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ABSTRACT

Individuals with mobility disabilities can experience numerous health advantages when connecting with nature in various ways, such as passive 
enjoyment, active participation, or rehabilitative programs. These benefits encompass physical and mental benefits, as well as social gains. However, 
a range of concerns related to making natural environments accessible to and usable by people with mobility impairments demand the attention 
of various professionals, including caregivers, landscape architects, rehabilitation therapists, and policymakers. Efforts to promote inclusivity and 
accessibility aim to remove barriers and create environments where individuals with disabilities can participate fully in education, employment, 
public life, and social activities. This may involve adapting physical spaces, promoting awareness, providing assistive technology, offering support 
services, and understanding of disability issues. To enhance the accessibility of public places for disabled people, we must consider multiple criteria 
and risks. In this article, to address such issues we develop three multicriteria decision-making (MCDM) approaches based on picture cubic fuzzy 
information. Since aggregation operators (AOPs) play a crucial role in decision-making, we present the aggregation proficiency for picture cubic 
fuzzy information and develop a series of AOPs, such as picture cubic fuzzy Hamacher order weighted averaging (PCFHOWA), picture cubic fuzzy 
Hamacher weighted averaging (PCFHWA), picture cubic fuzzy Hamacher hybrid averaging (PCFHHA) operators and present some essential prop-
erties of these Opts. After studying their fundamental operations and properties, we utilize these operators to develop multicriteria decision making 
(MCDM) model with picture cubic fuzzy information. We present the extended TOPSIS method and extended VIKOR mothod for MCDM problems. 
We present a numerical example related to improving accessibility for disabled people in a public park. The results explore the effectiveness of our 
proposed methodologies and provide accurate measures to address the uncertainty related to the accessibility of disabled people to public places.
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INTRODUCTION

Mobility impairment is a broad category of disability that 
includes individuals with diverse physical disabilities. 
This disability category includes conditions such as upper 
or lower limb impairments, reduced manual dexterity, and 
difficulties coordinating various body organs (Pedzisai and 
Charamba, 2023). Mobility disabilities can be present from 
birth (congenital) or develop later in life (acquired), some-
times due to diseases or injuries. People with broken skeletal 
structures also fall into this category. Individuals with physi-
cal impairments often rely on assistive devices like crutches, 
canes, wheelchairs, and prosthetic limbs to enhance their 
mobility. According to the World Health Organization’s 

report on March 7, 2023 (https://www.who.int/news-room/
fact-sheets/detail/disability-and-health), approximately 1.3 
billion individuals grapple with significant disabilities, con-
stituting about 16% of the global population, which trans-
lates to roughly one in every six people (Kuper et al., 2024). 
Some individuals with disabilities face a life expectancy that 
is up to 20 years shorter compared to those without disabili-
ties (DuBois et al., 2024). Furthermore, they carry twice the 
risk of developing various health conditions such as depres-
sion, asthma, diabetes, stroke, obesity, or oral health issues 
(Dorsey Holliman et  al., 2023). Persons with disabilities 
encounter significant difficulties, approximately 15 times 
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more, in accessing transportation due to issues of afforda-
bility and accessibility when compared to those without 
disabilities. It is crucial to consider the needs of individuals 
with disabilities when planning for and responding to health 
emergencies because they are more susceptible to both direct 
and indirect impacts (Waitt et al., 2024). For instance, dur-
ing the COVID-19 pandemic, those with disabilities living 
in institutions experienced social isolation and reports of 
residents being overmedicated, sedated, or confined, with 
instances of self-harm also being reported (Brennan, 2020).

Improving accessibility for individuals with mobility 
impairments typically involves making physical spaces, 
facilities, and services more accommodating and barrier-free, 
so these individuals can navigate and participate in various 
activities with greater ease and independence (Apostolidou 
and Fokaides, 2023). This might include features like ramps, 
elevators, accessible parking, wider doorways, and more to 
ensure that everyone can access and enjoy public spaces and 
services (Pettersson et al., 2023). It is important to note that 
the experience of disability varies widely among individu-
als. Some disabilities may be well managed with assistive 
devices or treatments, allowing individuals to lead fulfilling 
lives, while others may face significant challenges in their 
daily lives (Benham et al., 2023). Efforts to promote inclu-
sivity and accessibility aim to remove barriers and create 
environments where individuals with disabilities can partic-
ipate fully in education, employment, public life, and social 
activities. This may involve adapting physical spaces, pro-
viding assistive technology, offering support services, and 
promoting awareness and understanding of disability issues 
(Grimmett et  al., 2023). In this article, we will present a 
multicriteria decision-making (MCDM) example related to 
improving accessibility for the disabled people in a public 
park.

Using multicriteria group decision-making (MCGDM) 
approaches, it is possible to rank the items in a problem and 
select the best option. Decision sciences heavily depend on 
MCGDM. Evaluation data for various criteria, provided by 
decision makers (DMs), are used to choose the most suita-
ble alternative (Altr) from a set of finite options (Jana et al., 
2023; Khan et  al., 2023). In many decision-making prob-
lems and hesitant situations, experts often find it challeng-
ing to express their opinions with crisp values and struggle 
to determine exact values for potential Altrs when dealing 
with conflicting criteria or attributes. In 1965, Zadeh (1965) 
introduced the concept of fuzzy sets (FSs) as a solution for 
addressing problems in uncertain conditions. FSs provide 
a basis for handling uncertain assessments, but they have 
limitations in representing non-membership. Atanassov 
(1999) extended the concept of FS into intuitionistic fuzzy 
sets (IFSs), offering a more comprehensive framework. 
However, IFS alone cannot completely address the chal-
lenges of uncertainty. To tackle these issues, Jun et  al. 
(2011) introduced the concept of cubic set (CS) specifically 
designed to deal with problems of uncertainty. CSs pro-
vide a more elaborate way of representing and managing 
uncertainty in decision-making problems (Muneeza et  al., 
2020, 2022). Unlike traditional FSs, the CS theory clari-
fies the differentiation between unpredictable, unsatisfied, 

and satisfied information (Qiyas et al., 2021). This differ-
entiation can be especially useful in cases where stand-
ard FSs are insufficient in capturing the complexity of the 
data (Muneeza and Abdullah, 2020; Muneeza et al., 2023). 
When compared to FS, CS has more alluring data (Kaur and 
Garg, 2018a,b). In traditional IFSs and CSs, only two types 
of responses are considered: “yes” and “no.” However, 
when dealing with selection problems, there are instances 
where three types of responses are required, namely “yes,” 
“no,” and “refusal.” Handling the “refusal” response can be 
particularly challenging. To address this limitation, Cuong 
(2013) introduced a novel concept known as picture fuzzy 
sets (PFSs). PFSs provide a more comprehensive framework 
by distinguishing between positive, neutral, and negative 
membership grades using three distinct functions. By using 
the CS theory, Khoshaim et  al. (2021), have introduced a 
new approach of PFS through application of the CS theory 
and built up the notion of picture cubic fuzzy set (PCFS), in 
which every element comprises the positive, negative, and 
neutral membership functions. PCFS is a hybrid set which 
can have substantially too much data to communicate a PFS 
and CS simultaneously for dealing the vulnerabilities in 
the information. Since aggregation operators (AOPs) play 
a crucial role in decision-making, we present the aggrega-
tion proficiency for PCF information and develop a series of 
AOPs, such as PCFHOWA operator (Opts), PCFHWA Opt, 
and PCFHHA Opt and present some fundamental charac-
teristics of the developed Opts. When applied to genuine 
, Hamacher Opts display more exact outcomes depending 
upon the PCF data.

Hwang and Yoon first proposed the “technique for 
order preference by similarity to ideal solution” (TOPSIS) 
approach in 1981 (Hwang and Yoon, 1981). This approach 
was later extended by many authors. The TOPSIS method 
is specially used in complicated decision-making problems. 
For the selection of Altrs, the TOPSIS method is a very effec-
tive tool (Jahanshahloo et al., 2006). The VlseKriterijumska 
Optimizacija I Kompromisno Resenje (VIKOR) method 
was presented by Opricovic (1998) for the solution of 
MCDM problems. The conventional VIKOR approach was 
expanded upon by Liao and Xu (2013) to include uncertain 
fuzzy environments. Park et al. (2011) presented the VIKOR 
method with interval-valued intuitionistic fuzzy numbers 
and applied it in decision-making problems. Supply chain 
management (Nazam et  al., 2020), design (Ighravwe and 
Oke, 2020), medical diagnostics (Erdebilli et  al., 2023), 
risk management (Sun et al., 2020), logistics (Wang et al., 
2021), engineering (Li et al., 2020), building, and transpor-
tation (Khan et al., 2024) are just a few of the many indus-
tries where the VIKOR approach is used. TOPSIS is based 
on the idea that the best choice should be as far away as pos-
sible from the negative ideal solution (NIS) while being as 
close as possible to the positive ideal solution (PIS) (Francy 
and Rao, 2024). This approach is favored by risk-averse 
DMs who want to make choices that are both low in risk 
and highly advantageous. The VIKOR method calculates 
the ideal point based on a specific measure of “closeness” 
to the PIS. This method is suitable for situations where 
the DM aims to minimize risk to an extreme extent while 
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seeking high benefits. In this paper, we have extended the 
concept of the TOPSIS and VIKOR methods for PCF num-
bers (PCFNs). As a prevalent set, PCFNs show uncommon 
execution in giving reliable, unclear, and vague assessment 
information due to changed and loosened up conditions. 
Subsequently, PCFNs may be a good methodology for sur-
veying the capability of options.

