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ABSTRACT With the advent of high-throughput phenotyping platforms, plant breeders have a means to
assess many traits for large breeding populations. However, understanding the genetic interdependencies
among high-dimensional traits in a statistically robust manner remains a major challenge. Since multiple
phenotypes likely share mutual relationships, elucidating the interdependencies among economically
important traits can better inform breeding decisions and accelerate the genetic improvement of plants.
The objective of this study was to leverage confirmatory factor analysis and graphical modeling to elucidate
the genetic interdependencies among a diverse agronomic traits in rice. We used a Bayesian network to
depict conditional dependencies among phenotypes, which can not be obtained by standard multi-trait
analysis. We utilized Bayesian confirmatory factor analysis which hypothesized that 48 observed phenotypes
resulted from six latent variables including grain morphology, morphology, flowering time, physiology,
yield, and morphological salt response. This was followed by studying the genetics of each latent variable,
which is also known as factor, using single nucleotide polymorphisms. Bayesian network structures involving
the genomic component of six latent variables were established by fitting four algorithms (i.e., Hill Climbing,
Tabu, Max-Min Hill Climbing, and General 2-Phase Restricted Maximization algorithms). Physiological com-
ponents influenced the flowering time and grain morphology, and morphology and grain morphology
influenced yield. In summary, we show the Bayesian network coupled with factor analysis can provide an
effective approach to understand the interdependence patterns among phenotypes and to predict the
potential influence of external interventions or selection related to target traits in the interrelated complex
traits systems.
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A primary objective in plant breeding is the develop high yielding
varieties with specific grain qualities, resilience to pests and abiotic
stresses, and superior adaption to the target environment. As a result,
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plant breeders devote considerable resources to extensive phenotypic
evaluation of germplasm and select on multiple traits. These traits
are often correlated at a genetic level through common genetic effects
(e.g., pleiotropy) or linkage disequilibrium between quantitative trait
locus (QTL). Since multiple phenotypes may exhibit mutual relation-
ships, knowledge of the interdependence among agronomically impor-
tant traits can improve the efficacy of selection and rate of genetic
improvement in systems with complex traits.

In a standard quantitative genetic analysis, multivariate phenotypes
can be modeled through multi-trait models (MTM) of Henderson and
Quaas (1976) or some genomic counterparts (e.g., Calus and Veerkamp
2011; Jia and Jannink 2012) by leveraging genetic or environmental
correlations among traits. In particular, MTM has been useful in de-
riving genetic correlations and enhancing the prediction accuracy of
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breeding values for traits with low heritability or scarce records via joint
modeling with one or more genetically correlated, highly heritable traits
(Mrode 2014). Conventional MTM strategies may provide important
insight into the genetic relations between agronomically important
traits, but they fail to explain how these traits are related. For instance,
consider a case where we have three genetically correlated traits: y,, y,
and y;. With MTM, we cannot address whether the relationship be-
tween y; and y; is due to direct effects, or if the relationship is driven by
indirect effects mediated by y,. Bayesian Networks (BN) offer an effec-
tive approach to elucidate the underlying network structure in multi-
variate data and infer network relationships between correlated
variables. A BN is a probabilistic graphical model that represents con-
ditional dependencies among a set of variables via a directed acyclic
graph (DAG) (Neapolitan 2004). In the DAG, the variables are repre-
sented by nodes, while their conditional dependencies between nodes
are indicated with directed edges. In the context of plant breeding, BN
can used to elucidate the interdependencies among traits and inform
selection decisions for simultaneously improving multiple traits. For
instance in the latter case above (y; — y, — y3), selection directly on
y, will affect the quantity of y; without an effect on y;.

With the advent high-throughput phenotyping (HTP) platforms,
plant breeders have been provided with a suite of tools for phenotypic
evaluation of large populations (Shakoor et al. 2017). These platforms
leverage robotics, precise environmental control, and remote sensing
techniques to provide accurate, repeatable and high resolution phe-
notypes for large breeding populations throughout the growing sea-
son (Araus and Cairns 2014; Shakoor et al. 2017; Araus et al. 2018).
These data can be used to redefine characteristics underlying superior
agronomic performance by quantifying secondary traits associated
with seedling vigor, plant architecture, photosynthesis, transpiration,
disease resistance, and stress tolerance (Cabrera-Bosquet et al. 2016;
Sun et al. 2017; Crain et al. 2018). However given these new ap-
proaches, breeders are faced with the new challenge of efficiently
utilizing these large multidimesional data sets to improve selection
efficiency. The primary challenges associated with multivariate anal-
ysis and BN approaches using HTP data are that robust parameter
estimates can be untenable because the number of estimated param-
eters within the model increases with the increasing number of phe-
notypes. Moreover, even in cases where MTM or BN can be applied,
interpreting of interrelationships among a large number of pheno-
types can be difficult.

