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Background: The healthcare sector demands a higher degree of responsibility, 
trustworthiness, and accountability when implementing Artificial Intelligence 
(AI) systems. Machine learning operations (MLOps) for AI-based medical 
diagnostic systems are primarily focused on aspects such as data quality and 
confidentiality, bias reduction, model deployment, performance monitoring, 
and continuous improvement. However, so far, MLOps techniques do not take 
into account the need to provide resilience to disturbances such as adversarial 
attacks, including fault injections, and drift, including out-of-distribution. This 
article is concerned with the MLOps methodology that incorporates the steps 
necessary to increase the resilience of an AI-based medical diagnostic system 
against various kinds of disruptive influences.

Methods: Post-hoc resilience optimization, post-hoc predictive uncertainty 
calibration, uncertainty monitoring, and graceful degradation are incorporated 
as additional stages in MLOps. To optimize the resilience of the AI based medical 
diagnostic system, additional components in the form of adapters and meta-
adapters are utilized. These components are fine-tuned during meta-training 
based on the results of adaptation to synthetic disturbances. Furthermore, an 
additional model is introduced for post-hoc calibration of predictive uncertainty. 
This model is trained using both in-distribution and out-of-distribution data to 
refine predictive confidence during the inference mode.

Results: The structure of resilience-aware MLOps for medical diagnostic systems 
has been proposed. Experimentally confirmed increase of robustness and speed 
of adaptation for medical image recognition system during several intervals of 
the system’s life cycle due to the use of resilience optimization and uncertainty 
calibration stages. The experiments were performed on the DermaMNIST 
dataset, BloodMNIST and PathMNIST. ResNet-18 as a representative of 
convolutional networks and MedViT-T as a representative of visual transformers 
are considered. It is worth noting that transformers exhibited lower resilience 
than convolutional networks, although this observation may be  attributed to 
potential imperfections in the architecture of adapters and meta-adapters.

Сonclusion: The main novelty of the suggested resilience-aware MLOps 
methodology and structure lie in the separating possibilities and activities 
on creating a basic model for normal operating conditions and ensuring its 
resilience and trustworthiness. This is significant for the medical applications as 
the developer of the basic model should devote more time to comprehending 
medical field and the diagnostic task at hand, rather than specializing in system 
resilience. Resilience optimization increases robustness to disturbances and 
speed of adaptation. Calibrated confidences ensure the recognition of a 
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portion of unabsorbed disturbances to mitigate their impact, thereby enhancing 
trustworthiness.
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1 Introduction

1.1 Motivation

The advent of Artificial Intelligence (AI) in healthcare has opened 
new horizons in medical diagnostics, offering more precise, efficient, 
and rapid techniques for detecting a wide range of diseases. However, 
the critical nature of healthcare imposes strict requirements on 
AI-based diagnostic systems, necessitating robust performance, high 
reliability, and stringent data security measures. Despite the attention 
to quality, security, and performance in traditional Machine Learning 
Operations (MLOps), an overlooked aspect remains—resilience 
to disturbances.

In healthcare applications, AI-based systems are exposed to 
numerous disturbances that can significantly impact their 
effectiveness. These disturbances may range from adversarial attacks 
designed to manipulate model outputs, to fault injections that can 
undermine system integrity, and to drift phenomena where the 
model’s performance degrades due to changing patterns in data 
distribution. Conventional MLOps methodologies focus extensively 
on data quality, model performance, and security but do not 
adequately address these resilience challenges. Given the potentially 
life-altering decisions that AI-based medical diagnostic systems are 
entrusted with, a lack of resilience can have severe consequences, 
including inaccurate diagnoses and, consequently, improper 
treatment plans.

Moreover, the unique characteristics of the healthcare domain 
such as patient-specific variabilities, heterogeneous data sources, and 
strict regulatory constraints introduce distinctive kinds of disturbances 
that are not commonly observed in other sectors. Therefore, a 
“one-size-fits-all” approach from other domains cannot be directly 
applied here.

The ability of a system to be resilient—to absorb, detect, and adapt 
to disturbances—is particularly crucial in high-stakes environments 
like healthcare. A resilient-aware MLOps framework for AI-based 
medical diagnostic systems would not only improve their robustness 
but would also enhance trust among clinicians, healthcare providers, 
and patients, thus accelerating the adoption rate of AI in healthcare.

In light of these challenges and opportunities, this study aims to 
enrich MLOps methodology by incorporating resilience as a 
fundamental component. By identifying characteristic disturbances in 
healthcare and developing methods to ensure resilience, this study 
endeavors to elevate the reliability and trustworthiness of AI-based 
medical diagnostic systems, making them better equipped to provide 
quality healthcare solutions in dynamic and unpredictable environments.

1.2 State-of-the-art

The evolution of AI in healthcare has led to various significant 
advancements, many of which are integrated into existing MLOps 

frameworks (1). A plethora of research exists, focusing on improving 
data quality, model training, evaluation, and deployment in the 
healthcare domain (2, 3).

Machine learning operations have gained momentum in 
healthcare due to their potential to streamline the development, 
deployment, and maintenance of machine learning models (4). 
Several studies have delved into the unique requirements and 
challenges that healthcare poses to the MLOps methodology, such as 
patient data confidentiality (5), bias reduction (6), and compliance 
with health regulations like HIPAA (7). However, most existing 
MLOps frameworks are designed to ensure efficient operation rather 
than resilience to the various disturbances that healthcare 
environments may present.

