of [17]
shows the usefulness of feature selection in predicting a wide
range of ailments such as lung cancer, heart disease, and so
on. It was observed that SVM-RFE, when using support
vector machines, had the highest accuracy of 97 percent
when comparing the accuracy and efciency of various
feature selection techniques. An additional beneft of using
the feature selection strategy to improve classifer accuracy
was proven in [18]. Each feature selection approach was
shown to act diferently and have a unique set of advantages
and disadvantages. Random Forest’s machine learning
method was combined with the feature selection elimination
approach in [19]. Researchers set out to create a computer-
aided diagnostic system that could distinguish between
benign and malignant lung tumors, the frst stage of which
would undertake data reduction to prepare for the second
stage’s algorithmic training. A classifcation accuracy of
99.82% and a precision of 99.70% were achieved using the
method proposed in this research. Te recent study, on the
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Figure 1: Scenario-based diagram of SSA [14].
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other hand, has concentrated only on feature extraction
methodologies to speed up and improve prediction preci-
sion. Colorectal cancer sickness may be predicted using gene
expression data, as shown in [20], who suggested a feature
extraction technique termed OMBRFE. Singular value de-
composition (SVD) was used in this paper’s feature ex-
traction approach to reduce the data’s high dimensionality.
For advanced colorectal cancer in clinical stages, the re-
trieved genes were revealed to be tightly associated with
OMBRFE. To accurately forecast illness, [21] devised a
unique feature extraction approach called iterative Pearson’s
correlation coefcient. (iPcc). In this study, Pearson’s cor-
relation coefcient was repeatedly applied to gene expression
patterns to build a new set of characteristics for samples [22].
Despite the enormous number of features and the length of
time it took to get them, the number of extracted features
was equal to the number of samples [23].

Te following gaps were identifed during the literature
review and incorporated into this paper:

(a) Te current work ofers a fundamental SSA frame-
work for low-dimension optimization issues that can
be expanded to large-scale optimization and con-
strained optimization situation [24].

(b) In addition, multiobjective optimization issues may
be solved using SSA. Te suggested approach may
also be used to resolve NP-hard real-world combi-
natorial optimization issues [25].

3. Proposed Algorithm

3.1. Squirrel Search Algorithm. Te quest starts when fying
squirrels begin to forage. When it is warm outside, squirrels
glide (fall). Tey move about a lot, taking in the varied
aspects of the forest as they go. It is easier for them to meet
their daily energy needs by eating acorns, which are readily
available due to the hot climate in the area, and they do so
very immediately after discovering them. Once they have
consumed their daily caloric needs (hickory nuts), they
begin searching for the greatest food source for the winter
[26]. Foraging in bad weather is expensive, and hickory
nuts will help them satisfy their energy demands, thereby
decreasing the need for costly foraging trips. In deciduous
woods, a decrease in winter leaf cover raises the risk of
predation [27]. After the winter hibernation period is
through, the fying squirrels begin to move about again. As
a fying squirrel ages, this process continues indefnitely
and is the foundation of SSA [28]. When the mathematical
model is simplifed, the following hypotheses are taken into
account:

(1) For any deciduous forest, the fying squirrel can be
counted on one to perch on the same tree for the
whole year.

(2) Foraging behaviour of fying squirrels is dynamic,
with each squirrel using the resources available to
them in the most efcient way possible [29].

(3) Only three kinds of trees grow in the forest: hickory
trees, normal trees, and oak trees.

(4) Te n in this investigation is set at 50 squirrels.
Nutrient food resources (Nfs) are analyzed for four
trees [30], one for each of the 46 in the study area:
one for the hickory nut tree, and three for the acorn
tree.Tat is, 92% of squirrels are found on trees, with
the remainder reliant on food sources for their
survival. One ideal winter food supply, however, may
be used as a guide for the number of food resources
available, where Z> 0 is the Nfs number [31].

(5) A vector identifes the position of a fying squirrel in
a d-dimensional search space. With the ability to
change their location vectors, fying squirrels can
glide across one-dimensional and two-dimensional
search space. Te following diagram depicts the SSA
process.