One approach to characterize high-dimensional phenotypes is by
using factor analysis (FA). The central idea of FA approaches is to reduce
the dimensions of multivariate data sets by constructing unobserved,
latent factors, or modules, from correlated phenotypes (de los Campos
and Gianola 2007). The biological importance of these latent factors
can be interpreted by inspecting the phenotypes that contribute to each
factor. Thus, the advantage of FA for large, multivariate data sets is two
fold. First, FA provides a means to reduce the dimensions of multivar-
iate data sets thereby providing statistically sound parameter estimates,
and easing visualization and interpretation. Second, the latent vari-
ables/factors themselves may be representative of underlying biological
processes that cannot be observed or measured in the population. For
instance, several studies have highlighted the effects of plant hormones
such as GA on multiple morphological attributes (Wang and Li 2006;
Lo et al. 2008; Umehara et al. 2008; Bhattacharya et al. 2010; Brewer
et al. 2013; Zhou et al. 2013). Thus, a latent factor constructed from
these morphological traits may provide information on the biosynthesis
or sensitivity of these hormones for individuals within the population.
If a certain amount of knowledge regarding the biological role of the
variables is already known, a varaint of FA, confirmatory factor analysis
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(CFA), can be used to estimate latent variables based on predetermined
biological classes of observed traits (Joreskog 1969). These latent var-
iables underlie observed phenotypes and can be evaluated for how well
the data support the hypothesis. For instance, Pefiagaricano et al.
(2015) performed CFA in swine to derive five latent variables from
19 phenotypic traits and inferred BN structures among those latent
variables, thereby demonstrating the potential of this approach.

This study aimed to leverage CFA and graphical modeling to
elucidate the genetic interdependencies among traits typically recorded
in breeding programs (e.g., yield, plant morphology, phenology, and
stress resilience). First, we constructed latent variables, using prior bi-
ological knowledge obtained from the literature. Then we connected
the observed high-dimensional phenotypes with these to establish
latent variables via Bayesian confirmatory factor analysis (BCFA) to
reduce the dimensions of the dataset. Further, factor scores computed
from BCFA were considered new phenotypes for a Bayesian multi-
variate analysis to separate breeding values from noise. This was
followed by adjustment of breeding values via Cholesky decomposi-
tion to eliminate the dependencies introduced by genomic relation-
ships. Finally, the adjusted breeding values were considered inputs to
assess the network structure between latent variables by conducting a
Gaussian BN analysis. This study is the first, to our knowledge, in rice
to characterize various phenotypes with graphical modeling such as
BCFA and BN.

MATERIALS AND METHODS

Phenotypic and genotypic data

The rice dataset comprised #n = 374 accessions sampled from six sub-
populations: temperate japonica (92), tropical japonica (85), indica
(77), aus (52), aromatic (12), and admixture of japonica and indica
(56) (Zhao et al. 2011). The improvement status of each accession
was obtained from the USDA-ARS Germplasm Resources Information
Network. We used t = 48 phenotypes and data regarding 44,000 single-
nucleotide polymorphisms (SNP). After removing SNP markers
with minor allele frequency less than 0.05, 374 accessions and 33,584
markers were used for further analysis. Of those, 27 phenotypes were
reported in Zhao et al. (2011) and McCouch et al. (2016). These phe-
notypes can be classified into four categories: flowering time (flowering
time at three locations, photoperiod sensitivity), grain morphology
(seed length, seed width, seed surface area, seed length to width ratio,
seed volume), plant morphology (culm habit/angle, flag leaf length and
width, plant height at maturity), and yield traits (panicle fertility, seed
number per panicle, number of primary branches on the main panicle,
panicle length, and the number of panicles on each plant). Zhao et al.
(2011) evaluated flowering time-related traits using data from three
locations, while the remaining traits were evaluated at one location
(Arkansas). The remaining phenotypes were assessed from the salinity
stress experiments conducted in Campbell et al. (2017). These traits
were classified into three categories: morphological salt response, ionic
components of salt stress, and plant morphology. The class morpho-
logical salt response represents how plant growth is affected by salinity
stress and is composed of the ratio of shoot biomass of salt stressed
plants to control, the ratio of root biomass of salt stressed plants to
control, the ratio of the number of tillers for salt stressed plants to
control, and two metrics that represent the ratio of shoot height of salt
stressed plants to control. Ionic components of salt stress are composed
of traits that quantify ions important for salinity tolerance (Na* and K™) in
both root and shoot tissues. Morphology traits are those that de-
scribe the growth of the plant in both control and saline conditions
(e.g., shoot biomass, root biomass, shoot height, and tiller number).