The concept of resilience in AI systems is not new and has been 
examined across various fields, including cybersecurity, manufacturing, 
and even autonomous vehicles. Techniques like adversarial training (8, 
9), robust optimization (10), and uncertainty quantification have been 
employed to improve resilience (11). The paper (12) proposes the 
concept of Secure Machine Learning Operations paradigm, but 
without proposals for combining different methods and aspects of 
protecting the same AI system from different threats. The issue of 
resolving the incompatibility of the selected approaches in the tasks of 
ensuring the resilience and efficiency of the AI system is not considered. 
The vast majority of researchers consider each type of disturbance for 
AI systems separately, and the question of compatibility of methods for 
ensuring resilience to each of these disturbances remains under-
researched (13–15). In addition, although these methods provide a 
certain degree of perturbation absorption, they often do not ensure 
rapid adaptation and evolution in response to changing conditions.

Despite the abundance of work in MLOps, resilience, and 
AI-based medical diagnostics separately, there is a conspicuous 
absence of research focusing on integrating resilience into MLOps 
frameworks specifically designed for medical diagnostic systems. This 
gap highlights the need for a holistic approach that combines these 
elements to ensure not just efficiency and reliability, but also resilience 
against the myriad disturbances that these systems may encounter.

1.3 Objectives and contributions

The aim of this study is to develop a new MLOps methodology 
that ensures the resilience of a medical diagnostic system to such 
negative factors as adversarial attacks, failure injection, drift, and 
out-of-distribution of data. The key objectives are as follows:

 - analysis of resilience issue of MLOps for healthcare;
 - analysis of methods of ensuring the resilience of AI-systems;
 - develop resilienсe-aware MLOps architecture for Medical 

Diagnostic Systems; and
 - experimentally confirm the advantages of resilience-aware 

MLOps compared to the conventional approach.
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Structurally, the work consists of the following sections. The 
analysis of methods of ensuring the resilience of MLOps and 
resilienсe-aware MLOps architecture for Medical Diagnostic Systems 
are presented in Section 2. The Section 3 describes the experimental 
results of testing and comparition of the proposed resilience-aware 
MLOps and Conventional MLOps. The research results are discussed 
in the Section 4. The Section 5 concludes the paper and describes the 
directions of future research.

The main contribution of the research includes architectures of 
resilience-aware MLOps for Medical Diagnostic Systems. In addition, 
the results of the comparison between the traditional and the proposed 
MLOps on the MedMNIST datasets are analyzed. It has been 
experimentally proven that the addition of resilience optimization, 
predictive uncertainty calibration, uncertainty monitoring, and 
graceful degradation makes a positive contribution to the robustness 
and performance recovery of a medical diagnostic system.

2 Architecting resilient MLOps-based 
medical diagnostic system

2.1 Resilience issue of MLOps for 
healthcare

Machine learning operations is the process of automating the 
lifecycle of machine learning models. It involves four main stages 
(Figure 1) (1, 2):

 1. Data Preparation—gathering, cleaning, and transforming data 
for further model training.

 2. Model Development, Training and Evaluation—building the 
architecture, training, and testing the model on prepared data.

 3. Model Deployment—integrating the trained model into a 
production environment.

 4. Performance Monitoring—tracking the model’s metrics in 
operation and providing feedback to the data preparation stage.

Conventional approaches to MLOps often do not pay enough 
attention to the resilience of machine learning systems to the 
perturbations inherent in the medical domain. They do not focus on 
absorbing and detecting disturbances and adapting to them quickly. 
However, for medical applications, these aspects are extremely 

important, as human lives depend on the recommendations of ML 
systems. Disturbances in an intelligent system can be caused by both 
intentional attacks and natural causes. Examples of natural 
disturbances include noise in the data, sudden hardware faults 
(memory faults), and data drift over time (16). Intentional attacks can 
also include fault injections and data manipulation in the form of 
so-called adversarial attacks.

Drift is particularly relevant to the healthcare industry, as disease 
patterns can change due to new strains of viruses and bacteria and 
disease patterns can change due to changes in treatment protocols 
(17). Data characteristics may also change due to improvements in 
medical equipment, changes in data collection methods, and changes 
in demographics. In addition, the emergence of new data, the 
identification of previously unknown relationships and factors, and 
the refinement of disease taxonomies are additional sources of concept 
drift. The main problem with drift adaptation is the delay in the arrival 
of labeled data after drift occurs, so the ability to quickly adapt to a 
small amount of labeled data is a very relevant property.

Adversarial attacks in AI-based medical diagnostic systems refer 
to deliberate manipulations of input data (such as medical images) 
designed to deceive AI algorithms (18). These attacks exploit 
vulnerabilities in the AI’s learning process, where slightly perturbed 
images, indistinguishable to the human eye, can lead to incorrect 
diagnoses or assessments. The source of these attacks can vary, ranging 
from external threats aiming to undermine the system’s reliability to 
internal errors in training data or algorithm design. However, to 
protect against adversarial attacks, the initial development of models 
and methods for training intelligent diagnostic systems may 
be complicated by the need to investigate the compatibility of various 
methods for enhancing the robustness and resilience of AI 
systems (19).

In the computational environment of an intelligent medical 
diagnostic system, malicious faults, commonly known as fault 
injections, can pose significant threats. These deliberate disruptions 
can be executed in various forms, targeting different components of 
the system. For instance, one notable type of attack is the “row 
hammer” attack on memory (20). This involves repeatedly accessing 
a row of memory cells to induce bit flips in adjacent rows, potentially 
corrupting data or causing system crashes. The existing efforts to 
increase fault tolerance and the adaptation rate to a certain amount of 
faults may not be  compatible with protection against other types 
of disturbances.