3.2. Dataset. Tere are over 100 cases in the Wisconsin
Prognostic Lung Cancer subdirectory, which was utilized to
build the dataset for this article. Te radial distance, opacity,
distance from the ground, location, and simplicity of use are
some of the characteristics of cancer cell nuclei (local var-
iation in radius lengths). Convexity, rounded edges, and
synchronization are all used to gauge how compact some-
thing is. Average, standard error, and “worst” are calculated.
Data from one lung cancer patient are contained in each
entry.

3.3. Algorithm Descriptions for Classifcation Algorithms.
Researchers utilized the lung cancer dataset to examine the
accuracy of three well-known classifcation methods for the
prediction model: Naive Bayes, rapid decision tree learner,
and K-nearest neighbor [33]. Te next section gives the
detailed description of algorithms implemented in this
article.

3.3.1. A Naive Bayes Algorithm. Te Bayesian classifcation
technique encompasses both supervised learning and sta-
tistics categorization. Using probabilities as a basis, one may
measure the model’s uncertainty using probabilities. It can
recognize and anticipate problems [34]. Te Bayes theorem
is named after this categorization, according to Tomas
Bayes (1702–1761). Bayesian classifcation provides a set of
practical learning algorithms that use prior knowledge and
observed data [35]. Tis approach may be used to examine a
wide range of learning algorithms. Probability calculations,
as well as noise in the data supplied into it, are all handled by
this model.

3.3.2. Quick Decision-Making Algorithm for Tree Learners.
Regression tree logic is used in iterations of REPTree to
generate a large number of trees. Finally, it selects the best-
looking tree out of all the trees that were constructed. Te
tree is also pruned using a backftting technique in this
approach [36]. Te values of numerical characteristics are
sorted as part of the model preparation process. It is
comparable to the C4.5 Algorithm in the way that missing
values are handled.
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3.3.3. K-Nearest Neighbors Algorithm. According to KNN
categorization, the point’s nearest neighbors are picked
based on how similar they are to each other. An unlabeled
example is compared to the other (labeled) examples and
the K-nearest neighbors and their labels are calculated to
ascertain the sample’s classifcation [37]. Otherwise, it is
categorized by either a weighted majority, which gives
more weight to points closest to the undescribed object,
or by the class that has the majority of the vote for the
region.

3.4. Algorithms for Selecting Features. For classifcation, the
dataset must be thoroughly examined before being fed into a
classifer. When categorizing, it is best to focus on the most
important qualities rather than a huge number of insig-
nifcant ones. To fnd the most signifcant and relevant traits,
a broad variety of techniques is necessary. If utilize feature
selection to fnd the most signifcant features and decrease
the load, classifcation accuracy also rises. In terms of

classifcation accuracy, SSA beats out the competition cur-
rently used for feature selection.

Considering the population is N and the upper bound
in the search space is represented by FSu, whereas the
lower bound has been represented by FSl. FSi depicts the
population and i ranges from 1 to N. D represents di-
mensions and rand represents a random number. Pop-
ulation is initialized with the help of the following
equation:

FSi � FSl + rand(1, D)∗ FSu − FSl( 􏼁. (1)

Equations (2), (3), and (4) are used to identify the
position of the squirrel, whether it is on the hickory tree,
oak tree, or regular tree, and it can be carried out with the
help of

FS
t+1
at � FS

t
at + dg × Gc × FS

t
ht − FS

t
at􏼐 􏼑, if R1 >Pdp, (2)

FS
t
nt � FS

t
nt + dg × Gc × FS

t
at − FS

t
nt􏼐 􏼑, if  R2 >Pdp, (3)

Begin:
Step 1: Defne the input criteria
Step 2: Random positions for n number of foating squirrels using (1)
Step 3: Calculate the ftness of each foating squirrel’s position
Sort the positions of foating squirrels in increasing order based on ftness value
Step 4: Announce foating squirrels on hickory normal trees, acorn trees, and nut tree
At Random elect, some foating squirrels move from normal trees t hickory nut trees, and the rest will move facing acorn trees
while (the stopping requirement is not met)
For t� 1 to n1 (n1� total foating squirrels coming towards hickory nut tree from acorn trees)
ifR1≥ Pdp
FSt+1

at � FSt
at + dg × Gc × (FSt

ht − FSt
at)

else
FSt+1

at � a random location of search area
end
end
For t� 1 to n2 (n2 � total foating squirrels on normal trees traveling in the direction of acorn trees)
ifR2≥ Pdp
FSt

nt � FSt
nt + dg × Gc × (FSt

at − FSt
nt)

else
FSt+1

nt � a random location of search area
end
end
For t� 1 to n3 (n3 � total foating squirrels on normal trees traveling in the direction of the hickory nut tree)
ifR3 ≥ Pdp
FSt+1

nt � FSt
nt + dg × Gc × (FSt

ht − FSt
nt)

