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Abstract

The development of Alzheimer’s disease (AD) is closely associated with the integrity and function of the perivascular 
space (PVS). The PVS has essential roles in transporting cerebrospinal fluid and exchanging intracellular substances 
necessary to clear metabolic waste from the brain. An enlarged PVS (ePVS) is now acknowledged as a major factor 
in AD development, thus indicating a complex interplay with other pathogenic factors. Herein, we present a 
detailed examination of the imaging features of PVS, as depicted by various MRI modalities, highlighting how 
these techniques have advanced understanding of AD pathogenesis. Furthermore, we critically assess the strengths 
and limitations of these imaging approaches and discuss prospective enhancements that may provide refined 
insights. Further understanding of the PVS may reveal new diagnostic biomarkers and inform targeted therapeutic 
approaches, thus improving clinical management for patients with AD.
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1. INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neuro­
degenerative disorder and the primary cause of dementia 
in older people [1]. As the global population continues to 
age, it is anticipated that the prevalence of AD will con­
tinue to rise, resulting in a considerable social and eco­
nomic burden [2]. A leading hypothesis in AD pathogen­
esis is an imbalance in the production and clearance of  
β-amyloid (Aβ) and tau proteins [3, 4]. Perivascular 
spaces (PVSs) surround the blood vessels in the brain and 
are involved in clearing waste products from the brain 
[5]. Magnetic resonance imaging (MRI), distinguished by 
its high spatial resolution, ability to perform multicon­
trast imaging, and noninvasive nature, is an invaluable 
tool for the detailed and comprehensive evaluation of 
the perivascular interstitial PVS. Previous studies have 
demonstrated higher frequency and severity of PVS 
abnormalities in people with AD than in controls with­
out dementia [6, 7]. Moreover, one study has shown that 
hypertension disrupts the perivascular pump and mark­
edly slows the transport of cerebrospinal fluid (CSF) in 
the PVS, whereas arterial hypertension promotes the 
accumulation and aggregation of Aβ; therefore, hyper­
tension-induced decreases in PVS fluid transport may 
directly contribute to the association between arterial 

hypertension and AD [8]. In addition, some studies have 
reported that an increased PVS volume is also positively 
associated with sleep disturbance. For example, in aging 
populations, sleep disturbance during non-rapid eye 
movement is associated with Aβ and tau protein aggre­
gation, and sleep disturbance in normal older adults 
increases AD risk [9]. The intricate relationships between 
PVS burden and the levels of hypertension and sleep­
ing disorder underscore the potential effects of PVS on 
AD pathogenesis and suggest potential directions for 
future research [8–10]. From a clinical medicine perspec­
tive, greater understanding of the clinical significance 
of PVS in AD is necessary, including how PVS enlarges, 
at what stage of AD the enlargement occurs, what the 
consequences are, and to what extent PVS visible on 
MRI suggests AD risk. Recognizing these factors will be 
critical to enable clinicians to intervene effectively and 
potentially mitigate the onset and advancement of AD.

This review emphasizes novel MRI techniques that 
offer quantitative and functional insights into the PVS 
in the context of AD. These methods allow for observa­
tion of PVS alterations throughout AD progression and 
offer a window into the pathogenic processes at play. 
Integrating these imaging strategies with clinical evalu­
ations can enhance understanding of AD, and improve 
patient outcomes through early detection and targeted 
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therapeutic interventions. In conclusion, exploration of 
the PVS through advanced neuroimaging techniques is 
a promising frontier in AD research. A deeper under­
standing of PVS dynamics and clinical implications has 
the potential to drive the development of new ther­
apeutic strategies to alleviate AD burden, and offers 
hope for improved outcomes for patients with this dev­
astating condition.

2. RELEVANCE OF EPVS TO AD PATHOLOGY

The PV, a fluid-filled area surrounding cerebral blood 
vessels, including the periaortic, pericapillary, and 
perivenous spaces [5, 11], is a normal anatomical struc­
ture of the central nervous system. The PVS is formed 
by the endothelial basement membrane on the inner 
side of the blood vessels, and by the compacted astro­
cyte end-foot processes and overlying parenchymal 
basement membrane on the outer side [12, 13]. This 

structure plays crucial roles in regulating waste clear­
ance and maintaining proper functioning of the brain.