FIGURE 1

Basic stages of conventional MLOps.
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Thus, AI algorithms used in the healthcare industry have 
numerous vulnerabilities that traditional MLOps approaches do not 
focus on. Therefore, a promising direction for the development of 
AI-based medical diagnostic systems is the use of MLOps with 
elements to ensure resilience to disturbances.

2.2 Methods of ensuring the resilience of AI 
systems

Table  1 shows the approaches to ensure the resilience to 
adversarial attacks, fault injection, and concept drifts for AI system. 
The ability to absorb disturbances (robustness), graceful degradation 
due to the impact of disturbances that could not be absorbed, and 
rapid adaptation to new disturbances are considered to be the key 
features of resilient system. “Graceful degradation” refers to a system 
being pre-configured with an organized set of less functional states. 
These states represent acceptable compromises between functionality, 
performance, and cost-effectiveness.

Implementation of out-of-domain generalization through domain 
randomization or domain augmentation increases model robustness 
to limited shifts in data distribution (21). Dynamic adjustment of 
model weights in an ensemble can mitigate a certain level of concept 
drift (32). In addition, the ability to detect drift or out-of-distribution 
data can provide graceful degradation by delegating control to a 
human or to an AI model that is more resistant to such a disturbance.

Robustness to adversarial attacks can be enhanced by protecting 
training data or restricting access to knowledge about the AI model. 
The protection of training data is usually achieved through data 
encryption and sanitization (36). The incorporation of randomization 
or non-differentiable input transformations into the model provides 
gradient masking to counteract adversarial evasion attacks (33). 
Moreover, adding different regularization and training on adversarial 
samples provides robust optimization (10). However, detecting 
adversarial examples can be  an effective mechanism for graceful 
degradation by delegating control to humans or automatically 
switching to models that are more resilient to such a perturbation (22).

Redundancy in the form of N-versioning of AI model or 
duplication of critical neurons is the most common way to ensure 
robustness to faults (fault tolerance) (35). However, training under 
noise added to the gradient or neurons weights can also help to reduce 
the importance of individual neurons by providing fault masking, i.e., 
eliminating their influence (34). However, the use of error detection 
mechanisms for model weights can be combined with error correction 
mechanism or with downloading an uncorrupted version of the 
weights (24). If an error in the weights causes abnormal distortions in 

the feature space, it can increase predictive uncertainty and require a 
delegation of control to a human or switching to another model or 
model branch (27, 28).

Estimating model uncertainty is a useful function to identify the 
negative impact of any destructive influences on the AI system. 
However, by default, conventional AI model do not provide an 
efficient predictive uncertainty estimation and it requires calibration. 
In addition, detection of destructive disturbances affecting the AI 
model can be achieved through the mechanisms of AI explainability.

Graceful degradation can occur by increasing the resource 
consumption for disturbance processing, for example, by delegating 
control to an expert or large model. An expert can be reinforced by an 
AI explanation algorithm, while a large model is used with auxiliary 
semantic information (i.e., Zero-shot learning) (26). Switching to a 
simpler model can also be  viewed as a graceful degradation, as a 
simple model is generally less sensitive to disturbances in the data, but 
produces more coarse or abstract predictions (27, 28).

Adaptation to disturbance typically occurs through retraining in 
the face of disturbance using Active Learning, Continuous Learning, 
and Few-Shot Learning methods (29–31). However, to increase the 
speed of adaptation, meta-learning and Parameter-Efficient Fine 
Tuning methods are widely used (37). In addition, meta-learning is 
also effective in optimizing robustness (38).

Annotation of training data for medical diagnostic system 
requires deep medical knowledge, while the knowledge is constantly 
expanding and updating. There is a need to integrate Active Learning 
in MLOps feedback to effectively use data and time of highly qualified 
experts (29). At the stage of training data preparation, an expert could 
annotate the most complex cases. Complicated cases where the AI 
system has the greatest uncertainty can be identified by a specified 
uncertainty indicator. The simplest and most logical way to measure 
uncertainty is to calculate Shannon’s Entropy Measure for classification 
model or using quantile regression for regression model.

Detection of out-of-distribution, concept drift, a certain fraction 
of adversarial attack and fault injection effects can be implemented by 
testing for exceeding the threshold value of the model uncertainty 
indicator. In this case, the threshold value of the uncertainty indicator 
can be  defined as a 95% percentile on an augmented test or 
training dataset.

Thus, there are methods for implementing different resilience 
features for different disturbances. However, the vast majority of them 
require changing the model or learning algorithm, which complicates 
the responsibility separation in MLOps. In this case, making the AI 
system resilient will require additional research into the compatibility 
of different mechanisms for ensuring resilience to various disturbances 
and their mutual influence.

TABLE 1 Approaches to ensure the resilience of AI-systems.

Disturbance source
Resilience capabilities

Robustness Graceful degradation Adaptation

Drift, Out-of-distribution data Out-of-domain generalization (21); Ensemble 

selection (21)

Detecting adversarial examples (22), drift, 

out-of-distribution data (23), and faults 

(24); AI Explanation mechanism (25); 

Zero-shot learning (26); Switch to simpler 

model (27) or Reduce prediction 

granularity (28)

Active Learning (29); Continual 

Learning (30); Few-Shot Learning (31).

Adversarial attack Data encryption and sanitization (32); Gradient 

Masking (33); and Robustness Optimization (10)

Fault injection Fault masking (34); Explicit redundancy (35); and 

Error detection and correction (24)
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2.3 Resilienсe-aware MLOps architecture 
for medical diagnostic systems

Important principles in MLOps are the separation of 
responsibilities and collaboration between teams. Platform-level 
specialized solutions to ensure the resilience of any AI model delegates 
the updating and maintenance of this mechanism to a separate team 
of AI resilience experts. New MLOps stages for ensuring resilience 
aspects should be implemented as post-hoc procedures to maximize 
the separation of responsibilities.