Structure of our proposed work

We have provided a structured outline of the different sec-
tions in our article. Here is a simplified version: the first sec-
tion contains the introduction. A few fundamental concepts 
are presented in the Preliminaries section. In the Picture 
Cubic Fuzzy Hamacher Averaging AOPs section, we discuss 
basic Hamacher operations based on PCFNs and explore 
averaging AOPs like picture cubic fuzzy Hamacher weighted 
averaging (PCFWA) Opt, PCFOW Opt, and PCFHHA Opt, 
along with some of their important properties. In the MCDM 
Algorithm for Picture Cubic Fuzzy AOPs section, we con-
struct a step-by-step algorithm for handling MCGDM issues 
in the context of PCFNs. In the Algorithms for Decision-
making section, we define two MCDM algorithms, i.e. the 
TOPSIS method and the VIKOR method. The Numerical 
Application section employs the MCGDM approach to an 
example related to improving accessibility for disabled peo-
ple in a public park using PCF Hamacher (AOPs). In the 
Comparison Analysis section, we compare the decision 
findings of our proposed strategies to the existing tech-
niques to demonstrate the effectiveness and practicality of 
our MCGDM approach to reflect the applicability and effi-
ciency of the recognized MCGDM approach. Finally, the 
Conclusion section summarizes our work and findings.

PRELIMINARIES

In this chapter, we briefly review the basic concepts associ-
ated with PCFS and their significant properties.

Definition 1. (Khoshaim et al., 2021) Let ∃ be a non-empty 
set, then PCFS P in ∃, is given as follows:

{ , , , | },I I IP v c c c v′ ′′= 〈 〉 ∈∃

or

{( , [ , ], , [ , ], , [ , ], ) | },P v z z c c e vϑ δ− + − + − += 〈 〉 〈 〉 〈 〉 ∈∃    š š

where 〈[ż−, ż+], ϑ〉 denotes the membership grade 〈[š−, š+], 
δ〉 and 〈[ċ−, ċ+], ė〉 denotes the non-membership grade of P. 
Here [ż−, ż+] ⊂ [0, 1], [š−, š+] ⊂ [0, 1], [ċ−, ċ+] ⊂ [0, 1], ė : ∃ 
→ [0, 1], δ : ∃ → [0, 1] and ϑ : ∃ → [0, 1] subject to ϑ + δ + ė 
≤ 1 and sup[ż−, ż+] + sup[š−, š+] + sup[ċ−, ċ+] ≤ 1. Also,

( ) { [1,1] [[ , ] [ , ] [ , ]] , 1 ( ) },P z z c c eπ ϑ δ− + − + − += 〈 − + + 〉 〈 − + + 〉    š š

( ) {[1 ( ),1 ( ),1 ( )]},P z c z c eπ ϑ δ− − − + + += − + + − + + − + +   š š

called PCFS hesitation margin of v ∈ ∃ for PCFS. The pair 
([ż−, ż+], ϑ, [š−, š+], δ, [ċ−, ċ+], ė) is called the PCF value 
(PCFV) or PCFN and is denoted by P, i.e. P = ([ż−, ż+], ϑ, 
[š−, š+], δ, [ċ−, ċ+], ė).

Definition 2. (Khoshaim et al., 2021) Let P = (〈[ż−, ż+], ϑ〉, 
〈[š−, š+], δ〉, 〈[ċ−, ċ+], ė〉) be a PCFN. Then, score function of 
P is defined as follows:

( ) [( ) / 3],S P z z c c eϑ δ− + − + − += + + + + + − − −    š š

such that S(P) ∈ [−1, 1].

Definition 3. (Khoshaim et al., 2021) Let P be a PCFN, the 
accuracy function of P is given as follows:

( ) [( ) / 3],H P z z c c eϑ δ− + − + − += + + + + + + + +    š š

where H(P) ∈ [0, 1].

Definition 4. (Khoshaim et al., 2021) Let 1 1 1{( , [ , ],P v z z− += 〈    

1 1 1 1 1 1 1, [ , ], , [ , ], ) | }e c c e vϑ − + − +〉 〈 〉 〈 〉 ∈∃   š š  and 2 2 2{( , [ , ],P v z z− += 〈    

2 2 2 2 2 2 2, [ , ], , [ , ], ) | },e c c e vϑ − + − +〉 〈 〉 〈 〉 ∈∃   š š  be two PCFNs; their 
scores are S(P

2
) and S(P

1
) and the accuracy functions are 

H(P
2
) and H(P

1
), respectively. Then,

(i) S(P
1
) < S(P

2
) ⇒ P

1
 < P

2

(ii) S(P
1
) = S(P

2
), and

(a) H(P
1.
) < H(P

2.
) ⇒ P

1.
 < P

2
,

(b) H(P
1.
) = H(P

2.
) ⇒ P

1
 = P

2
.

PICTURE CUBIC FUZZY 
 HAMACHER AVERAGING AOPs

In this section, first we present some operational laws for 
PCFS. We introduce a number of PCF Hamacher AOPs and 
discuss some of their characteristics in this section.

Hamacher operational laws for picture 
cubic fuzzy set

Let

1 1 1 1 1 1 1 1 1 1{( , [ , ], , [ , ], , [ , ], ) | }P v z z c c e vϑ δ− + − + − += 〈 〉 〈 〉 〈 〉 ∈∃    š š

and

2 2 2 2 2 2 2 2 2 2{( , [ , ], , [ , ], , [ , ], ) | }P v z z c c e vϑ δ− + − + − += 〈 〉 〈 〉 〈 〉 ∈∃    š š

be PCFS in v, and k > 0, we present the following Hamacher 
operations in PCFS:
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(1):

 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2
1 2

1 2 1 2 1 2

(1 ) (1 ) (1 )
, , ,

1 (1 ) 1 (1 ) 1 (1 )

,
(1 )( ) (1 )(

z z z z z z z z z z z z

z z z z

P P

ϑ ϑ ϑ ϑ ϑ ϑ
ϑ ϑ

− − − − − − + + + + + +

− − + +

− − + +

− − − − + +

  + − − − + − − − + − − −
   − − − − − −  

⊕ =
+ − + − + − + −

           

   

  
  

   
š š š š
š š š š š š

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

, ,
) (1 )( )

, ,
(1 )( ) (1 )( ) (1 )( )

c c c c e e

c c c c c c c c e e e e

δ δ
δ δ δ δ+ +

− − + +

− − − − + + + +

 
 
 
 

   
    + − + −   

        + − + − + − + − + − + −   

     

           

 

     

š š

(2):

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2

, , ,
(1 )( ) (1 )( ) (1 )( )

(1 ) (1 )
,

1 (1 ) 1 (1 )

z z z z

z z z z z z z z

P P
s s s s

ϑ ϑ
ϑ ϑ ϑ ϑ

− − + +

− − − − + + + +

− − − − − − + + + + + +

− − + +

  
   + − + − + − + − + − + −  

 + − − − + − − −
⊗ =

− − − −

   

       

   

     

 
 

š š š š š š š š š š š š 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

(1 )
, ,

1 (1 )

(1 ) (1 ) (1 )
, ,

1 (1 ) 1 (1 ) 1 (1 )

c c c c c c c c c c c c e e e e e e

s s s s e e

δ δ δ δ δ δ
δ δ

− − + + + + + +

− − + +





  + − − −
    − −  

   + − − + − − − + − − −    − − − − − −  

                 

   

 




  
  











 

(3):

(1 ( 1) ) (1 ) (1 ( 1) ) (1 ) (1 ( 1) ) (1 )
, , ,

(1 ( 1) ) ( 1)(1 ) (1 ( 1) ) ( 1)(1 ) (1 ( 1) ) ( 1)(1 )

( ) ( )
,

1 ( 1)(1 ) ( 1)( ) 1 (

z z z z

z z z z

P

k k k k k k

k k k k k k

k k

k k

ϑ ϑ
ϑ ϑ

k

− − + +

− − + +

− +

− −

  + − − − + − − − + − − −
  + − + − − + − + − − + − + − −  

=
+ − − + − + −

   

   

  
     

 
  

š š
š š

( )
, ,

1)(1 ) ( 1)( ) 1 ( 1)(1 ) ( 1)