Unlike the peripheral vascular system, the brain does 
not possess a conventional lymphatic drainage system. 
However, a recently discovered glymphatic system has 
been identified to use the PVS as a pathway for removal 
of toxic waste from the brain’s interstitium. This glym­
phatic system has a crucial role in maintaining the 
brain’s waste clearance process and overall homeosta­
sis [14]. The glymphatic hypothesis proposes that CSF 
enters the brain through para-arterial spaces and then 
mixes with interstitial fluid (ISF) within the parenchyma, 
in a manner involving aquaporin-4 (AQP4) channels. 
The waste-containing fluid then exits the brain along 
para-venous spaces surrounding venules and veins. This 
glymphatic system provides a mechanism for waste 
clearance and the removal of toxic substances from the 
brain’s interstitial space (Figure 1) [13–15]. AQP4 chan­
nels, situated on the astrocytic end-feet, are selective 

Figure 1  |  Relationship of perivascular spaces (PVS) to the whole brain.
(a) Structurally labeled whole brain with demarcations of specific regions (dashed lines). (b) Pia artery within the subarachnoid space (SAS) that 
penetrates the deeper brain structures in a perpendicular manner, with adjacent PVS with blue coloration (B1) and horizontally–diagonally (B2), 
wherein the PVS allow for the influx (black arrow) of cerebrospinal fluid (CSF) to the parenchymal interstitial fluid space (ISF) via the arteriolar 
PVS. Panel (B3) depicts the efflux (blue arrow) of the interstitial fluid metabolic waste material (WM) of the pial venular PVS to the pial vein 
PVS, by entering the subarachnoid space and eventually draining into the dural venous sinus space. Reproduced under the Creative Commons 
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) [13].
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for water and facilitate the transfer of ISF within the 
PVS to the neuronal ISF, thus enabling the integration 
of CSF with ISF [16, 17]. Tracer studies and two-pho­
ton microscopy imaging have revealed that mice lack­
ing AQP4 channels, in contrast to mice with functional 
AQP4 channels, demonstrate a significant 70% decrease 
in the clearance of ISF through paravascular drainage 
pathways [18]. This finding underscores the critical role 
of AQP4 channels in facilitating the glymphatic system’s 
clearance of metabolic waste from the brain.

The PVS is considered an important node of the glym­
phatic system, by acting as a channel for transporting 
various signaling molecules and functioning as a neuro­
toxic waste disposal system that contributes to regulat­
ing the balance of fluid circulation within the brain [19]. 
Dilation of the PVS can indicate hindered outward flow 
of fluids along the arterioles that the PVS surrounds, 
thus disrupting the normal circulation of fluids within 
the brain. This disturbance can affect the brain’s ability 
to clear waste, and potentially overall brain health and 
function [20]. Consequently, inefficient removal of met­
abolic waste from the brain leads to the accumulation 
of proteins and other waste that can damage brain tis­
sue [14, 21].

The PVS exhibits a unique histological signature aris­
ing from the intricate nature of adjacent tissue struc­
tures. However, it is only at a size that can be resolved 
by MRI technology that these structures become dis­
cernible on imaging, thus allowing for their differ­
entiation [5, 22]. There is a clear correlation between 
the in vivo burden of MRI-visible PVS and the severity 
of histopathologically observed enlarged PVS (ePVS) 
in corresponding anatomical locations [20, 23]. The 
presence of ePVS has recently emerged as a proxy for 
glymphatic dysfunction and a contributing factor to 
AD [24].

The precise pathophysiological mechanisms underly­
ing the enlargement of PVS and its role in the AD dis­
ease process have not been fully elucidated. Genetic, 
pathologic, and biomarker findings have shown that Aβ 
deposition is the crucial early impetus for AD [25, 26]. 
Aβ deposition characteristically occurs within the walls 
of cortical and leptomeningeal blood vessels, thus com­
promising the role of the PVS in clearing brain waste. 
Impaired perivascular clearance may delay the transport 
of brain wastes, including Aβ and tau, and further facil­
itate their attachment to and deposition in the corre­
sponding basement membranes, thereby destroying 
perivascular clearance dysfunction in a vicious cycle, and 
leading to more severe brain damage and more pro­
nounced cognitive dysfunction [3, 27–29]. Charidimou 
et al. have investigated the relationship between over­
all PVS burden and cortical retention of 11C-Pittsburgh 
compound B (PiB) positron emission tomography (PET, a 
radioligand that binds parenchymal and vascular fibrillar 
Aβ deposits), and have found that ePVS severity partly 
reflects the level of Aβ accumulation in the cerebral 
vasculature. This association may suggest that drainage 

impairment by progressive vascular Aβ deposition causes 
retrograde perivascular space dilation in the white mat­
ter [30]. That is, accumulation of vascular Aβ in cortical 
vessels leads to impaired clearance along these vessels, 
and consequently to fluid stagnation and PVS enlarge­
ment along associated perivascular compartments in the 
white matter of the same vessels [20]. In contrast, Aβ 
accumulation in the vascular basement membrane can 
lead to breakdown of the blood-brain barrier (BBB) [31], 
owing to the degeneration of endothelial cells and per­
icytes, as well as the loss of tight junctions [32, 33]. BBB 
leakage results in increased vascular permeability and 
allows influx of neurotoxic blood-derived substances 
into the brain, thereby promoting excess fluid accumu­
lation in the PVS [13, 34, 35]. These findings suggest that 
early BBB malfunction may be indicated by ePVS, along 
with abnormal interstitial fluid dynamics.