-=.G3:Genes| Genomes | Genetics



The data used from Campbell et al. (2017) were derived from
three to six independent greenhouse experiments performed be-
tween July and October 2013. Information for all experiments
were combined and best linear unbiased estimators were calcu-
lated for each line as described in Campbell et al. (2017). The
detailed descriptions of the phenotypes are summarized in Sup-
plementary Table S1.

Bayesian confirmatory factor analysis

A CFA under the Bayesian framework was performed to model 48 phe-
notypes. The number of factors and the pattern of phenotype-factor
relationships need to be specified in BCFA prior to model fitting. We
constructed six latent variables (g = 6) from previous reports (Acquaah
2009; Zhao et al. 2011; Campbell et al. 2017). The six latent variables
derived from our analysis represent the grain morphology, morphol-
ogy, flowering time, ionic components of salt stress, yield, and mor-
phological salt response (Table S1). Each latent variable captures
common signals spanning genetic and environmental effects across
all its phenotypes. The latent variables, which determine the observed
phenotypes can be modeled as

T = AF +s,

where T is the ¢ X n matrix of observed phenotypes, A is the txq
factor loading matrix, F is the g X n latent variables matrix, and s is the
t X n matrix of specific effects. Here, A maps latent variables to the
observed variables and can be interpreted as the extent of contribu-
tion each latent variable to phenotype. This can be derived by solving
the following variance-covariance model.

var(T) = A@A' + W,

where @ is the variance of latent variables, and W is the variance of
specific effects (Brown 2014). Six latent variables were assumed to
account for the covariance in the observed phenotypes. Moreover,
latent variables were assumed to be correlated with each other. Prior
distributions were assigned to all unknown parameters. The non-zero
coefficients within factor loading matrix A were assumed to follow a
Gaussian distribution with mean of 0 and variance of 0.01. The vari-
ance-covariance matrix ® was assigned an inverse Wishart distribution
with a 6 X 6 identity scale matrix I¢s and a degree of freedom 7,
® ~ 7" "!(Ig,7) and an inverse Gamma distribution with scale pa-
rameter 1 and shape parameter 0.5 was assigned to ¥ ~ I'"'(1,0.5).

We employed the blavaan R package (Merkle and Rosseel 2018)
jointly with JAGS (Plummer et al. 2003) to fit the above BCFA. The
blavaan runs the runjags R package (Denwood 2016) to summarize the
Markov chain Monte Carlo (MCMC) and samples unknown parame-
ters from the posterior distributions. Three MCMC chains, each of
5,000 samples with 2,000 burn-in, were used to infer the unknown
model parameters. The convergence of the parameters was investigated
with trace plots and potential scale reduction factor (PSRF) less than 1.2
(Brooks and Gelman 1998). The PSRF computes the difference between
estimated variances among multiple Markov chains and estimated var-
iances within the chain. A large difference indicates non-convergence
and may require additional Gibbs sampling.

Subsequently, the posterior means of factor scores (F), which reflect
the contribution of latent variables to each accession were estimated.
Within each draw of Gibbs sampling, F was sampled from the condi-
tional distribution of p(F|@, T), where 0 refers to the unknown param-
eters in A, ®, and W. This conditional distribution was derived with
data augmentation (Tanner and Wong 1987) assuming F as missing
data (Lee and Song 2012).
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Multivariate genomic best linear unbiased prediction

We fitted a Bayesian multivariate genomic best linear unbiased pre-
diction to separate breeding values from population structure and noise
in the six factor scores computed previously.

F=p+Xb+Zu+e,

where p is the vector of intercept, X is the incidence matrix of cova-
riates, b is the vector of covariate effects, Z is the incidence matrix
relating accessions with additive genetic effects, u is the vector of
additive genetic effects, and € is the vector of residuals. The incident
matrix X included subpopulation information (temperate japonica, trop-
ical japonica, indica, aus, aromatic, and admixture), as the rice diversity
panel used herein shows a clear substructure (Zhao et al. 2011).

A flat prior was assigned to p and b, and the joint distribution of u
and e follows multivariate normal

(&) =100 <))

where G represents the second genomic relationship matrix of
VanRaden (2008), I is the identity matrix, X, and X, refer to 6 X6
dimensional genetic and residual variance-covariance matrices, re-
spectively. An inverse Wishart distribution with a 6 x 6 identity scale
matrix of Iss and a degree of freedom 6 was assigned as prior for
2., Z. ~ % (I, 6). These parameters were selected so that relative-
ly uninformative priors were used. The Bayesian multivariate genomic
best linear unbiased prediction model was implemented using the
MTM R package (https://github.com/QuantGen/MTM). Posterior
mean estimates of genomic correlation between latent variables and
predicted breeding values (1) were then obtained. The convergence of
the estimated parameters was verified by trace plots.