Else
FSt+1

nt � a random location of search area
end
end
Step 5: Evaluate seasonal constant (Sc) using (7)
if (condition for Seasonal monitoring is met)
Randomly repositioned foating squirrels
end
Step 6: Update the lowest value of the seasonal constant
End
Te position of a squirrel on the hickory tree is the concluding best solution
End

ALGORITHM 1: Squirrel search algorithm.

4 Computational Intelligence and Neuroscience



FS
t+1
nt � FS

t
nt + dg × Gc × FS

t
ht − FS

t
nt􏼐 􏼑, if  R3 >Pdp. (4)

Here, R is a random variable that lies between 0 and 1,
whereas Pdp depicts predator probability of appearance. If
r> Pdp, it means the predator will not appear and vice versa, t
depicts the current cycle, and Gc is 1.9. FSat represents
foating squirrels on an acorn tree, FSnt represents foating
squirrels on a normal tree, and FSht represents foating
squirrels on the hickory tree.

In equation (5), dg is the foating space that can be
calculated with the help of

dg �
hg

tan(φ)∗ sf
. (5)

In (6), hg and sf depict constant values which are 8 and
18, respectively. Now, tan(φ) which is the gliding angle will
be calculated as

tan(φ) �
D

L
, (6)

where D is the pull strength and L is the lift strength.
Equation (7) is used to calculate seasonal constant Sc,

where t� 1, 2, 3.

S
t
c �

�����������������

􏽘

d

k�1
FS

t
at,k − FSht,k􏼐 􏼑

2

􏽶
􏽴

. (7)

Some of the advantages of selecting features with SSA
include the following: to discover the greatest potential
solution, various candidate solutions might explore diferent
sections of the solution space. SSA’s solution is an out-
standing feature selection tool because it has a memory and
can keep knowledge about the solution as it moves across the
issue space. Because of its computationally low-cost
implementation and good performance, SSA has become a
popular choice for many businesses.

As opposed to concentrating on a single response, the
Social Security Administration evaluates a broad variety of
possibilities. SSA is capable of working with both discrete
and binary data. SSA is more efcient in terms of memory
and performance than other feature selection approaches.
SSA is easy to use, and the results are promising.Te scale of
the issue has no bearing on SSA’s efcacy.

4. Experimental Results

Te dataset is randomly split into three sets: a training set, a
validation set, and a test set in the proportion 7 :1 : 2. Ex-
periments on each dataset were conducted fve times to
ensure the fairness and robustness of the proposed
technique.

Figure 2 illustrates the error value against the iterations.
As the iterations increase, an error value is decreasing. In this
method, 5 iterations have been conducted on average to
achieve the fnal performance results. Te number of iter-
ations has been taken as an input on the X-axis from 0–1000,
while the error value has been taken on the Y-axis. As

illustrated in Figure 3, the proposed hybrid approach
attained 0.3 less error rate than other existing methods.

Table 1 describes the error percentage value of the
proposed work in comparison to the existing algorithm. As
illustrated error value has been calculated versus iterations.
It is seen that the error rate decreases with the increasing
number of iterations. Tis is due to the optimization of SSA.

It is shown in Figure 4 that the suggested approach is
more accurate than the current method. Increasing the
number of iterations leads to an improvement in accuracy. A
large part of this may be attributed to SSA’s improved
performance. Comparing the suggested method to the
current one, it is better at each stage and achieved better
accuracy by 5.9% in comparison with the existing method.