Individuals with AD frequently show mixed patholo­
gies [36]. Other etiological factors occurring before Aβ 
deposition causes irreversible damage have also received 
substantial attention. Vascular dysfunction is integral to 
AD etiology and pathophysiology [37]. In autopsies of 
individuals with dementia, AD pathology and cerebrovas­
cular lesions are frequently found to coexist [38]. Several 
studies using diverse biomarkers (e.g., BBB integrity, cer­
ebrovascular reactivity, resting cerebrovascular flow, and 
increased cerebrovascular resistance) have indicated that 
cerebrovascular deterioration occurs in early stages of 
AD progression [39]. Cerebral small vessel disease (CSVD) 
causes catastrophic damage involving small blood vessels 
throughout the brain [40], as well as cognitive impair­
ment, and frequently co-exists with AD in older people. 
Both conditions are associated with several common vas­
cular risk factors, including hypertension, hyperlipidemia, 
and diabetes [41, 42]. Moreover, the vascular alterations 
associated with CSVD can decrease cerebral blood flow, 
hypoxia, and inflammation, thereby exacerbating the 
neurodegenerative processes characteristic of AD [41]. 
ePVS is a key pathological feature of CSVD, as shown on 
MRI from patients with sporadic CSVD, and is associated 
with other CSVD features, including white matter hyper­
intensities, lacunes, and microbleeds [40]. Arteriole or 
venule stiffening associated with decreased vascular pul­
satility leads to diminished fluid flow within the PVS, thus 
contributing to enlargement. In essence, ePVS may serve 
as a visible sign of the vascular and clearance dysfunc­
tion contributing to both CSVD and AD [43]. ePVS, CSVD, 
and AD are linked through their effects on cerebral blood 
flow, CSF clearance, and neuroinflammation. Further 
research is required to elucidate the effects of cSVD ame­
lioration on the onset and progression of AD. Vascular 
changes can be prevented and regulated through life­
style modifications and the use of medication [41].

Other common features of AD include synaptic dys­
function, such as synaptic damage, loss, and structural 
changes in the synapse, as well as demyelination, the 
loss of the protective myelin sheath surrounding nerve 
fibers in the brain. Dilatation of the PVS is a secondary 
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consequence of tissue loss surrounding the perivascular 
compartment [44]. The presence of ePVS, owing to loss 
of cortical integration and structural disconnection of 
white matter cortical tracts, can disrupt the integrity of 
the white matter brain network and normal cognitive 
function. Moreover, immunocytochemical research has 
verified that the PVS contains dispersed cells expressing 
CD45, which are crucial for initiating neuroinflamma­
tion and immune monitoring [45–47]. The discovery of 
specific genes associated with innate immune responses 
that elevate AD risk, along with elevated inflammatory 
markers in individuals with AD, indicates a substan­
tial role of neuroinflammation in AD progression [48]. 
Whether ePVS is a driver or a consequence of neuroin­
flammation remains unclear. One study has suggested 
that PVS dilation might represent an initial congrega­
tion of immune cells that potentially precedes the for­
mation of neuroinflammatory lesions [49].

The cognitive and motor decline in AD correlates with 
various factors influencing PVS dynamics [50, 51]. The 
emergence of ePVS is clearly multifactorial; however, 
without longitudinal studies, the temporal progression 
of these factors cannot be defined. To untangle these 
complex interactions and advance understanding of 
AD pathology, novel neuroimaging techniques that 
can accurately visualize PVS are critical. Such methods 
are expected to shed light on the mechanisms of brain 
waste clearance and metabolite accumulation, thereby 
paving the way to targeted therapeutic strategies in AD 
management.