( ) ( ) ( )
, ,

1 ( 1)(1 ) ( 1)( ) 1 ( 1)(1 ) ( 1)( ) 1 ( 1)(1 ) ( 1)
c c e

c c c c e e

k

k k k k

k k k

k k k k k k

δ
δ δ+ +

+

− − + +

 
 
 
    

   − + − + − − + −   
       + − − + − + − − + − + − − + −   

  

     


  

  
     

š š

(4):

( )

( ) ( ) ( )
, , ,

(1 ( 1)(1 )) ( 1)( ) (1 ( 1)(1 )) ( 1)( ) (1 ( 1)(1 )) ( 1)

(1 ( 1) ) (1 ) (1 ( 1) ) (1 )
,

(1 ( 1) ) ( 1)(1 ) (1 1 ) ( 1)

z z

z z z z

P

k k k

k k k k k k

k k k k
k

k k k

ϑ
ϑ ϑ

− +

− − + +

− − + +

− − +

  
  + − − + − + − − + − + − − + −  

+ − − − + − − −
=

+ − + − − + − + −

 

   

  
     

 
   

š š š š
š š š

(1 ( 1) ) (1 )
, ,

(1 ) (1 ( 1) ) ( 1)(1 )

(1 ( 1) ) (1 ) (1 ( 1) ) (1 ) (1 ( 1) ) (1 )
, ,

(1 ( 1) ) ( 1)(1 ) (1 ( 1) ) ( 1)(1 ) (1 ( 1)
c c c c e e

c c c c

k k

k k k

k k k k k k

k k k k

δ δ
δ δ+

− − + +

− − + +

   + − − −
   − + − + − −   

 + − − − + − − − + − − −
 + − + − − + − + − − + − 

     

   


 

  
    

š

) ( 1)(1 )e ek k

 
 
 
 
 
 
 
 

    + − −   

PCFWA Opt

Definition 5. Let ’ ’< , , > ( 1, )P P PP c ïc c′ ′′= = …   
  be a set of PCFVs in ∃ and let PCFHWA operator of dimension ï be a 

function Ωï → Ω and ϰ ∈ [0, 1] such that

1 2 3
1

( , , , , ) .ï

ï

PCFHWA P P P P P
=

… = ⊕  




Utilizing Hamacher operations on PCFNs, the below theorem is formed.
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Theorem 1. Suppose ’ ’< , , > ( 1, , ),P P PP c c ïc ′ ′′= = …   
  be PCFNs in ∃, then using the PCFHWA operator, their aggre-

gated value is also a PCFN and is defined as follows:

  

( )3

1 1

1 1

1 1

1

1

1

1

2

(1 ( 1) ) (1 )
,

(1 ( 1) ) ( 1) (1 )
,

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

(1 (

, , ,

=

,

ï ï

ï ï

ï ï

ï ï

ï

ïP

z z

z z

z z

z

CFHWA P

z

P P P

− −
= =

− −
= =

+ +
= =

+ +
= =

=

 Π + − − Π −
 
Π + − + − Π − 

 
Π + − − Π − 

 
Π + − + − Π −

Π +

…

 

 

 

 

 

  
   

  
   

  
   

 





 
  





 



 

1

1 1

1

1 1

1

1 1

,

1) ) (1 )

(1 ( 1) ) ( 1) (1 )

( )
,

(1 ( 1)(1 )) ( 1) ( )

( )

(1 ( 1)(1 )) ( 1) ( )

ï

ï ï

ï

ï ï

ï

ï ï

ϑ ϑ

ϑ ϑ
=

= =

−
=

− −
= =

+
=

+ +
= =

 
 
 
 
 
 
 
 

− − Π − 
 Π + − + − Π − 

 Π

Π + − − + − Π


Π


Π + − − + − Π

  
  
  

   


 

  
   


 

  
   



 



 



 

š
š š

š
š š

( )
( )

( )

1

1 1

1

1 1

1

1 1

,

,

( )

(1 ( 1)(1 )) ( 1) ( )

,
(1 ( 1)(1 )) 1 ( )

(1 ( 1)(1 )) ( 1) ( )

ï

ï ï

ï

ï ï

ï

ï ï

c

c c

c

c c

δ

δ δ
=

= =

−
=

− −
= =

+
=

+ +
= =

 
 
 
 
 
 
 
 

Π 
 Π + − − + − Π 

 Π
Π + − − + − Π

 Π
 Π + − − + − Π 



 



 


 

  
   


 

  
   


 

  
   



 



 



 

( )1

1 1

,

,

,

(1 ( 1)(1 )) ( 1) ( )

ï

ï ï

e

e e

=

= =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
  
  Π  
  Π + − − + − Π  



 


 

  
   



 

 
(2)

where ϰ = (ϰ
1
, …, ϰ

ï
)T is the associated weight vector (WV) of P with ϰ > 0 and =Σ = 1 1.

ï

Proof. We will use mathematical induction to prove this theorem as follows:
when  = 1, we have the accompanying result by Hamacher operations on PCFNs,

( )1 2

1 ( 1) (1 ) 1 ( 1) (1 ) 1 ( 1) (1 )
, , ,

1 ( 1) ( 1)(1 )1 ( 1) ( 1)(1 ) 1 ( 1) ( 1)(1 )

( ) ( )
= ,

1 ( 1)(1 ) ( 1)( ) 1 )

,

( 1)(1 ) ( 1)(

PCFH A

z z z z

z z z z

s

W P P

ϑ ϑ
ϑ ϑ

− + +

− − + +

− +

− − + +

  + − − − + − − − + − − −
   + − + − −+ − + − − + − + − −  

+ − − + − + − − + −

   

   





  
    

 
   

š š
š š š

( )
, , .
1 ( 1)(1 ) ( 1)

( ) ( ) ( )
, ,
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Hence (2) is true for  = 1.
Let (2) be true for  = κ, then from 2, we have
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Thus (2) is true for ï = κ + 1. Thus through mathematical induction (2) is valid for all values of .  □

Sensitivity analysis

In this section, we show the sensitivity analysis with respect to the parameter ℶ. We have two cases for PCFHWA Opt with 
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Case 2: When ℶ = 2, the structure of PCFHWA Opt will obtain the form of PCF Einstein weighted averaging Opt.
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proved.     □

PCFHOWA Opt

Here, we have introduced PCFHOWA Opt and discuss its basic characteristics, i.e. monotonicity, boundedness, and idem-
potency properties.

Definition 6. Let ’ ’< , , > ( 1, ),P P PP c c c ï′ ′′= = …   
  be PCFVs in ∃. A PCFHOWA operator of dimension ï is a mapping 

PCFHOWA : Ωï → Ω, with the WV ϰ = (ϰ
1
, …, ϰ

ï
)T, with =1 = 1iΣ   and ϰ > 0, as

1 2 3 ( )
=1

( , , ,..., ) = ,
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where for all , 
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P Pσ σ−
≥

 
 and (σ

(1)
, σ

(2)
, …, σ

(ï)
) is a permutation of (1, 2, …, ï). Utilizing Hamacher operations on PCFNs, 

the below theorem is formed.

Theorem 2. Suppose ’ ’=< , , > ( 1, ),P P PP c c c ï′ ′′ = …   
  be PCFNs in ∃, then using the PCFHOWA operator, their aggre-

gated value is also a PCFN and is defined as follows:
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where the WV of P is ϰ = (ϰ
1
, …, ϰ

ï
) T, with 1 1ï

=Σ =   and ϰ ∈ [0, 1].

Sensitivity analysis

In this section, we show the sensitivity analysis with respect to the parameter ℶ. We have two cases for PCFHOWA Opt with 
respect to the change in the value of parameter ℶ.

Case 1: If ℶ = 1, then PCFHOWA Opt will obtain the form of picture cubic fuzzy Hamacher order weighted averaging 
(PCFOWA) Opt,
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Case 2: If ℶ = 2, then PCFHOWA Opt will obtain the form of PCF Einstein order weighted averaging Opt,
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Proposition 2. Let ’ ’=< , , >, ( 1, 2, , )P P PP c c c ï′ ′′ = …   
  be a group of PCFVs in G and the WV of P be ϰ = (ϰ

1
, ϰ

2
, …, ϰ

ï
)T, 

with =Σ = 1 1ï  and ϰ ∈ [0, 1], then the below characteristics are formed.
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Picture cubic fuzzy Hamacher hybrid averaging Opt

In this section, we present PCFHHA Opt and discuss its basic characteristics.

Definition 7. Let ’ ’< , , >, ( 1, 2, , )P P PP c c c ï′ ′′= = …   
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Here ï is the balancing coefficient, which maintains the balance especially when ċ = (1/
ï
, 1/

ï
, 1/

ï
, … 1/

ï
)T then PCFHWA and 

PCFHOWA AOPs are regarded as a special case of PCFHHA Opt.
Therefore, we obtain the below theorem that results from applying Hamacher operations to PCFVs.
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Theorem 3. Suppose ’ ’< , , > ( 1, ),P P PP c c c ï′ ′′= = …   
  be PCFNs in ∃, then their aggregated value using the PCFHHA 

operator is also a PCFN and is defined as follows:
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ϰ = (ϰ
1
, …, ϰ

ï
)T is the WV of P, ( = 1, 2, …, ï) with 1 1ï

=Σ =   and ϰ ∈ [0, 1].