Figure  2 shows a diagram of the proposed resilience-aware 
MLOps, which additionally includes the stages of Post-hoc Resilience 
Optimization, Post-hoc Uncertainty Calibration, and Uncertainty 
Monitoring and Graceful Degradation. In addition to Uncertainty 
Monitoring, the Explainable AI mechanism can be  used to assist 
decision-making by the human to whom control is delegated in case 
of uncertainty. The article (39) questions the necessity and adequacy 
of existing methods of explaining decisions, so the explanation 
mechanism will be  excluded from further consideration, but for 
generality, the diagram shows this MLOps stage.

At the stage of resilience optimization, it is proposed to attach 
computationally efficient (meta-) adapters to the original model in 
order to increase robustness and speed up the fine-tuning process 
(40). In this case, the weights of the original model remain frozen. The 
original model usually consists of certain blocks or modules, for 
example Convolutional Residual Block. To generalize, we will refer to 
these blocks as frozen operations and denote them as OP x( ). The 
parallel method of connecting an adapter to the frozen blocks of the 
model is the most convenient and versatile approach (Figure 3A). In 
this case, to ensure the properties of resilience, it is proposed to use 
three consecutive blocks of adapters at once, two of which are tuned 
during meta-training (40). To balance between different modules, 
we introduce a channel-wise scaling factor.

The adapter architectures depicted in Figure  3B are based on 
convolutional layers. The convolutional adapter shown in Figure 3B 
has a hyperparameter γ , which regulates channel compression by 1, 2, 
4, or 8 times. However, adapters can also be  implemented as a 
two-layer feed-forward network with a downward projection 
bottleneck or ResNet-like conversion.

The original model is trained on a dataset D D Dbase base
tr

base
val= { };  

to perform the main task under known conditions. Resilience 
optimization involves generating a set of synthetic disturbance 
implementations τ i i N| ={ }1, . As disturbances τ i can be considered 
adversarial attacks, fault injection, or switching to a new task. In 
addition, it is necessary to provide datasets D D D k Kk

tr
k
val= ={ };| ;| 1, , 

that solve other problems for K  few-shot learning tasks, where fine-
tuning data Dk

tr is used in the fine-tuning stage and validation set Dk
val 

is used in the meta-update stage. There is also a given set of parameters 
θ , φ , ω, and W , where θ  are parameters of a pretrained and frozen base 
AI model, φ  and ω are adaptation parameters of AI model backbone, 
and W  are task specified parameters (model head parameters). Head 
weights Wbase for the main task are pre-trained on the data Dbase. If 
we reject the specialization of different parameters of the AI model 
and denote the set of all parameters as Ξ = θ φ ω, , ,W , then the 
process of meta-learning for direct maximization of the expected 
resilience criterion can be described by the formula:

 
Ξ Ξ Ξ

Ξ Ξ

∗

∼ ( )
= ( )( )  = ( )argmax E R U D argmaxF

i
ipτ τ
τ ,

 
(1)

where U  is an operator that combines disturbance generation and 
adaptation in T steps, which maps the current state of φ  to new 
state of φ ;

R
iτ  is a function that calculates the value of the integral resilience 

indicator for τ i disturbance implementation over model parameters ω 
during its adaptation and the test sample D

i

val
τ .

 
R

P T
P W D

i i i
t

T
t t

val
τ τ τθ ω φ= ( )

=
∑1

0 1

, , , ,

 
(2)

where P
iτ  is a performance metric for current state of model 

parameters and evaluation data.
If we use the SGD stochastic gradient descent algorithm with T  

steps in the U  operator and use gradient meta-update in the outer 
loop, we will get the algorithm shown in Figure 3. The meta-gradient 
estimation can be performed over the Gaussian-smoothed version of 
the outer loop objective, which is calculated by the formula (38).

 
∇ +( )  = +( ) − −( ) ∼ ( )

E F g E R g R g
g N I0

1

2,
Ξ Ξ Ξσ

σ
σ σ

 
(3)

A perturbation vector g is formed for the meta-optimized 
parameters at the beginning of each meta-optimization iteration; the 
resulting algorithm will be as shown in Figure 4.

The analysis of Figure 4 shows that the type of disruptive influence 
does not change within a single meta-adaptation step. However, each 
meta-adaptation step begins with the selection of a disruptive 
influence type, followed by the generation of n implementations of the 
disruptive influence with a subsequent nested adaptation loop for each 
of them. Simultaneously combining disturbances may be ineffective. 

FIGURE 2

Basic stages of resilience-aware MLOps.
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For example, after adding fault injection to the weights, we will have 
an outdated model, and applying adversarial attacks to it may 
be irrelevant.

The formation of adversarial samples is based on the 
Adv perturbation_ _( ) ( )Adv perturbation  function. For 
differentiable models, FGSM attacks or PGD attacks can be used (36, 

FIGURE 3

Parallel tuning scheme and tuner architectures. (A) Parallel tuning scheme for the frozen block; (B) Adapter or meta-adapter based on two-layer 
convolutional network with channel dimension down-sampling bottleneck.

FIGURE 4

Pseudocode of model-agnostic meta-learning with evolution strategies for AI-system resilience optimization.
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41). It is proposed to use adversarial attacks based on the search 
algorithm of the covariance matrix adaptation evolution strategy for 
non-differentiable models (39). The level of perturbation is limited by 
the L° -norm or L0 0L -norm. In this case, if the image is normalized 
by dividing pixel brightness by 255, then the specified disturbance 
level is also divided by 255.