3. MRI METHODS TO VISUALIZE THE PVS

3.1 PVS structure
The PVS, visible within the brain’s parenchyma on 
MRI, aligns with penetrating cerebral arterioles, which 
extend orthogonally from the brain’s surface [52]. On 
imaging, PVS is isointense with the CSF, appearing lin­
ear alongside the trajectory of perforating vessels and 
round when captured perpendicularly to vessels [53, 
54]. These spaces are observed predominantly in the 
centrum semiovale (CSO), basal ganglia (BG), midbrain, 
and hippocampus [5, 55]. Currently, controversy per­
sists regarding the diagnostic criteria for EPVS, and no 
consensus has been reached. Wardlaw and colleagues, 
adhering to the STandards for ReportIng Vascular 
changes on Neuroimaging (STRIVE) criteria, have clas­
sified lesions 3 mm in diameter or smaller as PVS, and 
have prioritized lesion prevalence and distribution 
rather than size [54].

3.1.1 Visual rating scales.  Visual rating scales are widely 
used in research and clinical practice for evaluating 
ePVS severity on MRI [56–58]. These scales, such as that 
developed by Wardlaw, provide a systematic approach 
to quantifying the burden of PVS within specific brain 
regions such as the CSO, BG, and midbrain [59]. Use of 
Wardlaw’s scale is straightforward: a rater examines an 

MRI image, selects a typical axial slice for each brain 
region of interest, and applies the grading criteria. The 
ePVSs are then counted and assigned a score based on 
predefined categories: a score of 0 indicates no visible 
PVSs; 1 indicates 1–10 visible PVSs; 2 indicates 11–20 vis­
ible PVS; 3 indicates 21–40 visible PVS; and 4 indicates 
more than 40 PVSs (Figure 2). This scale facilitates com­
parison across studies and participants by providing a 
consistent metric for quantifying and reporting the 
presence of PVSs. The strength of this grading scale is 
its reproducibility, allowing different graders to achieve 
similar results independently. This aspect is particularly 
important in large-scale studies or multi-site collabora­
tions in which consistency in data interpretation is key. 
By assigning numerical values to the observed PVS, these 
scales also allow for statistical analysis of the relation­
ship between PVS severity and various clinical outcomes 
or other neuroimaging findings.

Patients diagnosed with AD exhibit a greater degree 
of PVS than control individuals, particularly in the CSO 
and hippocampus [7, 61, 62]. Moreover, a longitudi­
nal study has shown that higher severity of MRI-visible 
perivascular spaces, particularly those within the CSO, 
when assessed via a visual rating scale, correlates with 
elevated risk of cognitive deterioration and the devel­
opment of dementia in community-living older adults 
[63]. CSO-PVS is associated with AD pathological bio­
markers and with genetic predisposition to AD [20, 62, 
64, 65]. These studies underscore the value of ePVS eval­
uation as a diagnostic and prognostic tool in AD.

The relationship between genetic factors and PVS is 
an area of substantial interest, because it could provide 
valuable information for understanding the pathol­
ogy of various neurological conditions, including AD. 
The apolipoprotein E (APOE) ε4 allele is recognized as 
the primary genetic factor influencing AD risk [66]. In 
a notable postmortem study, individuals carrying two 
copies of the APOE-ε4 allele exhibited a greater PVS 
extent than those with either one or no copies of the 
allele [6]. Another study reported in 2022, in 3,564 indi­
viduals including 836 APOE-ε4 carriers, has corroborated 
the link between the APOE-ε4 allele and elevated inci­
dence of ePVS, particularly within the CSO and the com­
bined CSO and BG regions in MRI scans, thus challenging 
the conclusions drawn from earlier studies with smaller 
cohorts [67].

Indeed, the visual assessment of PVS has several lim­
itations that can affect the accuracy and utility of the 
data obtained. For example, visual rating scales typi­
cally provide semi-quantitative data, such as counts or 
categorical ratings, which can be less informative than 
volumetric measurements. Without information on PVS 
volume, the true extent of perivascular pathology and 
its potential effects on brain function are difficult to 
gauge. In addition, the instruction for raters to use the 
hemisphere with the higher PVS count when a signifi­
cant discrepancy exists could lead to critical information 
regarding the distribution and asymmetry of PVS being 



Review

Radiology 
Science

54      Radiology Science 2024, Volume 3, Issue 1, p. 50-62 
© 2024 The Authors. Attribution-NonCommercial-NoDerivatives 4.0 International

overlooked. This aspect might be particularly relevant 
if the glymphatic system dysfunction has regional char­
acteristics or is associated with specific morphological 
changes [68]. Moreover, longitudinal studies, which 
track changes over time, are hampered by potential 
detection bias arising from variability in how differ­
ent investigators, or the same investigator at different 
times, might perceive and count PVSs. Investigators’ skill 
and experience level can significantly influence the con­
sistency and reliability of PVS detection across multiple 
time points [69]. These limitations highlight the need 
for more objective and quantifiable methods for eval­
uating PVS.