Sensitivity analysis

In this section, we show the sensitivity analysis with respect to the parameter ℶ. We have two cases for PCFHHA Opt with 
respect to the change in the value of parameter ℶ.

Case 1: If ℶ = 1, then PCFHHA Opt will obtain the form of PCF hybrid averaging PCFHA Opt.
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Case 2: If ℶ = 2, then PCFHHA Opt will obtain the form of PCF Einstein hybrid averaging Opt:
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Proposition 3. Let ’ ’< , , >, ( 1, 2, , )P P PP c c c ï′ ′′= …=   
  be a group of PCFVs in G and ϰ = (ϰ

1
, ϰ

2
, …, ϰ

ï
)T be the WV of P, 

with ϰ ∈ [0, 1], and 1 1,ï
=Σ =   then the below characteristics are obtained.

Boundedness property: For every ϰ, where

, 1 2 3( , , , , ) ,w ïP PCFHHG P P P P P− +≤ … ≤

( ) ( ){ ( )}( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
min , max , max , max , min , min , max , min , min ,P z z c c eσ σ σ σ σ σ σ σ σϑ δ+ − + − + − +     =

     
 

     

   

        
š š

( ) ( ){ ( )}( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
min ,max= max ,min , min , min , max , max , , maxc cP z z eσ σσ σ σ σ σ σ σϑ δ − +− − + − +          

 

 
   

 

 

       
š š

Idempotency property: If all ’ ’< , , >, ( 1, 2, , )P P PP c c c ï′ ′′= = …   
  are equal, i.e., P > P, then

, 1 2 3( , , , , ) .w ïPCFHHA P P P P P… =

Monotonicity property: Let

( ) ( ) ( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , , , , ( 1, 2, , )P z z c c e ïσ σ σ σ σ σ σ σ σϑ δ

− + − + − +∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗     = = …          
 

     

   

        
š š

be a group of PCFVs, if
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− + − +− + ∗ ∗ ∗ ∗ ∗ − +      ≤ ≤ ≤          


       

   z z z z š š š š
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for all , then

, 1 2 3 1 2 3,
( , , , , ) ( , , , , ).w ï ïw

PCFHHA P P P P PCFHHA P P P P∗ ∗ ∗ ∗… ≤ … 

Theorem 4. The PCFHWA operator is a particular case of the PCFHHA operator.

Proof. Let ϰ = (1/ï, 1/ï, …, 1/ï)T, and 
( ) ( )

( = 1, 2, , ),P P ïσ σ= …

 
  then

, 1 2 3 1 2 3(1) (2) (3) ( )

1 2(1) (2) ( )

1 2

( , , , , ) , ,

, ,

= ( , , , ).

w ï i i

i i

ï

PCFHHA P P P P P P P P

P P P

PCFHOWA P P P

σ σ σ σ

σ σ σ

… = ⊗ ⊗ ⊗ … ⊗

= ⊗ ⊗ … ⊗

…









   





   

  

Hence proved the result. □

Theorem 5. The PCFHOWA operator is a particular instance of PCFHHA operator.

Proof. Let ϰ = (1/ï, 1/ï, …, 1/ï)T, then 
( ) ( )

( 1, 2, , ),P P ïσ σ= = …

 
  thus

, 1 2 3 1 2 3(1) (2) (3) ( )

1 2(1) (2) ( )

1 2

( , , , , ) , ,

= , ,

= ( , , , ).

w ï i i

i i

i

PCFHHA P P P P P P P P

P P P

PCFHOWA P P P

σ σ σ σ

σ σ σ

… = ⊗ ⊗ ⊗ … ⊗

⊗ ⊗ … ⊗

…











   





   

  

Thus proved. □

MCDM ALGORITHM FOR PICTURE CUBIC FUZZY AOPs

A novel approach is introduced in the context of picture cubic fuzzy averaging AOPs to evaluate MCGDM. In this method, 
the criteria are assigned real-number weights, and the criterion values are represented as PCFNs. Let ℝ = {ℝ

1
, ℝ

2
, …, ℝï} 

denote the set of discrete Altrs, and ℂ = {ℂ
1
, ℂ

2
, …, ℂ

m
} represent the criteria to be evaluated alongside their associated WV 

ϰ = (ϰ
1
, ϰ

2
, … ϰ

ï
)T with the end goal that ϰ ∈ [0, 1] and 1 1.ï

=Σ =   The DMs need to give information about ℝ, which 
satisfy the criteria also, those which do not satisfy the criteria Č too. The rating of Altrs ℝ on the basis of criteria Č, are 
given in the form of PCFNs i.e., ( )’ ’ ,: < , , > (  1, 2 ,  1, 2 , .),c c m ïc′ ′′∃ = … …= =

         Let the grade of ℝ satisfying 

the criteria Č be indicated by c c′  represents the neutral membership grade of the alternative ℝ and ’c′′


 represents the 

grade of Altrs ℝ not  satisfying the criteria Č, then [ , ], ,c z z ϑ− += 〈 〉      = [ , ],c δ− +′ 〈 〉š š      ’ [ , ],c c c e− +′′ = 〈 〉  

   

with the property that [ ][ , ] [0, 1], [ , ] [0, 1], : 0, 1z z ϑ− + − +⊂ ⊂ ∃ → š š      and [ ]: 0, 1 .δ ∃ →  Subject to 1,ϑ δ+ ≤   

sup[ , ] sup[ , ] 1.z z− + − ++ ≤  š š     Therefore, a PCF decision matrix D can show MCDM problem, and is presented as  follows: 

( )’ ’( ) < , , > .ï m
ï m

D c c c×
×

′ ′′= =
      Moreover, in this MCGDM way the following steps are stated:

Step 1: Form the decision matrix ( )’ ’= ( ) < , , >ï m
ï m

D c c c×
×

′ ′′=
   

  the criteria can be categorized into two classes: 

benefit criteria and cost criteria. There is no need of normalization if all the criteria are of the same type. However if D has 
both cost and benefit criteria, then by the underneath normalization formula, the cost-type criteria can be transformed into 
benefit-type criteria,

, for cost-type criteria
ˆ, , ,

, for benefit-type criteriac

d
S v t c

d


= 〈 〉 = 




   




ïD  is the complement of D, denotes the normalized decision matrix and is presented as follows:

ˆ( ) ( , , ) , ( 1, 2, , ; 1, 2, , ).ï
ï m ï mD s v t c ï m× ×= = 〈 〉 = … = …     
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Next, we will utilize the PCFHWA, PCFHOWA, and 
PCFHHA AOPs in MCDM, having the following steps:
Step 2: By discovering the PCFVs for ℝ use the proposed 
AOPs to gain the aggregated values of ℝ, while the criteria 
WV is ϰ = (ϰ

1
, ϰ

2
, …, ϰ

ï
)T.

Step 3: We discover the scores of the apparent multitude of 
values for the positioning of all the Altrs ℝ by using score 
function to choose the best ℝ.
Step 4: For choosing the best one, we give ranks to all the 
Altrs ℝ.

ALGORITHMS FOR DECISION- 
MAKING

In this section, we introduce two algorithms for decision- 
making, namely the TOPSIS method and the VIKOR method 
under the picture cubic fuzzy environment.

Extended TOPSIS method

In practice, the technique of TOPSIS depends on the notion 
that the best Altr out of the given Altrs will be that which is 
far from the NIS and close to the PIS. This strategy is founded 
on the idea of the level of optimality established in an Altr 
where various criteria represent the concept of the best Altr. 
The TOPSIS technique has been used in a variety of deci-
sion scenarios (Jahanshahloo et al., 2006; Li, 2010). This is 
as a result of (i) its computational viability, (ii) its importance 
for dealing with various viable decision-making issues and 
simplicity, and (iii) its ability to understand. By selecting the 
lowest value and maximum value, respectively, the NIS ð− 
and the PIS ð+ can be evaluated based on the aforementioned 
idea, for each service attribute, across all Altrs. The TOPSIS 
method can be computed on the below stated steps.

Step 1: Normalize ( )’ ’( ) < , , > ,ï m
ï m

D P c c c×
×

′ ′′= =
   

 

The criteria can often be classified into two groups: bene-

fit criteria and cost criteria. If all the criteria are the same 
type, the normalization step will not be carried out. But if D 
includes both cost criteria and benefit criteria, into the bene-
fit criteria the rating values of the cost criteria can be trans-
formed using the normalizing approach described below.

,for cost-type criteria
ˆ, , ,

, for benefit-type criteriac

d
s t c

d
µ


= 〈 〉 = 




   




ïD  is the complement of D, denotes the normalized deci-

sion matrix and is presented as follows:

( )× ×
= 〈 〉

= … = …

ˆ( ) = , , ,

( 1, 2, , ; 1, 2, , ).