The formation of fault injections is performed by the 
Fault inj_ _( ) ( )Fault inj  (42). It is suggested to choose the most 
difficult fault type to absorb, which involves generating an inversion 
of a randomly selected bit (bit-flip injection) in the model weight. For 
differentiable models, it is suggested to pass the test dataset through 
the network and calculate the gradients, which can then be sorted by 
their absolute values. In the top-k weights with the highest gradient, 
one bit is inverted in a random position. The proportion of weights for 
which one random bit is inverted can be denoted as the fault rate.

Task change is needed to simulate concept drift and out-of-
distribution. Forming a sample of other tasks can be  done by 
randomizing the domain of the same task or by selecting tasks from 
relevant domains but sampling truly different tasks. These two 
approaches can also be combined.

Augmented versions of training samples can be used for improved 
calibration on in-distribution data. Out-of-distribution data can 
be generated from other datasets that do not share similar labels. 
Out-of-distribution data can be generated from other datasets that do 
not have semantically similar labels. One of the effective methods of 
generating Out-of-distribution is the use of Soft or Hard Brownian 
Offset Sampling with Autoencoders (43). Software libraries and 
examples of application to various data modalities are available for the 
Soft Brownian Offset algorithm.

The post-hoc calibration algorithm requires adding certain 
add-ons to the frozen model that are adjusted on the calibration data 
to reduce the discrepancy between the prediction confidence and the 
actual probability. Calibration Add-Ons for classification model based 
on Temperature Scaling, Platt Scaling, Isotonic Regression, Histogram 
Binning, Bayesian neural networks, ensembles, etc.

Active Learning is a widespread practice in the medical industry 
and in our MLOps diagram, it is part of the feedback loop. In the case 
of conventional MLOps, the base model is tuned on the new data, 
while in the case of resilienсe-aware MLOps, adapters are tuned. 
Re-training of the base model and resilience optimization can 
be performed after a certain predefined amount of new data has been 
accumulated since the last resilience optimization.

3 Experiments and results

3.1 Experimental setup

MedMNIST datasets contain annotated medical data samples for 
testing machine learning and artificial intelligence techniques in 
healthcare (44). Experimental research is proposed to be performed 
on these datasets. DermaMNIST dataset, which contains seven classes, 
will be considered as the main task dataset. The BloodMNIST and 
PathMNIST datasets will be used as data sources for few-shot learning 
tasks in the resilience optimization (meta-learning) process. In this 
case, a set of five classes will be used for few-shot learning tasks, which 
are randomly selected from the set of available classes (nway = 5). It is 
proposed to use 16 images per class (k_shot = 16), which are provided 

in mini-batches by four images (mini_batch_size = 4) during 
adaptation. Thus, the number of adaptation steps is T = (k_shot*nway
)/mini_batch_size = 20 iterations. The learning rate of the inner and 
outer loop of meta-learning are α = 0.001 and β = 0.0001, respectively. 
The maximum number of meta-iterations is 300. However, the Early 
Stopping algorithm is used to stop meta-learning, which terminates 
the execution if the criterion does not change for more than 10 
consecutive iterations by more than 0.001. In this case, the 
convolutional network ResNet-18 and the visual transformer 
MedViT-T will be used as representatives of two main approaches to 
building a neural network architecture in the field of computer vision 
(45). In the case of ResNet-18, adapters and meta-adapters are 
connected in parallel to each ResBlock. In the case of MedViT-T, 
adapters and meta-adapters are connected in parallel to each Local 
Feed-Forward Network and Multi-Head Self-Attention Module.

Several configurations will be considered to illustrate the impact 
of additional stages of resilience-aware MLOps on the accuracy and 
speed of its recovery:

 - Config  0—conventional MLOps with Fine-Tuning stage and 
Active Learning Feedback Loop;

 - Config  1—upgraded Config  0 with Resilience Optimization 
stage; and

 - Config  2—upgraded Config  1 with Predictive Uncertainty 
Calibration stage.

MedMNIST datasets contain training, validation, and test 
subsamples. To simplify the experiment and analyze the results, 
we will combine the validation and test samples into one test set and 
divide it into four parts. Each part of the test data is needed to simulate 
a part of the AI model’s life cycle. Let us consider four consecutive 
parts of the life cycle:

 - Test 0—training (parameter optimization) of the AI model on the 
training set and testing the model on the first part of the test set, 
and selecting 10% of the test data points with the highest 
predictive uncertainty;

 - Test 1—fine-tuning of the AI model on the selected data points 
from the previous test and testing the model on the second part 
of the test dataset under the disturbance, and selecting 10% of the 
test data points with the highest predictive uncertainty;

 - Test 2—fine-tuning on the selected data points from the previous 
test and testing the model on the third part of the test dataset 
under the disturbance, and selecting 10% of the test data points 
with the highest predictive uncertainty; and

 - Test 3—fine-tuning on selected test data points from the previous 
test and testing the model on the fourth part of the test data set 
under conditions of increased disturbance intensity.

In order to keep things simple, we  assume that the graceful 
degradation is implemented as a decision rejection in case of 
uncertainty detection, i.e., if the entropy exceeds a threshold. 
We assume that control is transferred to a human, a more efficient 
model, or a preconfigured default procedure. Therefore, we  will 
consider model accuracies calculated in two ways:

 - ACC1 is the accuracy which counts rejected examples as false 
decisions; and
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 - ACC2 is the accuracy that does not take into account 
rejected examples.

Conventional MLOps reject decisions based on predictive 
confidence, while resource-aware MLOps reject decisions based 
on uncertainty.