3.1.2 Automated segmentation of PVS.  Automatic seg­
mentation algorithms significantly enhance the analysis 
of PVS by providing a detailed, objective, and reproduc­
ible approach to measuring and characterizing these 
structures in MRI studies. They eliminate the subjective 
bias and variability associated with manual labeling, and 
facilitate nuanced investigation of PVS characteristics 
[70]. By automatically quantifying the severity, volume, 
and morphological attributes including length, width, 
sphericity, and orientation, these algorithms enable a 

sophisticated and detailed evaluation of PVS. Two main 
classifications of these algorithms exist: classical image 
processing techniques that use predefined rules to iden­
tify PVS, and machine learning algorithms that learn to 
recognize PVS patterns from large datasets, often with 
enhanced accuracy [71].

In classical approaches, PVSs were segmented with 
intensity-based thresholding approaches or vesselness 
filter approaches [72]. The number of PVSs and their 
morphological characteristics, such as PVS volume and 
mean cross-sectional diameter, were quantified. These 
measures provided by automatic segmentation algo­
rithms have been proposed and demonstrated to cor­
relate well with visual rating scales, thereby offering 
a more precise and reliable assessment of PVS on MRI 
studies [72–74]. For example, Kamagata et al. have used 
an automated tool to calculate the volume fraction of 
PVS known as PVSVF [61]. Their findings suggest that a 
higher PVSVF is associated with patients with MCI and 
AD than healthy controls, particularly within white mat­
ter regions of the brain. This elevated volume fraction 
may indicate PVS dilatation, which might in turn reflect 
underlying impairment in the glymphatic system—a 
brain waste clearance pathway.

Figure 2  |  Visual rating scores for ePVS on T2-weighted MRI.
The T2-weighted MRI scans showing different degrees of visibility of the perivascular space in the basal ganglia (top row, a–d) and the centrum 
semiovale (bottom row, e–h), with the corresponding scores [1–4] shown at the bottom. Each hemisphere is scored separately for PVS, and the 
higher of the two scores is used. Reproduced under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/) [60].

https://creativecommons.org/licenses/by/4.0/
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Conventional methods typically have a limitation of 
requiring additional parameter tuning when applied to 
diverse datasets [71]. In contrast, machine learning algo­
rithms can be trained for a specific task by using exam­
ple data, and can automatically discern the defining 
characteristics of a target object, including its intensity, 
shape, and location [75]. Specifically for PVS segmenta­
tion, these algorithms undergo learning across numer­
ous iterations or epochs, by using manually annotated 
images to identify features characteristic of PVS. After 
the completion of this training phase, the algorithm 
is equipped to autonomously recognize and label PVS 
structures in novel, previously unanalyzed data [76, 77]. 
For instance, the convolutional neural network (CNN) 
is a commonly used neural network method for image 
processing tasks. Lian et al. have designed a multi-scale, 
multi-channel CNN architecture incorporating both 
small and large contextual details for PVS segmenta­
tion, thus increasing PVS segmentation accuracy [78]. 
However, most machine learning approaches have been 
trained or tested using data from high-field MRI scan­
ners, which are not commonly used in clinical settings.

The lack of standardized benchmarks for automated 
3D PVS segmentation has led to inconsistent methods 
and findings among researchers [68]. The use of varying 
imaging protocols and analysis techniques has further 
increased this inconsistency. The detectability of PVS is 
also affected by technical factors including magnetic 
field strength and imaging resolution, which can affect 
image quality and clarity [71]. Moreover, distinguishing 
PVSs from other brain abnormalities or artifacts, such as 
white matter hyperintensities, lacunes or microbleeds, 
can be difficult, thus complicating their accurate identi­
fication on MRI scans (Figure 3) [54].

In summary, the identification and assessment of PVSs 
on MRI have substantial potential for advancing under­
standing of AD pathology and progression. However, to 
unlock the full diagnostic and prognostic potential of 

PVSs, a pressing need exists for both improvements in 
imaging technologies and agreement on standardized 
protocols.

3.2 Fluid dynamics of PVS
As discussed earlier, widening of the PVS may indicate an 
obstruction caused by protein and cellular debris, thus 
resulting in turbulent fluid drainage [5, 46]. Insights into 
PVS fluid dynamics could shed light on the microstruc­
ture and functioning of these spaces, including how 
brain tissue and fluids move within and around them. 
This knowledge could also enhance understanding of 
the brain’s ISF circulation efficiency. PVS enlargement is 
associated with a multitude of pathologies and is not 
unique to any single disease, thus limiting its diagnostic 
specificity [52]. Future research should focus on specific 
PVS fluid dynamics and their changes in conditions such 
as AD. Experimental techniques including two-photon 
microscopy and particle tracking velocimetry, particu­
larly in animal models, hold promise for studying PVS 
fluid flow in living organisms [79, 80]. However, these 
methods are not practical for human studies. Current 
research is examining MRI-based technologies with the 
potential to analyze the hemodynamics surrounding 
human blood vessels.