ï
ï m ï m

D S t c

ï m

µ  

 

Step 2: Computing the NIS ð− and PIS ð+, that are stated as,

1 2 1 2( , , , ), ( , , , ),m m
+ + + + − − − −= … = …       

if there is maximizing type criteria, then

max{ /1 } and = min{ /1 },ïn n∨ ∨+ −= ≤ ≤ ≤ ≤   
     

where if the criteria are of minimizing type, then

min{ /1 } and max{ /1 },ïn n∨ ∨+ −= ≤ ≤ = ≤ ≤   
     

and which are assessed using the score function.
Step 3: For every Altr to ð− and ð+ calculate the distance with 
criteria WeV ϰ = (ϰ

1
, ϰ

2
, …, ϰ

m
).

( ) ( )2 2

1 1and .m mϑ ϑ− − + +
= == Σ − = Σ −          
     

Step 4: To the ideal solution, by using the structure below 
evaluate the closeness coefficients by each Altr,

= / ( ) ( 1, 2, 3, , ),cc nϑ ϑ ϑ ∨− − ++ = …    

obtain the overall closeness coefficients.
Step 5: After ranking the Altrs, we will select the best one 
using the score of PCFVs.

Extended VIKOR method

The VIKOR technique can simultaneously reduce individual 
regret and increase group utility, improving the decision’s out-
come. One of the effective MCDM techniques, on the basis 
of PCF information, is the VIKOR technique. The proposed 
strategy is based on the classical VIKOR technique’s decision 
principle. With this approach, the opponent receives the least 
amount of individual regret and the highest amount of collec-
tive benefit of the majority. Additionally, group benefit and 
personal sorrow can be adjusted by changing the coefficient 
of the decision mechanism according to actual requirement, 
which can boost the adaptability of decision-making.

The VIKOR technique entails the actions listed below.
Step 1: If all the criteria are of the same type then there is no 
need for normalization, otherwise normalize decision matrix.
Step 2: Computing the NIS ð− and PIS ð+, that are stated as 
follows:

1 2 1 2= ( , , , ), ( , , , ),m m
+ + + + − − − −… = …       

if we are given a maximizing type of criteria, then

= max{ /1 } and = min{ /1 },n n∨ ∨+ −≤ ≤ ≤ ≤    
     

if we are given a minimizing type of criteria, then

min{ /1 } and max{ /1 },n n∨ ∨+ −= ≤ ≤ = ≤ ≤   
     

that we obtain by using score function of PCFN.
Step 3: Calculate all , Ŏ, and R values which we can get 
by using the below equations.

( )
( )

( )
( )1

, ,
, max ,

,,

m

m
L R

ϑ ϑ

ϑϑ

∨

+ +

+ −+ − ≤ ≤=

= =∑
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and

(1 )( )( )
.

( )( )

v R Rv L L
O

R RL L

∨ ∨

∨ ∨

∗ ∗

− ∗ − ∗

− −−
= +

−−

  


Here R* = min R, R− = max R, * = min , and − = max .
Step 4: Determine the , R, and Ŏ values for each Altr and rank them in the decreasing order.
Step 5: Figure out a solution.

Numerical application

A mobility impairment is a condition that hinders one’s ability to move, impacting a wide spectrum of activities, from basic 
motor skills like walking to more intricate tasks involving the manipulation of objects with the hands.

Let us consider an MCDM example related to improving accessibility for the disabled people in a public park. The park 
management wants to choose the most suitable Altr among the following Altrs to improve the accessibility of the disabled 
people in the park.
ℝ

1
 Accessible restrooms

ℝ
2
 Tactile paving

ℝ
3
 Wheelchair ramps

ℝ
4
 Signage and wayfinding

The park management needs to decide which features to prioritize for enhancement based on multiple criteria. Here are 
the criteria:
Ĥ

1
: Aesthetics: The effect of the feature on the overall aesthetic and natural beauty of the park.

Ĥ
2
: Cost: The cost associated with implementing the feature.

Ĥ
3
: Safety: Effect of the feature on the safety of disabled people who visit the park.

Ĥ
4
: Community engagement: The input and support of local disability community which these features receive.

The park management can use these weights to make an informed decision on which feature to prioritize in their efforts 
to improve accessibility for people with disabilities in the park. For calculation convenience, we take the criteria WV based 
on the importance of each criterion w = (0.4, 0.3, 0.2, 0.1)T and the associated WV of the DMs as λ = (0.5, 0.3, 0.2)T based 
on the proposed method under PCFHVs as listed in Tables 1–3.

By PCFHWA Opt

Step 1: The DMs’ informations are given in Tables 1–3. We will not normalize the criteria as all the criteria are of the same 
benefit type.

Table 1: First decision maker’s data.

 Ĥ1  Ĥ2  Ĥ3  Ĥ4

ℝ1   
 
 
 
 

([.2, .4], .6),

([.1, .3], .2),

([.1, .2], .1)

  

  

  

  
 
 
 
 

([.2, .3], .1),

([.1, .4], .3),

([.1, .2], .5)

  

  

  

  
 
 
 
 

([.3, .4], .3),

([.2, .3], .1),

([.1, .2], .4)

  

  

  

  
 
 
 
 

([.4, .5], .2),

([.1, .2], .3),

([.2, .3], .4)

  

  

  

ℝ2   
 
 
 
 

([.1, .3], .3),

([.2, .4], .1),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.3, .4], .7),

([.1, .3], .1),

([.1, .2], .1)

  

  

  

  
 
 
 
 

([.1, .2], .3),

([.3, .4], .2),

([.2, .3], .4)

  

  

  

  
 
 
 
 

([.2, .3], .1),

([.1, .2], .6),

([.3, .4], .1)

  

  

  

ℝ3   
 
 
 
 

([.1, .4], .4),

([.2, .3], .1),

([.1, .2], .3)

  

  

  

  
 
 
 
 

([.2, .3], .4),

([.1, .2], .1),

([.3, .4], .2)

  

  

  

  
 
 
 
 

([.2, .3], .5),

([.1, .4], .1),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.2, .4], .4),

([.1, .3], .2),

([.1, .2], .1)

  

  

  

ℝ4   
 
 
 
 

([.1, .4], .3),

([.2, .3], .2),

([.1, .2], .1)

  

  

  

  
 
 
 
 

([.2, .3], .3),

([.1, .2], .2),

([.4, .5], .1)

  

  

  

  
 
 
 
 

([.1, .3], .4),

([.2, .3], .1),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.2, .4], .3),

([.1, .3], .2),

([.1, .2], .11)
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Let ℶ = 2, and taking ϰ = (.5, .3, .2,)T as WV, using PCFHWA Opt, we have aggregated the data in Tables 1–3, and pre-
sented the aggregated data in Table 4.

Table 2: Second decision maker’s data.

 Ĥ1  Ĥ2  Ĥ3  Ĥ4

ℝ1   
 
 
 
 

([.1, .3], .2),

([.3, .4], .3),

([.2, .3], .1)

  

  

  

  
 
 
 
 

([.1, .2], .2),

([.3, .4], .1),

([.2, .3], .3)

  

  

  

  
 
 
 
 

([.2, .3], .2),

([.1, .2], .1),

([.3, .4], .4)

  

  

  

  
 
 
 
 

([.3, .4], .2),

([.2, .3], .1),

([.1, .2], .3)

  

  

  

ℝ2   
 
 
 
 

([.2, .3], .1),

([.1, .4], .5),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.1, .5], .3),

([.2, .3], .1),

([.1, .2], .5)

  

  

  

  
 
 
 
 

([.2, .4], .3),

([.1, .2], .1),

([.2, .3], .2)

  

  

  

  
 
 
 
 

([.3, .5], .1),

([.1, .3], .5),

([.1, .2], .2)

  

  

  

ℝ3   
 
 
 
 

([.2, .3], .6),

([.1, .4], .1),

([.2, .3], .1)

  

  

  

  
 
 
 
 

([.1, .3], .2),

([.2, .4], .1),

([.1, .2], .6)

  

  

  

  
 
 
 
 

([.2, .3], .7),

([.1, .4], .1),

([.1, .2], .1)

  

  

  

  
 
 
 
 

([.1, .4], .1),

([.2, .3], .2),

([.1, .2], .6)

  

  

  

ℝ4   
 
 
 
 

([.4, .5], .3),

([.1, .2], .1),

([.2, .3], .2)

  

  

  

  
 
 
 
 

([.1, .3], .1),

([.2, .3], .2),

([.1, .3], .4)

  

  

  

  
 
 
 
 

([.2, .3], .3),

([.1, .4], .2),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.1, .4], .4),

([.1, .2], .1),

([.2, .3], .2)

  

  

  

Table 3: The third decision maker’s information.