For training adapters with meta-adapters, fault injection is carried 
out by selecting weights with the largest absolute gradient values. The 
proportion of modified weights is fault_rate = 0.1. For testing the 
resulting model, fault injection will be performed by random bit-flips 
in randomly selected weights, the proportion of which (fault_rate) are 
equals to 0.1 or 0.15.

The training of the tuners and meta-tuners involves generating 
adversarial samples using the FGSM algorithm with perturbation_
level according to L∞ up to 3. However, to test the resulting model 
against adversarial attacks, the adversarial samples are generated using 
the CMA-ES algorithm with perturbation_level according to 
L∞-norm are equals to 3 or 5. The number of solution generation in 
the CMA-ES algorithm is set to 10 to reduce the computational cost 
of conducting experiments.

Instead of directly modeling different types of concept drift or 
novelty in the data, it is proposed to model the ability to quickly adapt 
to task changes, as this can be interpreted as the most difficult case of 
real concept drift. The preparation for the experiment involved adding 
adapters and meta-adapters to the network, which had been trained 
on the DermaMNIST dataset. During meta-training, these adapters 
performed adaptations to either attacks or a five-class classification 
task, which was randomly generated from a selection of the nine-class 
PathMNIST set, the eight-class BloodMNIST set, or the seven-class 
DermaMNIST set. Subsequently, to verify the capability for rapid 
adaptation to a new task change, the new task was considered either 
as a classification task with the full set of PathMNIST classes or as a 
classification task with the full set of BloodMNIST classes. The 
resilience curve is constructed over 20 mini-batch fine-tunings, from 
which the resilience criterion (2) is calculated.

Taking into account the elements of randomization, it is proposed 
to use their average values when assessing the accuracy of the model. 
To this end, 100 implementations of a certain type of disturbance are 
generated and applied to the same model or data.

Uncertainty calibration will be performed on a dataset containing 
augmented test samples and out-of-distribution samples generated by 
Soft Brownian Offset Sampling. 300 images per class are generated for 
in-distribution test set to calibrate the uncertainty. The total number 
of out-of-distribution images is the same as the in-distribution 
calibration set. In this case, the Soft Brownian Offset Sampling 
algorithm is used with the following parameter values: minimum 
distance to in-distribution data is equal to 25; offset distance is equal 
to 20; and softness is equal to 0. Bayesian Binning into Quantiles with 
10 bins was chosen as the calibration algorithm.

3.2 Results

Table  2 illustrates the change in accuracy with (ACC1) and 
without (ACC2) accounting for rejected decisions at different 
successive parts of the ResNet-18 model life cycle with resilience-
aware add-ons under fault injections, depending on the selected 

MLOps configuration. Test 0, Test 1, Test 2, and Test 3 were repeated 
100 times each, and Table 2 shows the average accuracy to account for 
the randomization effect.

Table 2 shows that after the first test with fault injection (Test1) and 
the last test with increasing fault injection intensity (Test3), config 1 
(with resilience optimization) and config  2 (with uncertainty 
calibration) provide an increase in fault tolerance, which is fully 
consistent with the goals of resilience-aware MLOps. In addition, the 
dynamics of accuracy growth during adaptation (Tes 1-Test 2) is higher 
in the latter two configurations. Even with an increase in the fraction of 
damaged weight tensors, the accuracy of the system almost does not 
drop, unlike the configuration of conventional MLOps. Also, comparing 
ACC2 with ACC1, we can conclude that ACC2 is always larger than 
ACC1, but this difference is greater in the case of resilience optimization, 
and especially in the case of uncertainty calibration. Note that the 
averaged values of ACC1 and ACC2 for the ResNet-18-based model on 
Test 0-Test 3 test data with the corresponding fault injection rate without 
fine-tuning on 10% of human-labeled examples are 0.627 and 0.638, 
respectively. It proves the importance of using an active feedback loop 
for adaptation. For the average accuracy values in Table 2, the margin 
of error does not exceed 1% at a 95% confidence level.

Table 3 illustrates the change in the average accuracy with and 
without rejected samples, i.e., ACC1 and ACC2, at different successive 
parts of the lifecycle of the ResNet-18 model with resilience-aware 
add-ons under adversarial evasion attacks, depending on the selected 
MLOps configuration. Test 0, Test 1, Test 2, and Test 3 are repeated 
100 times each, and Table 3 shows the average accuracy to account for 
the randomization effect.

The results of Test 1 and Test 3 in Table 3 show that config 1 (with 
resilience optimization) and config 2 (with uncertainty calibration) 
provide an increase in robustness. In addition, the dynamics of 
accuracy growth during adaptation (Tes 1, Test 2) is higher in the 
latter two configurations. However, the traditional MLOps (config 0) 
also showed the ability to adapt quickly during fine-tuning (comparing 
the results of Test 1 and Test 2), although it was not successful in 
restoring performance. Config  1 and Config  2 show a noticeable 
recovery in accuracy, and config  2 on Test 2 even showed an 
improvement in accuracy compared to its pre-disturbance value. 
Increasing the magnitude of the perturbation (Test 3) leads to a 
decrease in accuracy in all cases, but config  1 and config  2 show 
greater resilience compared to config 0. Also, across all experiments, 
ACC2 is larger than ACC1, which indicates the ability to recognize 
disturbances that cannot be absorbed. Note that the averaged values 
of ACC1 and ACC2 for the ResNet-18-based model on perturbed test 
data from Test 0-Test 3 stages without fine-tuning on 10% of human-
labeled examples are 0.671 and 0.682, respectively. It also proves the 
importance of using an active feedback loop for adaptation. For the 
average accuracy values in Table  3, the margin of error does not 
exceed 1.1% at a 95% confidence level.