3.2.1 contrast-enhanced MRI.  The use of dynamic con­
trast-enhanced MRI with gadolinium-based contrast 
agents (GBCAs) facilitates the study of CSF and ISF 
exchange, as well as the functionality of the intracere­
bral glymphatic system, which is crucial for waste clear­
ance in the brain [14]. This technique involves tracking 
the rate of contrast agent clearance by observing 
changes in signal intensity within the paravascular and 
ventricular compartments during imaging. In research, 
specifically in mouse models of AD, this method has 
effectively demonstrated a lower clearance rate in 
AD-affected mice than their normal counterparts, thus 

Figure 3  |  Axial slices of MRI-visible brain lesions, including PVS, white matter hyperintensities, microbleeds, and lacunes.
PVS appear as hyperintense and tubular shapes in T2-weighted MRI scans (left). White matter hyperintensities are prominent in FLAIR images 
(middle-left). Other lesions that can be confused with PVS include microbleeds (middle-right) and lacunes (right). In FLAIR scans, lacunes are 
surrounded by a hyperintense rim, whereas PVS are not. Imaging artifacts, such as Gibbs ringing, and motion artifacts can also hinder the 
automated detection of PVS. FLAIR, Fluid attenuated inversion recovery; SWI, susceptibility-weighted imaging. Reproduced under the Creative 
Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) [71].

https://creativecommons.org/licenses/by/4.0/
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offering insights into the pathophysiological changes 
associated with the disease.

Indeed, using GBCAs via intrathecal injection for 
dynamic contrast-enhanced MRI poses substantial chal­
lenges and risks in humans. The process can be painful 
and time-consuming for patients; more concerningly, 
gadolinium may potentially be deposited within the 
brain tissue itself. Large-scale studies are difficult 
because of these associated risks, as well as the logistical 
complexities of performing such invasive and time-inten­
sive procedures on many patients. Furthermore, intrave­
nous administration of GBCAs, although less invasive, 
is not without risk. The need for high doses to obtain 
sufficient imaging detail has prompted concerns regard­
ing the potential for harmful adverse effects, including 
nephrogenic systemic fibrosis in patients with pre-exist­
ing renal impairment, and the potential for gadolinium 
retention in the body after repeated use [81–83].

These concerns have prompted a search for safer 
alternatives and non-invasive imaging techniques that 
could provide similar insights without the risks associ­
ated with GBCA-based methods. Phase-contrast MRI, a 
promising non-invasive method for measuring the plane 
velocity of flowing fluids in individual slices, allows for 
the measurement of fluid flow dynamics and vascular 
pulsatility in the CSF and blood, and is currently used 
to measure the aqueducts at the level of the occipital 
foramen magnum. Future studies may be able to apply 
a similar method to directly measure the flow of fluids 
in the PVS [53, 84, 85].

3.2.2 Non-contrast-enhanced MRI.  Diffusion MRI 
(dMRI), the primary technique used to image PVS fluid 
movement, enables the study of PVS fluid properties 
and microstructural changes with significant impli­
cations in pathophysiology. In the context of the ISF, 
dMRI can detect water molecule displacement pat­
terns along the PVS, which have a microscopic tubular 
structure [43].

Diffusion tensor imaging (DTI) is a dMRI technique 
used to evaluate water diffusion within brain tissue, 
represented by ellipsoids in a tensor model. This modal­
ity provides measures including fractional anisotropy 
(FA) and mean diffusivity (MD) for inferring tissue 
microstructure. One DTI-based method is DTI analysis 
along the perivascular space (DTI-ALPS) [86]. The DTI-
ALPS method distinguishes the diffusion characteris­
tics of vascular structures from those of the surround­
ing white matter tracts by analyzing the anisotropy of 
water diffusion along the axes that are parallel and 
orthogonal to the PVS. The ALPS index, a derivative of 
this method, quantifies changes in diffusion parallel to 
the PVS, which are believed indicate the efficiency of 
glymphatic clearance [86, 87]. Previous DTI-ALPS studies 
have indicated that patients with AD have lower ALPS 
indices than controls [86]. The ALPS index is negatively 
correlated with the deposition of amyloid and tau on 
PET images [88, 89]. However, the ALPS index is limited 

to assessing glymphatic function at a specific brain area, 
the lateral ventricular body, because of its reliance on 
the arranged relationship between fibers and blood 
vessels in that area. This method cannot offer a compre­
hensive view of the glymphatic system throughout the 
entire brain [86]. Moreover, the index does not reflect 
only perivenous space diffusivity but also is modulated 
by the nearby white matter’s microstructure [90, 91]. 
Consequently, the ALPS index should be interpreted 
with caution, and additional research is needed to fully 
understand its significance and utility.