 Ĥ1  Ĥ2  Ĥ3  Ĥ4

ℝ1   
 
 
 
 

([.1, .5], .1),

([.2, .3], .3),

([.1, .2], .4)

  

  

  

  
 
 
 
 

([.2, .3], .2),

([.1, .4], .5),

([.2, .3], .3)

  

  

  

  
 
 
 
 

([.1, .3], .3),

([.2, .4], .5),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.1, .2], .2),

([.2, .3], .3),

([.1, .3], .4)

  

  

  

ℝ2   
 
 
 
 

([.1, .3], .2),

([.2, .4], .5),

([.1, .2], .1)

  

  

  

  
 
 
 
 

([.1, .4], .1),

([.1, .2], .2),

([.2, .3], .3)

  

  

  

  
 
 
 
 

([.2, .3], .3),

([.1, .4], .1),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.3, .4], .2),

([.1, .2], .3),

([.3, .4], .1)

  

  

  

ℝ3   
 
 
 
 

([.2, .4], .3),

([.1, .2], .1),

([.2, .3], .5)

  

  

  

  
 
 
 
 

([.3, .5], .2),

([.1, .2], .5),

([.2, .3], .1)

  

  

  

  
 
 
 
 

([.1, .5], .4),

([.2, .3], .3),

([.1, .2], .2)

  

  

  

  
 
 
 
 

([.1, .4], .3),

([.2, .4], .1),

([.1, .2], .2)

  

  

  

ℝ4   
 
 
 
 

([.3, .5], .2),

([.1, .2], .1),

([.2, .3], .5)

  

  

  

  
 
 
 
 

([.2, .4], .1),

([.1, .2], .4),

([.2, .3], .3)

  

  

  

  
 
 
 
 

([.4, .5], .5),

([.1, .2], .1),

([.2, .3], .2)

  

  

  

  
 
 
 
 

([.1, .4], .7),

([.2, .3], .1),

([.1, .2], .1)

  

  

  

Table 4: The aggregated data by PCFHWA operator.

 Ĥ1  Ĥ2  Ĥ3  Ĥ4

ℝ1   
 
 
 
 

([.15, .39], .40),

([.14, .38], .32),

([.16, .33], .24)

  

  

  

  
 
 
 
 

([.17, .27], .15),

([.16, .27], .14),

([.14, .4], .24)

  

  

  

  
 
 
 
 

([.23, .35], .27),

([.21, .35], .27),

([.16, .28], .14)

  

  

  

  
 
 
 
 

([.31, .41], .2),

([.28, .39], .2),

([.14, .24], .22)

  

  

  

ℝ2   
 
 
 
 

([.13, .3], .22),

([.12, .3], .20),

([.16, .4], .23)

  

  

  

  
 
 
 
 

([.20, .43], .5),

([.17, .43], .39),

([.12, .28], .11)

  

  

  

  
 
 
 
 

([.15, .28], .3),

([.14, .27], .3),

([.17, .33], .14)

  

  

  

  
 
 
 
 

([.25, .38], .12),

([.24, .37], .11),

([.1, .23], .50)

  

  

  

ℝ3   
 
 
 
 

([.15, .37], .45),

([.14, .37], .43),

([.14, .30], .1)

  

  

  

  
 
 
 
 

([.19, .34], .30),

([.18, .33], .28),

([.12, .25], .14)

  

  

  

  
 
 
 
 

([.18, .34], .55),

([.17, .28], .28),

([.11, .38], .12)

  

  

  

  
 
 
 
 

([.15, .4], .29),

([.22, .33], .12),

([.14, .31], .17)

  

  

  

ℝ4   
 
 
 
 

([.23, .45], .28),

([.19, .45], .28),

([.14, .24], .14)

  

  

  

  
 
 
 
 

([.17, .32], .20),

([.16, .32], .17),

([.12, .23], .23)

  

  

  

  
 
 
 
 

([.19, .34], .39),

([.16, .33], .38),

([.14, .30], .12)

  

  

  

  
 
 
 
 

([.15, .4], .43),

([.14, .4], .39),

([.11, .27], .14)
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Step 2: Taking ℶ = 2, the aggregated data in Table 4 is again aggregated by using PCFHWA Opt with ϰ = (0.4, 0.3, 0.2, 
0.1)T as WV; we have the aggregated PCFNs for the Altrs ℝ

P
 (P = 1, …, 4).

ℝ1 .= (([.18, .34], .28), ([.16, .34], .24), ([.15, .33], .21))

ℝ2 .= (([.15, .34], .31), ([.15, .34], .27), ([.14, .33], .20))

ℝ3 .= (([.16, .34], .41), ([.16, .33], .32), ([.12, .30], .12))

ℝ4 .= (([.18, .38], .29), ([.17, .38], .28), ([.13, .25], .16))

Step 3: Using Definition (2), calculated the scores S(ℝ
P
) of ℝ

P
 (P = 1, …, 4) as given by;

ℝ ℝ ℝ ℝ1. 2. 3. 4.( ) = 0.28, ( ) = 0.29, ( ) = 0.40, ( ) = 0.38,S S S S

The PCFNs have been organized in descending order based on their scores, and the best Altr will be selected accordingly, 
as follows:

3 4 2 1= > >ℝ ℝ ℝ ℝ
By this ranking, we have found that wheelchair ramps are the best choice for park management. Therefore, the park man-

agement should build wheelchair ramps to improve the accessibility for disabled people.

By PCFHOWA Opt

Step 1: The aggregated information of all the DMs by PCFOWA Opt is given in Table 5.

Table 5: Aggregated data by PCFHOWA operator.

 Ĥ1  Ĥ2  Ĥ3  Ĥ4

ℝ1   
 
 
 
 

([.33, .34], .3),

([.17, .39], .3),

([.16, .32], .24)

  

  

  

  
 
 
 
 

([.13, .28], .17),

([.12, .27], .16),

([.12, .4], .31)

  

  

  

  
 
 
 
 

([.28, .33], .28),

([.16, .32], .27),

([.17, .32], .23)

  

  

  

  
 
 
 
 

([.29, .39], .2),

([.26, .37], .2),

([.16, .26], .14)

  

  

  

ℝ2   
 
 
 
 

([.23, .3], .19),

([.12, .3], .17),

([.16, .4], .37)

  

  

  

  
 
 
 
 

([.20, .33], .29),

([.17, .37], .24),

([.12, .27], .11)

  

  

  

  
 
 
 
 

([.18, .30], .3),

([.17, .32], .3),

([.12, .28], .11)

  

  

  

  
 
 
 
 

([.27, .42], .12),

([.26, .41], .11),

([.1, .14], .48)

  

  

  

ℝ3   
 
 
 
 

([.18, .37], .41),

([.17, .36], .39),

([.1, .26], .1)

  

  

  

  
 
 
 
 

([.23, .40], .26),

([.21, .34], .24),

([.11, .23], .23)

  

  

  

  
 
 
 
 

([.17, .36], .38),

([.16, .35], .45),

([.12, .36], .14)

  

  

  

  
 
 
 
 

([.15, .4], .31),

([.14, .2], .28),

([.14, .32], .16)

  

  

  

ℝ4   
 
 
 
 

([.23, .45], .28),

([.19, .44], .27),

([.14, .24], .14)

  

  

  

  
 
 
 
 

([.17, .35], .14),

([.16, .38], .12),

([.12, .22], .28)

  

  

  

  
 
 
 
 

([.28, .30], .42),

([.25, .39], .31),

([.11, .26], .2)

  

  

  

  
 
 
 
 

([.13, .4], .34),

([.12, .3], .49),

([.14, .27], .1)

  

  

  

Step 2: Taking ℶ = 2, using the data in Table 5, utilizing PCFHOWA Opt, with WV ϰ = (.3, .25, .2, .15, .1)T, we have the 
collective PCFNs for the Altrs ℝ

P
 (P = 1, …, 4), which are presented as follows:

ℝ1 .= (([0.28, 0.35], 0.27), ([0.19, 0.35], 0.24), ([0.15, 0.30], 0.20))

ℝ2 .= (([0.21, 0.37], 0.33), ([0.18, 0.35], 0.22), ([0.12, 0.26], 0.21))

ℝ3 .= (([0.18, 0.34], 0.44), ([0.17, 0.35], 0.42), ([0.11, 0.30], 0.14))

ℝ4 .= (([0.15, 0.30], 0.40), ([0.19, 0.40], 0.38), ([0.12, 0.25], 0.13))

Step 3: Calculated the scores S(ℝ
i
) of ℝ

i
 (i = 1, 2, 3, 4) by using Definition (2) as given by

1. 2. 3. 4.( ) = 0.34, ( ) = 0.35, ( ) = 0.46, ( ) = 0.44,S S S Sℝ ℝ ℝ ℝ

The PCFNs have been organized in descending order based on their scores, and the best Altr will be selected accordingly, 
as follows:

3. 4. 2. 1.> > >ℝ ℝ ℝ ℝ

By this ranking, we have found that wheelchair ramps are the best choice for park management. Therefore, the park man-
agement should build wheelchair ramps to improve the accessibility for disabled people.
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By PCFHHA Opt

Step 1: The DMs have given their decisions in Tables 1–3. Apply the formula,

([ , ], ), ([ , ], ), ([ , ], ) , ( 1, 2, , )ϑ δ− + − + − += = 〈 〉 = …
      

   P ïw P z z š š c c e ï            

to the information given in Tables 1–3, taking ϰ = (0.5, 0.3, 0.2)T as WV to be multiplied to Tables 1–3, respectively. Then 
aggregate that data, and the aggregated information by using PCFHHA Opt is given in Table 6, where ϰ = (0.4, 0.4, 0.2)T is 
the WV based on the varying significance or influence of all the DMs.