Tables 4, 5 illustrate the changes in the accuracy values of the 
MedViT-T-based model under the influence of fault-injection and 
adversarial attack during the life cycle, depending on the MLOps 
configuration. In the MedViT-T experiments, Test 0, Test 1, Test 2, and 
Test 3 are repeated 100 times each, and the average accuracy is 
reported in Tables 4, 5.

An analysis of Tables 4, 5 shows that MedViT-T exhibits similar 
behavior to ResNet-18 on the same tests and MLOps configurations. 
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However, MedViT-T is characterized by a lower adaptation rate 
(comparison of Test1, Test2 results) compared to ResNet-18. Note that 
the averaged values of ACC1 and ACC2 for the MedViT-T-based 
model on Test 0-Test 3 test data with the corresponding fault injection 
rate without fine-tuning on 10% of human-labeled examples are 0.653 
and 0.694, respectively. It proves the importance of using an active 
feedback loop for adaptation. Averaged values of ACC1 and ACC2 for 
the MedViT-T-based model on perturbed test data from Test 0 to Test 
3 stages without fine-tuning on 10% of human-labeled examples are 
0.687 and 0.695, respectively. It also proves the importance of using an 
active feedback loop for adaptation. For the average accuracy values 
presented in Table 4, the margin of error does not exceed 0.9% at a 
95% confidence level. Similarly, for the average accuracy values in 
Table  5, the margin of error does not exceed 1% at the same 
confidence level.

To evaluate the robustness and speed of adaptation of a 
pre-configured medical AI system to concept drift, it is proposed to 
calculate the integral resilience criterion (2) in fine-tuning mode (few-
shot learning) on BloodMNIST dataset or PathMNIST dataset 

(Table 6). In this case, the AI system was pre-trained and optimized 
on the DermaMNIST set. It is proposed to use 16 images per class 
(k_shot = 16), which are provided in mini-batches of four images 
(mini_batch_size = 4) during adaptation.

Analysis of Table 6 shows that adding a resilience optimization 
stage to MLOps increases resilience to concept drift, i.e., robustness 
and speed of adaptation. However, the architecture of visual 
transformers in our experiments shows itself to be less resilient. For 
the average accuracy values in Table 6, the margin of error does not 
exceed 1% at a 95% confidence level.

4 Discussion

The proposed structure of resilience-aware MLOps makes it 
possible to implement various specific solutions for the 
implementation of its separate stages and mechanisms. The main idea 
is to divide the labor of developers of the basic AI model that functions 
efficiently under normal conditions and specialists in ensuring the 

TABLE 2 Accuracy of the ResNet-18-based model under the influence of fault injection during the life cycle depending on the MLOps configuration.

MLOps 
configuration

Test 0 Test 1 Test 2 Test 3

ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 ACC1 ACC2

Config 0 0.751 0.781 0.652 0.679 0.659 0.681 0.623 0.634

Config 1 0.750 0.801 0.722 0.765 0.737 0.773 0.739 0.774

Config 2 0.768 0.822 0.734 0.810 0.749 0.822 0.747 0.798

TABLE 3 Accuracy values of the ResNet-18-based model under adversarial attack during the life cycle depending on the MLOps configuration.

MLOps 
configuration

Test 0 Test 1 Test 2 Test 3

ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 ACC1 ACC2

Config 0 0.751 0.781 0.683 0.689 0.708 0.721 0.663 0.674

Config 1 0.750 0.801 0.735 0.785 0.749 0.797 0.742 0.753

Config 2 0.768 0.822 0.753 0.810 0.770 0.847 0.768 0.802

TABLE 4 Accuracy values of the MedViT-T-based model under the influence of fault injection during the life cycle depending on the MLOps 
configuration.

MLOps 
configuration

Test 0 Test 1 Test 2 Test 3

ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 ACC1 ACC2

Config 0 0.769 0.791 0.672 0.698 0.671 0.751 0.633 0.694

Config 1 0.772 0.835 0.742 0.775 0.750 0.781 0.731 0.784

Config 2 0.777 0.902 0.752 0.820 0.759 0.842 0.750 0.808

TABLE 5 Accuracy values of the MedViT-T-based model under the influence of adversarial attack during the life cycle depending on the MLOps 
configuration.

MLOps 
configuration

Test 0 Test 1 Test 2 Test 3

ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 ACC1 ACC2

Config 0 0.769 0.791 0.705 0.748 0.710 0.751 0.697 0.750

Config 1 0.772 0.835 0.742 0.788 0.750 0.781 0.748 0.780

Config 2 0.777 0.902 0.760 0.833 0.767 0.842 0.759 0.800

https://doi.org/10.3389/fpubh.2024.1342937
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Moskalenko and Kharchenko 10.3389/fpubh.2024.1342937

Frontiers in Public Health 10 frontiersin.org

TABLE 6 The value of the integral resilience criterion (2) to the change of the medical image analysis task depending on the MLOps configuration.

MLOps configuration

Fine-tuning of ResNet-18-based AI model Fine-tuning of MedViT-T-based AI model

On 20 mini-batches 
of BloodMNIST 

(complete set of 
classes)

On 20 mini-batches 
of PathMNIST 

(complete set of 
classes)

On 20 mini-batches 
of BloodMNIST 

(complete set of 
classes)

On 20 mini-batches 
of PathMNIST 

(complete set of 
classes)

Config 0 0.68 0.74 0.66 0.71

Config 1 0.80 0.82 0.71 0.74

resilience of the intelligent system to disturbances and changes. The 
healthcare industry is extremely complex and requires deep knowledge 
in various fields. Developers of the basic AI model are usually 
overloaded with taking into account the specifics of data, methods of 
data collection and the application itself to solve the applied data 
analysis task. Solving problems related to ensuring AI resilience, i.e., 
security, trustworthiness, robustness and rapid adaptation to changes, 
relies on specific expertise not related to a particular application area 
(13). The main difficulty in separating the tasks is the lack of 
universality of methods for ensuring resilience and the lack of a 
complete understanding of the compatibility of methods that provide 
different aspects of resilience and protection against different types of 
disturbances (16). Determining the compatibility of methods and 
combining them can increase flexibility and resilience depending on 
requirements and constraints.