DTI captures the diffusion properties of both tis­
sue and fluid, thus hindering isolation of the diffusion 
effects of PVS from those caused by water molecule 
movement within white matter tracts adjacent to the 
PVS. This conflation masks the precise effects of the PVS 
on overall diffusion measurements [92, 93]. Previous 
studies have indicated that increased PVS fluid volume 
results in increased MD and decreased FA, potentially 
because of the greater diffusivity of fluid within the PVS 
than the white matter [94]. Therefore, using a multi-shell 
acquisition approach enables the diffusion signals attrib­
utable to PVS to be distinguished from those of the sur­
rounding parenchyma, thus providing deeper insights 
into diffusion signal variations. Multi-shell diffusion 
MRI analyzes the behavior of the water diffusion signal 
across a range of b-values or gradient strengths, by using 
multi-compartment diffusion models to identify distinct 
diffusion profiles of individual tissue compartments [53]. 
Specifically, diffusion-weighted images obtained at low 
b-values enhance the detection of CSF dynamics and the 
rapid dispersion characteristic of PVS, thereby enabling 
multi-compartment models to precisely quantify PVS 
diffusion profiles [95]. For example, the difference in 
DTI metrics between patients with MCI and unaffected 
controls becomes less significant after accounting for 
the effect of PVS signaling scores, thus suggesting that 
diffusion alterations associated with cognitive decline 
might be more attributable to PVS changes rather than 
compromised integrity of cerebral white matter [96]. 
Furthermore, intravoxel incoherent motion imaging, 
which leverages data from low b-value acquisitions to 
model intracapillary blood and intra-parenchymal water 
diffusivities, includes multi-compartmental modeling. 
This approach enables the differentiation of diffusive 
signals between water and blood, and quantification 
of the dynamics of trace and complex CSF movements. 
Recently, the approach has advanced through the appli­
cation of non-negative least squares for modeling inter­
mediate diffusion volume fractions, which are believed 
to represent PVS expansion [97]. Additional research is 
required to establish the reliability of these multi-com­
partment models in measuring the diffusion characteris­
tics associated with the PVS.

The multi-compartment model facilitates the evalu­
ation of CSF-ISF exchange within the PVS in the brain 
parenchyma. Specifically, the neurite orientation dis­
persion and density imaging approach, a sophisticated 
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multi-compartmental diffusion model, discriminates 
between diffusion signals originating from intersti­
tial and intra-axonal water [98]. This model enables 
investigation of variations in water content across 
compartments, examination of how ePVS influences the 
surrounding tissue water content, and delineation of a 
spatial pattern of water content in relation to ePVS [99]. 
The specific efficacy of these dMRI metrics in the quan­
tification of PVS is expected to be further evaluated in 
the future.

Notably, although more advanced diffusion MRI mod­
els have greatly enhanced the sensitivity and specificity 
for detecting microstructural changes within the brain, 
intrinsic confounding factors can affect the accuracy of 
diffusion measurements. For instance, diffusion signals 
captured at low b-values are particularly susceptible to 
interference from vascular pulsation and perfusion-re­
lated effects. A study using low b-value diffusion acqui­
sitions, alongside ultra-long echo times, has revealed 
that diffusivity in PVS during arterial systole is as much 
as threefold higher than that during diastole [8]. This 
finding suggests that vascular pulsation affects the dif­
fusion signal within the PVS. Multiple factors affecting 
the diffusion coefficient of the PVS must be considered 
in future dMRI studies, including blood flow, vascular 
pulsation, and white matter axonal arrangement in the 
PVS. Furthermore, previous studies were based on the 
assumption that the PVS fluid chamber is isotropic and 
the diffusivity is fixed; future studies must consider that 
fluid diffusion within the PVS is anisotropic and that 
fluid diffusivity may not be constant [94].