Sample independence in the Bayesian network

Theoretically, BN learning algorithms assume sample independence. In
the multivariate genomic best linear unbiased prediction, the residuals
between phenotypes were assumed independent through I374374. How-
ever, phenotypic dependencies were introduced by the G matrix for the
additive genetic effects, thereby potentially serving as a confounder. Thus,
a transformation of @ was carried out to derive an adjusted @* by elim-
inating the dependencies in G. For a single trait model, the adjusted "
can be computed by premultiplying @ by L™, where L is a lower tri-
angular matrix derived from the Choleskey decompostion of G ma-
trix (G = LL’). Since u ~ .#"(0, Go?), the distribution of &* follows
47(0,10%) (Callanan and Harville 1989; Vazquez et al. 2010)

Var(u*) = Var(L™'u)
=L 'Var(u) (L715

=L7'G(L")o}
=L 'LL'(L) 1o}
= Icri,

This transformation can be extended to a multi-traits model by defining
u* =M 'u, where M7 ! = Igq Q®L™! (Topner et al. 2017). Under the
multivariate framework, u follows.7"(0, £, ® G) and the variance of u* is

Var(u*) = Var(M ™ 'u)
= (Igg®L ") (2, ®G) (Ig®L )
= (Igq®L ") (2, ®LL') (Igg®L )
= 2"u®1ru17
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where L_lLL’(L_l)’ = Ipn. This adjusted 4" was used to learn BN
structures between predicted breeding values.

Bayesian network
A BN depicts the joint probabilistic distribution of random variables
through their conditional independencies (Scutari and Denis 2014)

BV = (Z,Xy),

where 2 represents a DAG = (V, E) with nodes (V) connected by one
or more edges (E) conveying the probabilistic relationships and the
random vector Xy = (Xj,...,Xk) is K random variables. The joint
probability distribution can be factorized as

K
P(Xv) = P(Xi, ..., Xk) = | [ P(Xu|Pa(Xy)),

v=1

where Pa(X,) denotes a set of parent nodes of child node X,,. The
DAG and joint probability distribution are governed by the Markov
condition, which states that every random variable is independent
of its non-descendants conditioned on its parents. A BN is known
as a Gaussian BN, when all variables or phenotypes are defined as
marginal or conditional Gaussian distribution as in the present
study.

The adjusted breeding values @* were used to infer a genomic
network structure among the aforementioned six latent variables. There
are three types of structure-learning algorithms for BN: constraint-
based algorithms, score-based algorithms, and a hybrid of these two
(Scutari and Denis 2014). The constraint-based algorithms can be

1978 | H.Yuetal

Confer undirected edge

Figure 1 Flow diagram to illustrate the
concept of constraint-based structure
learning algorithm for a Bayesian net-
work. The A, B, C, D, and E represent
five nodes or latent variables. S refers
to a set of d-separation. The directed
acyclic graph shown in Step 3 is one
possible completed partially directed

V. stiuctne acyclic graph.

originally traced to the inductive causation algorithm (Verma and
Pearl 1991), which uses conditional independence tests for network
inference. Briefly, the first step is to identify a d-separation set for each
pair of nodes and confer an undirected edge between the two if they are
not d-separated. The second step is to identify a v-structure for each
pair of non-adjacent nodes, where a common neighbor is the out-
come of two non-adjacent nodes. In the last step, compelled edges
were identified and oriented, where neither cyclic graph nor new
v-structures are permitted. The score-based algorithms are based
on heuristic approaches, which first assign a goodness-of-fit score
for an initial graph structure and then maximize this score by updat-
ing the structure (i.e., add, delete, or reverse the edges of initial graph).
The hybrid algorithm includes two steps, restrict and maximize,
which harness both constraint-based and score-based algorithms
to construct a reliable network. In this study, the two score-based
(Hill Climbing and Tabu) and two hybrid algorithms (Max-Min Hill
Climbing and General 2-Phase Restricted Maximization) were used
to perform structure learning. A flow diagram to illustrate the con-
cept of constraint-based Bayesian netwrok structure learning algo-
rithm is shown in Figure 1.