Table 6: Aggregated information by PCFHHA operator.

 Ĥ1  Ĥ2  Ĥ3  Ĥ4

ℝ1   
 
 
 
 

([.07, .39], .45),

([.19, .32], .25),

([.14, .23], .16)

  

  

  

  
 
 
 
 

([.08, .28], .14),

([.17, .39], .27),

([.16, .25], .41)

  

  

  

  
 
 
 
 

([.24, .35], .27),

([.19, .31], .23),

([.16, .25], .35)

  

  

  

  
 
 
 
 

([.33, .43], .20),

([.19, .29], .21),

([.14, .26], .36)

  

  

  

ℝ2   
 
 
 
 

([.20, .31], .18),

([.16, .39], .37),

([.11, .22], .32)

  

  

  

  
 
 
 
 

([.22, .45], .55),

([.14, .28], .13),

([.13, .22], .26)

  

  

  

  
 
 
 
 

([.17, .34], .31),

([.17, .31], .14),

([.19, .29], .28)

  

  

  

  
 
 
 
 

([.21, .44], .11),

([.11, .27], .48),

([.21, .31], .17)

  

  

  

ℝ3   
 
 
 
 

([.17, .36], .53),

([.14, .33], .11),

([.19, .29], .24)

  

  

  

  
 
 
 
 

([.18, .33], .25),

([.17, .29], .34),

([.26, .36], .26)

  

  

  

  
 
 
 
 

([.19, .34], .63),

([.14, .38], .16),

([.11, .22], .16)

  

  

  

  
 
 
 
 

([.11, .39], .31),

([.17, .33], .18),

([.11, .21], .24)

  

  

  

ℝ4   
 
 
 
 

([.23, .46], .30),

([.15, .25], .15),

([.16, .25], .22)

  

  

  

  
 
 
 
 

([.14, .32], .17),

([.17, .27], .25),

([.22, .38], .30)

  

  

  

  
 
 
 
 

([.19, .34], .37),

([.14, .33], .17),

([.14, .24], .22)

  

  

  

  
 
 
 
 

([.15, .39], .40),

([.15, .29], .16),

([.14, .23], .14)

  

  

  

Step 2: Applying the formula ([ , ], ), ([ , ], ), ([ , ], ) , ( 1, 2, , 5)P ïw P z z c c eϑ δ− + − + − += = 〈 〉 = … 
      

    š š              to the data present in 
Table 6, taking w = (0.2, 0.2, 0.3, 0.3)T as WV of ℝ

P
, the result of which is given in Table 7.

Table 7: Again weight multiplied to Table 6.

 Ĥ1  Ĥ2  Ĥ3  Ĥ4

ℝ1   
 
 
 
 

([.01, .08], .09),

([.4, .3], .2),

([.1, .3], .4)

  

  

  

  
 
 
 
 

([.01, .05], .02),

([.2, .4], .3),

([.3, .2], .4)

  

  

  

  
 
 
 
 

([.07, .1], .08),

([.4, .1], .3),

([.2, .3], .1)

  

  

  

  
 
 
 
 

([.1, .1], .06),

([.5, .2], .3),

([.1, .4], .2)

  

  

  

ℝ2   
 
 
 
 

([.04, .06], .03),

([.5, .1], .2),

([.1, .4], .3)

  

  

  

  
 
 
 
 

([.04, .09], .1),

([.3, .2], .1),

([.1, .4], .3)

  

  

  

  
 
 
 
 

([.05, .1], .09),

([.4, .3], .1),

([.3, .2], .1)

  

  

  

  
 
 
 
 

([.06, .1], .03),

([.4, .3], .2),

([.2, .1], .4)

  

  

  

ℝ3   
 
 
 
 

([.03, .07], .1),

([.4, .2], .1),

([.3, .1], .5)

  

  

  

  
 
 
 
 

([.03, .06], .05),

([.4, .3], .2),

([.1, .5], .2)

  

  

  

  
 
 
 
 

([.05, .1], .2),

([.4, .1], .2),

([.3, .2], .4)

  

  

  

  
 
 
 
 

([.03, .1], .09),

([.4, .3], .1),

([.1, .2], .3)

  

  

  

ℝ4   
 
 
 
 

([.04, .09], .06),

([.5, .3], .1),

([.1, .4], .3)

  

  

  

  
 
 
 
 

([.02, .06], .03),

([.4, .1], .2),

([.1, .3], .4)

  

  

  

  
 
 
 
 

([.05, .1], .1),

([.3, .1], .2),

([.4, .3], .2)

  

  

  

  
 
 
 
 

([.04, .1], .1),

([.3, .2], .4),

([.4, .1], .2)

  

  

  

Again utilizing the PCFHHA Opt, we get the collective PCFNs for the Altrs ℝ
P
 (i =1, 2, 3, 4) as given below, where ϰ = 

(0.4, 0.3, 0.2, 0.1)T is the criteria WV,

ℝ1 .= (([.03, .08], .06), ([.3, .2], .2), ([.3, .3], .2))

ℝ2 .= (([.04, .08], .06), ([.4, .2], .2), ([.3, .2], .4))

ℝ3 .= (([.4, .07], .10), ([.3, .2], .4), ([.2, .30], .2))

ℝ4 .= (([.03, .08], .06), ([.3, .3], .2), ([.2, .2], .3))

Step 3: Using Definition (2), calculate the scores S(P
P
) of P

P
(P = 1, …, 4) as follows:

1 2 3 4( ) 0.023, ( ) = 0.026, ( ) = 0.260, ( ) = 0.090,S S S S=ℝ ℝ ℝ ℝ
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Step 4: The PCFNs have been organized in descending order based on their scores, and the best Altr will be selected accord-
ingly, as follows:

3 4 2 1> > >ℝ ℝ ℝ ℝ

It becomes evident from the comparative analysis and the ranking of Altrs based on their score values that ℝ
3
 exhibits a 

notably higher score. This outcome is further illustrated in Table 8 and Figure 1.
By this ranking, we have found that wheelchair ramps are the best choice for park management. Therefore, the park man-

agement should build wheelchair ramps to improve the accessibility for disabled people.

Figure 1: Ranking of the alternatives.

Table 8: Comparative study and ranking of the alternatives.

Operators  S(ℝ1)  S(ℝ2)  S(ℝ3)  S(ℝ4)  Ranking
PCFHWA  0.28  0.29  0.40  0.38  ℝ3 > ℝ4 > ℝ2 > ℝ1

PCFHOWA  0.34  0.35  0.46  0.44  ℝ3 > ℝ4 > ℝ2 > ℝ1

PCFHHA  0.02  0.02  0.26  0.09  ℝ3 > ℝ4 > ℝ2 > ℝ1

By the TOPSIS method

Step 1: In Table 4, data will not be normalized because all the criteria are of the same type, i.e. benefit type.
Step 2: Calculate the NIS ð− and PIS ð+, by utilizing the formula stated below

1 2 1 2( , , , ), ( , , , ),m m
− − − − + + + += … = …       

where

{ } { }max /1 4 , min /1 4 ,+ −= ≤ ≤ = ≤ ≤    
     

which are evaluated by using score function of PCFNs.
Step 3: Evaluate the distance for each Altr, to + and − by utilizing the proposed distance measures with criteria WeV  
ϰ = (ϰ

1
, ϰ

2
, …, ϰ

m
) = (0.4, 0.3, 0.2, 0.1)T, i.e.

( ) ( )2 2

1 1= and .m mϑ ϑ− − + +
= =Σ − = Σ −          
     

Step 4: By using the structure proposed below, by each Altr to the ideal solution calculate the closeness coefficients

/ ( )( 1, 2, 3, , 4),cc ϑ ϑ ϑ− − += + = …    

to get overall closeness coefficients.
Step 5: Utilize the PCFNs’ score function to rank the Altrs. Ranking is provided as follows:

3 4 1 4> > >ℝ ℝ ℝ ℝ
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In Table 9, ranking of all Altrs is given. ℝ
3
 having the largest closeness coefficient is the best one.

By the VIKOR method

By using the VIKOR method we address the numerical issues. ϰ = (0.4, 0.3, 0.2, 0.1)T as the criteria WeV the VIKOR method 
has the following steps:
Step 1: For data presented in Tables 1–3, all the criteria is of the benefit type so no need to normalize the data.
Step 2: By the below stated formula, evaluate the ð+ and ð−.