The proposed implementation of Post-hoc Resilience 
Optimization is just one of the possible solutions that shows the 
fundamental possibility of separating the stage of developing a basic 
model for normal conditions and add-ons to ensure resilience to 
disturbances and changes. Moreover, the importance of using the 
proposed Post-hoc Uncertainty Calibration stage was experimentally 
confirmed. This stage allows, firstly, to detect disturbances and, 
secondly, to correctly assess uncertainty and tolerate it, i.e., to 
ensure trustworthiness.

Unexpectedly, the worse resilience indicators for the visual 
transformer compared to the convolutional network were found. This 
indicates that there is a need to improve architectures and connection 
methods for adapters and meta-adapters. Similarly, uncertainty 
calibration methods did not ensure 100% accuracy of the models. This 
is partly due to the fact that there are two types of uncertainty—
aleatory and epistemic uncertainty. In this case, the aleatory 
uncertainty cannot be eliminated, because it is an inherent part of the 
observed process or object (46). On the other hand, there are many 
calibration algorithms, each of which depends on a large number of 
hyperparameters. Understanding their impact on epistemic 
uncertainty in the context of Resilient-aware MLOps is an important 
research area. Progress in AI architectures and their hybridization also 
requires the development of a methodology to increase the flexibility 
of Resilience-aware MLOps tools.

Besides, it is needed to underline the following. The resilience of 
AI systems should, on the one hand, take into account traditional 
models and principles (47, 48) of its provision, which are based on 
evolutionary mechanisms for taking into account and adapting to 
changes in requirements, parameters of the information and physical 
environments, tolerance to uncertain failures, taking into account 
cyberattacks (49, 50). On the other hand, as it was mentioned in (16) 
the actual models and means of artificial intelligence have the potential 

of natural resilience, which should be used and which is used. This 
study is the next step in improving both of these approaches. From the 
point of view of the general principles of resilience, the idea of a 
certain resilient wrapper is proposed, which can be  adapted for 
different applications. With regard to the developing the methodology 
of naturally resilient AI, the proposed solutions can be  further 
improved through a more flexible setting, taking into account the 
features of the functional part of AI.

5 Conclusion

5.1 Summary

The structure of resilience-aware MLOps for medical diagnostic 
systems has been proposed. The main novelty lies in the separate 
work on creating a basic model for normal operating conditions 
and work on ensuring its resilience and trustworthiness. This is 
significant for the medical industry, as the developer of the basic 
model should devote more time to comprehending medical field 
and the diagnostic task at hand, rather than specializing in a specific 
area of resilient systems. Therefore, Post-hoc Resilience 
Optimization, Post-hoc Predictive Uncertainty Calibration, 
Uncertainty Monitoring and Graceful Degradation are used as 
additional stages of MLOps.

Resilience optimization increases robustness to disturbances and 
speed of adaptation. Fault injection attack, adversarial evasion attack, 
and concept drift are considered as disturbances. In order to optimize 
the resilience of the AI-based disease recognition system, additional 
add-ons are used in the form of adapters and meta-adapters. Meta-
adapters are fine-tuned during meta-training based on the results of 
adaptation to synthetic disturbances. An additional model is added 
for Post-hoc Calibration of Predictive Uncertainty, which is tuned on 
in-distribution data and out-of-distribution data, to correct predictive 
confidence in inference mode. Calibrated confidences ensures 
recognition of a part of unabsorbed disturbances to mitigate their 
influence, and it improves the trustworthiness.

Experimentally confirmed increase of robustness and speed of 
adaptation for medical image recognition system during several 
intervals of the system’s life cycle due to the use of resilience 
optimization and uncertainty calibration stages. The experiments were 
performed on the DermaMNIST dataset, BloodMNIST and 
PathMNIST. ResNet-18 as a representative of convolutional networks 
and MedViT-T as a representative of visual transformers are 
considered (51). It is shown that transformers are less resilient than a 
convolutional network, but this may be  due to the imperfect 
architecture of adapters and meta-adapters.
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5.2 Limitation

This study is demonstrated on the example of a medical image 
classification system and does not describe the specifics of using 
resilience-aware MLOps for self-supervised or reinforcement learning 
systems. Nevertheless, the general framework of resilience-aware 
MLOps can be applied to every type of intelligent system. Another 
limitation may be related to attempts to generalize the information 
found, which may affect the completeness of the literature review.

Moreover, well-known approaches to Explainable artificial 
intelligence, as well as Graceful Degradation, are excluded from 
detailed analysis of their impact on resilience. The paper focuses on 
the analysis of the general structure of resilience-aware MLOps and 
the stages of resilience optimization and predictive uncertainty  
calibration.

5.3 Future research direction

Future research should focus on the development new flexible 
adapter and meta-adapter architectures as addons for AI system 
resilience. Special attention should also be paid to the question of 
providing resilience for self-supervised and reinforcement learning 
systems. Another important area of research should be  the 
investigation of methods to ensure resilience to new types of attacks 
on AI systems in the healthcare industry.
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