We quantified the strength of edges and uncertainty regarding the
direction of networks, using 500 bootstrapping replicates with a size
equal to the number of accessions and performed structure learning
for each replicate in accordance with Scutari and Denis (2014). Non-
parametric bootstrap resampling aimed at reducing the impact of the
local optimal structures by computing the probability of the arcs and
directions. Subsequently, 500 learned structures were averaged with a
strength threshold of 85% or higher to produce a more robust network
structure. This process, known as model averaging, returns the final
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Figure 2 Relationship between six la-
tent variables and observed phenotypes.
Msr: morphological salt response; lss:
ionic components of salt stress; Grm:
grain morphology; Yid: yield; Mrp: mor-
phology; Flt: flowering time. Abbrevia-
tions of observed phenotypes are shown
in Table S1.

network with arcs present in at least 85% among all 500 networks.
Candidate networks were compared on the basis of the Bayesian in-
formation criterion (BIC) and Bayesian Gaussian equivalent score
(BGe). The BIC accounts for the goodness-of-fit and model complexity,
and BGe aims at maximizing the posterior probability of networks per
the data. All BN were learned via the bnlearn R package (Scutari 2010).
In bnlearn, the BIC score is rescaled by -2, which indicates that the
larger BIC refers to a preferred model.

Data availability

Genotypic data regarding the rice accessions can be downloaded from
the rice diversity panel website (http://www.ricediversity.org/). Pheno-
typic data used herein are available in Zhao et al. (2011), Campbell et al.
(2017), and Supplementary File S3. Supplemental material available at
FigShare: https://doi.org/10.25387/g3.7970642.

RESULTS

To elucidate the genetic interdependencies among traits typically
recorded in breeding programs, we utilized a collection of 48 publicly
available phenotypes recorded on a panel of diverse rice accessions
(Zhao et al. 2011; Campbell et al. 2017). The phenotypic data were
derived from two independent studies. The first set of phenotypes was
recorded from materials grown in two field environments in Arkansas
and Faridpur Bangladesh, and in a greenhouse in Aberdeen, UK (Zhao
et al. 2011). The 34 phenotypes were recorded at maturity and were
largely associated with yield (panicle characteristics flowering time,
plant morphology (e.g., height and growth habits), and seed morpho-
logical traits. The second study consisted of 14 phenotypes were
recorded in a greenhouse environment on plants in the active tillering
stage (e.g., 30 day-old plants) under control and saline (14 days of 9.5 dS
m—2 NaCl stress). The phenotypes from this study can be classified
into three categories: morphological traits (e.g., shoot and root biomass,
and plant height), morphological responses to salinity (e.g., the ratio of
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morphological traits in saline conditions to control), and the ionic
components of salinity stress (e.g., Na*, K*, and Na™:K" in both root
and shoot tissues) (Campbell et al. 2017). The complete data set pro-
vides an in-depth characterization of phenotypic performance at veg-
etative and reproductive stages in rice using several classes of traits.

Latent variable modeling

The BCFA model grouped the observed phenotypes into the underlying
latent variables on the basis of prior biological knowledge, assuming
these latent variables determine the observed phenotypes. This allowed
us to study the genetics of each latent variable. A measurement model
derived from BCFA evaluating the six latent variables is shown in
Figure 2. Forty-eight observed phenotypes were hypothesized to re-
sult from the six latent variables: 7 for flowering time, 14 for mor-
phology, 5 for yield, 11 for grain morphology, 6 for physiology, and
5 for salt response. The convergence of the parameters was confirmed
graphically with the trace plots and a PSRF value less than 1.2 (Brooks
and Gelman 1998; Merkle and Rosseel 2018).

The six latent factors showed strong contributions to the 48 observed
phenotypes, with standardized regression coefficients ranging from
-0.549 to 0.990 for flowering time, -0.349 to 0.925 for morphology,
-0.085 t0 0.790 for yield, -0.476 to 0.990 for grain morphology, -0.265 to
0.983 for ionic components of salt stress, and -0.022 to 0.939 for salt
response. The latent factor flowering time showed a strong positive
contribution to flowering time in Arkansas (Fla) and Flowering time in
Arkansas in 2007 (Fla7) (0.990 and 0.926, respectively; Table 1), in-
dicating that larger values for the latent factor can be interpreted as a
greater number of days from sowing to emergence of the inflorescence.
The latent factor morphology showed the largest positive contributions
to traits describing height during the vegetative stage (e.g., height to
newest ligule in salt (Hls), 0.920; height to newest ligule in control (Hlc),
0.899; height to the tip of first fully expanded leaf in salt (Hfs), 0.907;
and height to tip of first fully expanded leaf in control (Hfc), 0.925;)
suggesting that this latent factor is an overall representation of plant
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Table 1 Standardized factor loadings obtained from the Bayesian confirmatory factor analysis. PSD refers to the posterior standard