+ + + + + − − − − −= … = …         1 2 3 4 1 2 3 4( , , , , ), ( , , , , )

where { }max /1 4+ = ≤ ≤ 
    and { }min /1 4 ,− = ≤ ≤ 

    which are assessed by score function of PCFNs.

Step 3: By utilizing the below stated formulae, compute all Ŏ, R, and  values

( )
( )

( )
( )1

, ,
, max ,

, ,

m

m
L R

ϑ ϑ

ϑ ϑ

∨

+ +

+ − + −≤ ≤=

= =∑
      

      

     

   

and

(1 )( )( )
.

( )( )

v R Rv L L
O

R RL L

∨ ∨

∨ ∨

∗ ∗

− ∗ − ∗

− −−
= +

−−






Suppose v = 0.5, then Table 10 presents the results. Also

0.633, 1.054, 0.260, 0.534.L L R R
∨ ∨∗ − ∗ −= = = =

Step 4: By assembling all the values of , R, and Ŏ, in a decreasing order, rank the Altrs. The ranking of the values of 
Ŏ is as follows:

4 1 2 3> > > .O O O O
   

Step 5: It is clear from the ranking result that Ŏ
3
 is the best choice. By measure the minimum value Ŏ

3
, is the compromise 

solution.

Table 9: Ranking of the Altrs.

Altrs  Distance for 
Altr to +



 Distance for 
Altr to 

−
 The closeness coefficients of Altrs 

(cc) to the ideal solution
 Ranking

ℝ1  0.016  0.018  0.534  4

ℝ2  0.009  0.012  0.567  3

ℝ3  0.013  0.029  0.683  1

ℝ4  0.0123  0.2096  0.641  2

Abbreviation: Altr, alternative.

Table 10: Ranking of the Altrs.

Altrs    R  Ŏ  Rank

ℝ1  0.749  0.490  0.919  4

ℝ2  0.824  0.371  0.772  3

ℝ3  0.357  0.230  0  1

ℝ4  0.823  0.3  0.633  2

Abbreviation: Altr, alternative.

In Table 10, all the Altr ranking is ℝ
3
 > ℝ

4
 > ℝ

2
 > ℝ

1
. Thus, ℝ

3
 is the best one.

SENSITIVITY ANALYSIS

In the VIKOR method, the basic to the ranking results is v, the decision-making coefficient. Consequently, in these MCGDM 
algorithms the sensitivity analysis is carried out to assess the stability of our suggested method. For each v at 0.1 intervals 
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from 0 to 1, we compute the comparing compromise solution in order to assess the effect of various v on the ranking result. 
Table 11 demonstrates the sensitivity analysis for choosing a greenhouse location. For each and every tested value of v we 
get one ranking result, given below:

3 2 1 4> > >ℝ ℝ ℝ ℝ

It is clear that ℝ
3
 is the optimal solution. The sensitivity analysis is presented in Table 11.

Table 12: Comparison analysis.

Operators  S(ℝ1)  S(ℝ2)  S(ℝ3)  S(ℝ)  Ranking
PCFHWA  0.28  0.29  0.040  0.38  ℝ3 > ℝ4 > ℝ2 > ℝ1

PCFHOWA  0.34  0.35  0.46  0.44  ℝ3 > ℝ4 > ℝ2 > ℝ1

PCFHHA  0.02  0.02  0.26  0.09  ℝ3 > ℝ4 > ℝ2 > ℝ1

TOPSIS method      ℝ3 > ℝ4 > ℝ2 > ℝ1

VIKOR method      ℝ3 > ℝ4 > ℝ2 > ℝ1

PCFWA (Khoshaim et al., 2021)  0.085  0.074  0.085  0.084  ℝ3 = ℝ1 > ℝ4 > ℝ2

PCFOWA (Khoshaim et al., 2021)  0.101  0.081  0.105  0.055  ℝ3 > ℝ1 > ℝ2 > ℝ4

PCFHA (Khoshaim et al., 2021)  0.083  0.062  0.083  0.061  ℝ3 = ℝ1 > ℝ2 > ℝ4

PCFWG (Khoshaim et al., 2021)  0.105  0.081  0.105  0.055  ℝ3 = ℝ1 > ℝ2 > ℝ4

PCFOWG (Khoshaim et al., 2021)  0.081  0.062  0.083  0.061  ℝ3 > ℝ1 > ℝ2 > ℝ4

PCFHG (Khoshaim et al., 2021)  0.086  0.083  0.085  0.083  ℝ1 > ℝ3 > ℝ4 = ℝ2

Abbreviations: PCFHG, picture cubic fuzzy hybrid geometric; PCFOWA, picture cubic fuzzy Hamacher order weighted averaging; PCFOWG, 
picture cubic fuzzy order weighted geometric; PCFWA, picture cubic fuzzy Hamacher weighted averaging; PCFWG, picture cubic fuzzy 
weighted geometric; TOPSIS, technique for order preference by similarity to ideal solution; VIKOR, VlseKriterijumska Optimizacija I Kompro-
misno Resenje.

Table 11: Sensitivity analysis.

V  Ŏ1  Ŏ2  Ŏ3  Ŏ4  Ranking

0.1  0.984  0.589  0  0.342  ℝ3 > ℝ4 > ℝ2 > ℝ1

0.2  0.968  0.634  0  0.415  ℝ3 > ℝ4 > ℝ2 > ℝ1

0.3  0.952  0.680  0  0.488  ℝ3 > ℝ4 > ℝ2 > ℝ1

0.4  0.936  0.726  0  0.561  ℝ3 > ℝ4 > ℝ2 > ℝ1

0.5  0.919  0.772  0  0.633  ℝ3 > ℝ4 > ℝ2 > ℝ1

0.6  0.903  0.817  0  0.706  ℝ3 > ℝ4 > ℝ2 > ℝ1

0.7  0.887  0.863  0  0.779  ℝ3 > ℝ4 > ℝ2 > ℝ1

0.8  0.871  0.909  0  0.852  ℝ3 > ℝ4 > ℝ1 > ℝ2

0.9  0.855  0.954  0  0.925  ℝ3 > ℝ1 > ℝ4 > ℝ2

1  0.839  1  0  0.908  ℝ3 > ℝ1 > ℝ4 > ℝ2

Thus, to improve the accessibility for disabled people all the methods have been successfully applied.

COMPARISON ANALYSIS

In this section, our recommended advance fuzzy AOPs are compared with previous AOPs. We resolved our developed prob-
lem in the Numerical Application section by applying the proposed strategy presented by Khoshaim et al. (2021). Utilizing 
the criteria WV ϰ = (.4, .3, .2, .1)T and all the steps of the Khoshaim et al.’s (2021) technique, we arrived at the following 
ranking. In Table 12, the comparison of our proposed three strategies with the existing strategies in Khoshaim et al. (2021) is 
stated. The ranking of our proposed methods and the technique presented in Khoshaim et al. (2021) are similar.

This observation underscores the limited capabilities of the existing AOPs. In contrast, the employment of PCF Hamacher 
averaging AOPs yields more precise outcomes, as they do not possess such restrictions. The consistency of the proposed 
approaches is checked by leading a comparative examination with the existing AOPs. The PCFS, in the context of deci-
sion-making, plays a crucial role in managing vagueness and uncertainty by expressing the cubic and picture fuzzy informa-
tion simultaneously. The PCF models are proficient in practices and more accommodating in taking care of true issues when 
contrasted with other existing fuzzy models.
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CONCLUSION

Generally, engaging with nature and nature-related activ-
ities can promote the health of individuals with mobility 
impairments. These benefits encompass physical health, 
mental well-being, and social interaction. However, obsta-
cles frequently hinder the access to nature for people facing 
mobility impairments. In this article, we have presented an 
MCDM example related to improving accessibility for disa-
bled people in a public park. Since AOPs play a crucial role in 
decision-making, we established aggregation techniques for 
PCFNs and established a series of AOPs, such as PCFHOWA 
Opt, PCFWA Opt, and PCFHHA Opt. We discussed some 
essential properties like boundary, monotonicity, and idempo-
tency and researched the connections among these developed 
AOPs. We developed a MAGDM model dependent on the 
proposed AOPs. The Hamacher AOPs are extended to PCFNs, 
and an exhaustive conversation is introduced to dissect the sig-
nificant outcomes and predominant properties of the proposed 
AOPs. The TOPSIS and VIKOR techniques are extended for 
PCFNs. We have conducted a comparison analysis between 
the existing AOPs and our proposed AOPs, to demonstrate the 
credibility, utility, and efficiency of our innovative approaches. 
Our novel approach in group decision-making stands out from 
previous methods because it incorporates PCF information, 
thereby preventing any information gaps within the process. 
Consequently, it proves to be an effective and viable solution 
for real-world decision-making applications.
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