Table 2 describes the accuracy rate of the proposed work
in comparison to the existing algorithm. As shown, accuracy
has been computed with iterations. It is seen that accuracy
increased with an increasing number of iterations. Tis is
due to the optimization of SSA.

A true positive rate comparison of the proposed work is
shown in Figure 5. It is evident that the true positive rate
shows a gradual increase with the number of rounds. It
shows a sudden rise at 600 rounds. Te proposed approach
has a better true positive rate of 0.6% in comparison to the
past approach.

Table 3 describes the true positive rate of the proposed
work in comparison to the existing algorithm. True positive
has been calculated for iterations, as demonstrated. It is seen
that the true positive rate increased by 0.6% with an in-
creasing number of iterations.Tis is due to the optimization
of SSA.

It is possible to obtain rapid convergence in the fusion of
two cancers’ similarity networks; however, 1,500 iterations
are necessary to reach the iteration termination condition.
Te accuracy and recall of a prediction model are critical
metrics for evaluating its performance. Figure 5 depicts the
accuracy of the proposed technique. It is clear that as the
number of iterations increases, so does the precision which is

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r V
al

ue

8000 200 1000400 600
Iterations

Figure 2: Error rate comparison.
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Meet the terminating condition?Meet the terminating condition?

Update the population through the
progressive search method
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Calculate the equation of the Linear regression of the
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Y
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Figure 3: SSA implementation method [32].
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increased by 10.4%. However, the suggested technique
outperforms the current strategy in terms of accuracy and
recall. Tis is due to the application of SSA. Te precision
rate shows a gradual increase with the number of rounds.

Figure 6 depicts the precision value of SSA, with the
increase in the rounds precision also increases and giving the
more accurate result.

Table 4 describes the precision rate of the proposed work
in comparison to the existing algorithm. As shown, precision
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Figure 4: Accuracy comparison of the proposed work.

Table 1: Error comparison rate.

Error comparison
Rounds Random forest SSR
0 0.8 0.6
200 0.8 0.3
400 0.7 0.1
600 0.6 0.1
800 0.5 0.1
1000 0.4 0.1

Table 2: Accuracy rate.

Accuracy
Rounds Random forest SSR
0 0 0
200 0.2 0.4
400 0.4 0.7
600 0.5 1
800 0.6 1
1000 0.7 1

Table 3: True positive rate.

True positive rate
Rounds Random forest SSR
0 0 0
200 0.1 0.3
400 0.2 0.6
600 0.3 0.9
800 0.4 1
1000 0.4 1
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Figure 5: True positive rate of prediction.
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Figure 6: Te precision value of the proposed approach.
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rate has been computed concerning iterations. It is seen that
precision rate increased with an increasing number of it-
erations. Tis is due to the optimization of SSA.

It is shown in Figure 7 that increasing the number of
iterations leads to an improvement in recall. A large part of
this may be attributed to SSA’s improved performance.
Comparing the suggested method to the current one, it is
better at each stage and achieved better recall by 5% in
comparison with the existing method.

Table 5 describes the recall value of the proposed work in
comparison to the existing algorithm. As shown, the recall

value has been computed concerning iterations. It is seen
that the recall value increased with the increasing number of
iterations. Tis is due to the optimization of SSA.

And, with this accuracy, precision and recall have been
calculated which directly states that this hybrid approach
gives better results in comparison to random forest because
feature extraction plays an important role in the execution of
any technique.

5. Conclusion and Future Work

As a part of the investigation into lung cancer prognosis,
integrated a feature selection method with a classifcation
system. Using feature selection approaches to minimize the
number of features, it is believed that most classifcation
systems may be improved. Certain factors have a greater
impact on the categorization algorithms than others. Te
fndings of tests using a well-known classifcation technique,
namely, Naive Bayes+SSA, have been provided. As a result,
Näıve Bayes provided superior output without SSA, but SSA
enhanced performance in terms of accuracy, precision, and
recall, and values obtained are 98.78%, 98.6, and 98.4 in
comparison to the random forest which were 92.8, 88.2, and
93.4, respectively. New algorithms and feature selection
strategies will be tested in the future as part of this research.
Tese experiments will include both cluster and ensemble
methods.

Data Availability

Te data used to support the study will be made available
from the corresponding author upon reasonable request.
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