deviation of standardized factor loadings

Latent variable Observed phenotype Loading PSD
Flowering time Flowering time at Arkansas (Fla) 0.990 0.002
Flowering time Flowering time at Faridpur (FIf) 0.500 0.045
Flowering time Flowering time at Aberdeen (Flb) 0.578 0.038
Flowering time FT ratio of Arkansas/Aberdeen (Flaa) —-0.212 0.053
Flowering time FT ratio of Faridpur/Aberdeen (Flfa) —0.549 0.041
Flowering time Year07 Flowering time at Arkansas (Fla7) 0.926 0.008
Flowering time Year06 Flowering time at Arkansas (Flaé) 0.886 0.013
Morphology Culm habit (Cuh) 0.227 0.027
Morphology Flag leaf length (Fll) 0.116 0.057
Morphology Flag leaf width (Flw) —0.044 0.058
Morphology Plant height (PIh) 0.440 0.047
Morphology Shoot BM Control (Sbc) 0.534 0.042
Morphology Shoot BM Salt (Sbs) 0.456 0.048
Morphology Root BM Control (Rbc) 0.418 0.048
Morphology Root BM Salt (Rbs) 0.280 0.054
Morphology Tiller No Salt (Tns) —0.349 0.051
Morphology Tiller No Control (Tbc) -0.318 0.052
Morphology Ht Lig Salt (Hls) 0.920 0.011
Morphology Ht Lig Control (Hlc) 0.899 0.014
Morphology Ht FE Salt (Hfs) 0.907 0.013
Morphology Ht FE Control (Hfc) 0.925 0.011
Yield Panicle number per plant (Pnu) 0.190 0.020
Yield Panicle length (Pal) 0.455 0.057
Yield Primary panicle branch number (Ppn) 0.790 0.041
Yield Seed number per panicle (Snpp) 0.780 0.043
Yield Panicle fertility (Paf) —0.085 0.081
Grain Morphology Seed length (SI) 0.251 0.029
Grain Morphology Seed width (Sw) 0.876 0.015
Grain Morphology Seed volume (Sv) 0.990 0.002
Grain Morphology Seed surface area (Ssa) 0.901 0.012
Grain Morphology Brown rice seed length (Bsl) 0.158 0.055
Grain Morphology Brown rice seed width (Bsw) 0.837 0.019
Grain Morphology Brown rice surface area (Bsa) 0.902 0.012
Grain Morphology Brown rice volume (Bvl) 0.986 0.002
Grain Morphology Seed length/width ratio (Slwr) —0.476 0.045
Grain Morphology Brown rice length/width ratio (Blwr) -0.432 0.047
Grain Morphology Grain length McCouch2016 (Glmc) 0.047 0.064
lonic components of salt stress Na K Shoot (Ks) 0.983 0.003
lonic components of salt stress Na Shoot (Nas) 0.975 0.004
lonic components of salt stress K Shoot Salt (Kss) —0.265 0.051
lonic components of salt stress Na K Root (Kr) 0.061 0.052
lonic components of salt stress Na Root (Nar) 0.001 0.053
lonic components of salt stress K Root Salt (Krs) —0.095 0.052
Morphological salt response Shoot BM Ratio (Sbr) 0.410 0.047
Morphological salt response Root BM Ratio (Rbr) 0.395 0.051
Morphological salt response Tiller No Ratio (Thr) —0.022 0.057
Morphological salt response Ht Lig Ratio (HIr) 0.665 0.036
Morphological salt response Ht FE Ratio (Hfr) 0.939 0.019

size. Yield showed large positive contributions to the observed phe-
notypes primary panicle branch number (Ppn) and seed number per
panicle (Snpp) (0.790 and 0.780, respectively), suggesting that larger
values for yield indicate a higher degree of branching and seed
number. Observed phenotypes describing seed size (e.g., seed vol-
ume (Sv) and brown rice volume (Bvl) (0.990 and 0.986, respec-
tively)) were most strongly associated with grain morphology. The
latent factor ionic components of salt stress showed strong positive
contributions to two observed phenotypes that quantify the ionic
components of salt stress (shoot Na™:K* (Ks) and shoot Na™ (Nas)
(0.983 and 0.975, respectively), indicating that higher values for the
latent factor result in greater shoot Na™ and Na™:K*. Finally, the
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latent factor describing morphological salt response showed strong
positive contributions to the observed phenotype describing the
effect of salt treatment on plant height (ratio of height to tip of
newest fully expanded leaf in salt to that of control plants (Hfr)
(0.939)), thus larger values for the latent factor may indicate a more
tolerant growth response to salinity.