Multi-component T2 relaxometry is an advanced MRI 
technique providing quantitative assessment of the 
microstructural attributes of various tissue compart­
ments [100]. By analyzing multi-echo T2-weighted MRI 
data, this modality can accurately measure the trans­
verse relaxation times (T2 times) and water volume 
fractions of distinct cellular compartments, including 
parenchymal CSF, intra- and extracellular water, and 
myelin water. The fluid in PVS is CSF-like water, which 
is freely mobile and shows long MR T2 times [101, 102]. 
The water in the extracellular space is constrained by 
the extracellular matrix, and myelin water is confined 

in the myelin sheath, thus decreasing the MR T2 time 
of the water molecule. The parenchymal CSF fraction 
(CSFF), the component of the total T2 signal with a 
long T2 time that theoretically corresponds to the freely 
mobile water residing in the PVS, might serve as a quan­
titative biomarker of PVS dilation on the microscopic 
scale [102]. A significant association has been observed 
between MR T2 relaxometry-based CSFF and Aβ deposi­
tion assessed by PiB PET; therefore, CSFF may serve as a 
biomarker of parenchymal perivascular space [103].

Each non-contrast-enhanced MRI measurement 
may reflect different properties of the PVS (Table 1). 
Therefore, these MRI measurements of the fluid dynam­
ics of the PVS must be integrated to comprehensively 
elucidate the mechanisms of its action in AD.

4. CONCLUSION AND PROSPECTS

Recent studies indicating that Aβ antibody immuno­
therapy trials promote Aβ protein clearance and slow 
cognitive decline during the mildly symptomatic phase 
of AD have provided clinical support for the pathogenic 
primacy of Aβ misfolding and aggregation in AD [26]. 
Despite these promising developments, the modest clin­
ical efficacy observed in trials underscores the need to 
refine understanding of AD mechanisms and to prior­
itize preventive strategies [5, 26].

The role of the PVS in the pathophysiology of AD has 
gained increasing attention in the scientific community. 
Damage to the PVS can lead to accumulation of meta­
bolic waste products, formation of Aβ plaques, aggre­
gation of proteins, and ultimately cellular damage [5, 
13, 14]. The presence of ePVS in the brain may indicate 
an imbalance in the brain’s internal stability occurring 
before cognitive impairment in AD [19]. Restoring or 
enhancing PVS dynamics and glymphatic function might 
be a promising avenue to delay the onset or slow the 
progression of AD, but further extensive research will be 
necessary to advance the field from concepts to practical 
therapy [17, 104].

To elucidate the contribution of PVS to AD pathol­
ogy, further research, including longitudinal neuro­
imaging studies, will be essential. Several challenges 

Table 1  |  MRI Methods to Measure Fluid Dynamics Within the PVS.

MRI methods   PVS-related measures   Corresponds to   Indications   References

Diffusion tensor 
image analysis along 
the perivascular space 
(DTI-ALPS)

  ALPS index   Diffusivity in the assumed 
direction of the PVS along 
the medullary veins

  A significant positive correlation is observed 
between diffusivity along perivascular spaces, 
as indicated by the ALPS index and MMSE 
score

  [86]

Multi-shell diffusion 
MRI

  PVS signal fraction   Anisotropic diffusion 
within the ePVS

  The PVS signal fraction is the primary 
feature distinguishing healthy controls from 
individuals with MCI

  [94]

Multi-component  
T2-relaxometry

  Cerebrospinal fluid 
fraction (CSFF)

  Freely mobile water 
residing in the PVS

  CSFF is positively associated with Aβ 
accumulation in individuals

  [103]
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persist, owing to the complexity and microscopic scale 
of the PVS. PVS visualization on MRI is contingent on the 
presence of fluid, because PVSs are typically identified 
according to their fluid-filled nature, which contrasts 
with the surrounding brain parenchyma. Histological 
examinations in patients with cerebral amyloid angi­
opathy have revealed that ePVS may also encompass 
other substances, such as fibrin/fibrinogen, extracellu­
lar matrix components, and hemosiderin deposits, thus 
posing additional visualization challenges [20, 105]. 
Furthermore, MRI studies often depict peri-arterial 
rather than peri-venous gaps, possibly because of the 
smaller size or different fluid content of the perivenous 
PVS. Visualizing the enlarged perivenous PVS thus 
remains a difficult task [106, 107]. Moreover, PVS assess­
ments are subject to various influencing factors, includ­
ing circadian rhythms, vascular pulsations, and pharma­
cological interventions [8, 108, 109]. The introduction of 
ultra-high-resolution MRI has the potential to revolu­
tionize PVS studies by offering near-microscopic detail 
of their anatomy and internal fluid dynamics [22]. Such 
technological advancements may usher in a new era in 
PVS research.

Overall, a pressing need exists for more extensive 
research to harness the information offered by the PVS. 
Many prevalent assumptions require additional empiri­
cal validation. Careful investigation of each AD-related 
process and validation of hypotheses will enhance 
understanding of the disease and aid in identifying 
novel AD therapeutic targets.
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