Genomic correlation among latent variables

To understand the genetic relationships between latent variables, ge-
nomic correlation analysis was performed. Genomic correlation is due
to pleiotropy or linkage disequilibrium between QTL. The genomic
correlations among latent variables are shown in Figure 3. Negative
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correlations were observed between morphological salt response (Msr)
and all other five latent variables. In particular, flowering time (-0.5),
yield (-0.54), and grain morphology (-0.74) were negatively correlated
with morphological salt response. These results suggest that accessions
that harbor alleles for more tolerant morphological salt responses may
also have alleles associated with longer flowering times, smaller seeds,
and low yield. Similarly, a negative correlation was observed between
morphology and yield (-0.56) and between morphology and grain
morphology (-0.31). Thus, accessions with alleles associated with large
plant size may also have alleles that result in low yield, small grain
volume, and lower shoot Na™ and Na™:K". In contrast, a positive
correlation was observed between grain morphology and yield (0.49)
and between grain morphology and ionic components of salt stress
(0.4). Thus, selection for large grain may result in improved yield,
and higher shoot Na* and Nat:K*.

Bayesian network

To infer the possible network structure between latent variables, BN was
performed. Prior to BN, the normality of latent variables was assessed
using histogram plots combined with density curves as shown in
Supplementary Figure S1. Overall, all the six latent variables approxi-
mately followed a Gaussian distribution.

The Bayesian networks learned with the score-based and hybrid
algorithms are shown in Figure 4. The structures of BN were refined by
model averaging with 500 networks from bootstrap resampling to re-
duce the impact of local optimal structures. The labels of the arcs mea-
sure the uncertainty of the arcs, corresponding to strength and
direction (in parenthesis). The former measures the frequency of the
arc presented among all 500 networks from the bootstrapping repli-
cates and the latter is the frequency of the direction shown conditional
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on the presence of the arc. We observed minor differences in the
structures presented within and across the two types of algorithms
used. In general, small differences were observed within algorithm types
compared to those across algorithms. The two score-based algorithms
produced a greater number of edges than two hybrid algorithms. The
Hill Climbing algorithm produced seven directed connections among
the six latent variables. Three connections were indicated toward flow-
ering time from morphological salt response, ionic components of salt
stress, and morphology, and two edges to yield from morphology and
from grain morphology. Other two edges were observed from ionic
components of salt stress to grain morphology and from grain mor-
phology to morphological salt response. A similar structure was gen-
erated by the Tabu algorithm, except that the connection between salt
response and grain morphology presented an opposite direction. The
Max-Min Hill Climbing hybrid algorithm yielded six directed edges
from morphological salt response to grain morphology, from ionic
components of salt stress to grain morphology, from ionic components
of salt stress to flowering time, from flowering time to morphology,
from morphology to yield, and from grain morphology to yield. An
analogous structure with the only difference observed in the directed
edge from morphology to flowering time was inferred with the General
2-Phase Restricted Maximization algorithm. Across all four algorithms,
there were four common directed edges: from ionic components of salt
stress to flowering time and to grain morphology, and from morphol-
ogy and grain morphology to yield. The most favorable network was
considered the one from the Tabu algorithm, which returned the largest
network score in terms of BIC (1086.61) and BGe (1080.88). Collec-
tively, these results suggest that there may be a direct genetic influence
of morphology and grain morphology on yield, and physiological com-
ponents of salt tolerance on grain morphology and flowering time.
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Figure 4 Bayesian networks between six latent variables based on two score-based (4a: Hill Climbing and 4b: Tabu) and two hybrid (4c: Max-Min
Hill Climbing and 4d: General 2-Phase Restricted Maximization) algorithms. The quality of the structure was evaluated by bootstrap resampling
and model averaging across 500 replications. Labels of the edges refer to the strength and direction (parenthesis) which measure the confidence
of the directed edge. The strength indicates the frequency of the edge is present and the direction measures the frequency of the direction
conditioned on the presence of edge. BIC: Bayesian information criterion score. BGe: Bayesian Gaussian equivalent score. Msr: morphological
salt response; Iss: ionic components of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.

DISCUSSION
This study is based on the premise that most phenotypes interact to
greater or lesser degrees with each other through underlying physio-
logical and molecular pathways. While these physiological pathways are
important for the development of agronomically important character-
istics, they are often unknown or difficult to assess in large populations.
The approach utilized here leverages phenotypes that can be readily
assessed in large populations to quantify these underlying unobserved
phenotypes, and elucidates the relationships between these variables.
Understanding the behaviors among phenotypes in the complex
traits is critical for genetic improvement of agricultural species (Hickey
et al. 2017). Graphical modeling offers an avenue to decipher
bi-directional associations or probabilistic dependencies among var-
iables of interest in plant and animal breeding. For instance, BN and
L1-regularized undirected network can be used to model interrela-
tionships of linkage disequilibrium (LD) (Morota et al. 2012; Morota
and Gianola 2013) or phenotypic, genetic, and environmental inter-
actions (Xavier et al. 2017) in a systematic manner. Importantly,
MTM elucidates both direct and indirect relationships among
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phenotypes. Inaccurate interpretation of these relationships may sub-
stantially bias selection decisions (Valente et al. 2015; Gianola et al.
2015). Thus, we applied BCFA to reduce the dimension of the re-
sponses by hypothesizing 48 manifest phenotypes originated from the
underlying six constructed latent variables as shown in Figure 2 as-
suming that these latent traits are most important, followed by appli-
cation of BN to infer the structures among the six biologically relevant
latent variables (Figure 4). Note that there are two differences between
the approach employed here and a path analysis. A path analysis 1)
uses observed variables rather than latent variables and 2) assumes a
network structure is known priori. Thus, one advantage of our ap-
proach is that it can model a network structure at the level of latent
variables and infer a network structure directly from data when prior
information is not available from the literature or previous experi-
ments. The BN represents the conditional dependencies between var-
iables. Care must be taken in interpreting these relationships as a
causal effect. Although a good BN is expected to describe the un-
derlying causal structure per the data, when the structure is learned
solely on the basis of the observed data, it may return multiple
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equivalent networks that describe the data well. In practice, searching
such a causal structure with observed data needs three additional
assumptions (Scutari and Denis 2014): 1) each variable is indepen-
dent of its non-effects (i.e., direct and indirect) conditioned on its
direct causes, 2) the probability distribution of variables is supported
by a DAG, where the d-separation in DAG provides all dependen-
cies in the probability distribution, and 3) no additional variables
influence the variables within the network. Although it may be
difficult to meet these assumptions in the observed data, a BN is
equipped with suggesting potential causal relationships among la-
tent variables, which can assist in exploring data, making breeding
decisions, and improving management strategies in breeding pro-
grams (Rosa ef al. 2011).

Biological meaning of latent variables and
their relationships

We performed BCFA to summarize the original 48 phenotypes with the
six latent variables. The number of latent variables and which latent
variablesload onto phenotypes were determined from the literature. The
latent variable morphological salt response (Msr) contributed strongly
to salt indices for shoot biomass, root biomass, and two indices for plant
height (Table 1). Thus, morphological salt response can be interpreted
as the morphological responses to salinity stress, with higher values
indicating a more tolerant growth response. The latent variable yield
is a representation of overall grain productivity, and contributed
strongly to the observed phenotypes primary panicle branch number,
seed number per panicle, and panicle length. The positive loading
scores on these observable phenotypes indicates that more highly
branched, productive panicles will have higher values for yield (Table 1).
Seed width, seed volume, and seed surface area contributed significantly
to the latent variable grain morphology (Grm) (Table 1). Therefore,
these results indicate that the grain morphology is a summary of the
overall shape of the grain, where high values represent large, round
grains, while low values represent small, slender grains. Considering the
grain characteristics of rice subpopulations, temperate japonica acces-
sions are expected to have high values for grain morphology, while
indica accessions have lower values for grain morphology. Latent vari-
able morphology (Mrp) is a representation of plant biomass during the
vegetative stage (28-day-old plants) (Table 1). Shoot biomass, root bio-
mass, and two metrics for plant height contributed largely to morphol-
ogy, suggesting that accessions with high values for morphology are tall
plants with a large biomass.

Genomic correlation analysis among the six latent variables showed
meaningful correlations among several pairs. These genetic correlations
can either be caused by linkage or pleiotropy. The former is likely to
prevail in species with high LD, which is the case in rice where LD ranges
from 100 to 200kb (Huang et al. 2010). A negative relationship was
observed between morphological salt response and three other latent
variables (Figure 3). For instance, a negative correlation between mor-
phological salt response and yield indicates that accessions of samples
harboring alleles for superior morphological salt responses (e.g., those
that are more tolerant) tend to also harbor alleles for poor yield (Fig-
ure 3). The rice diversity panel we used is a representative sample of the
total genetic diversity within cultivated rice and contains many unim-
proved traditional varieties (~12% of lines in the study are landraces
and ~33% classified as cultivars; Supplementary File S2) and modern
breeding lines (Eizenga et al. 2014). While traditional varieties exhibit
superior adaptation to abiotic stresses, they often have very poor agro-
nomic characteristics including low yield, late flowering, and high pho-
toperiod sensitivity (Thomson et al. 2009, 2010). Moreover, the indica
and japonica subspecies have contrasting salt responses and very
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different grain morphology. Japonica accessions tend to have short,
round seeds and are more sensitive to salt stress, while indica accessions
have long, slender grains and often are more salt tolerant (Zhao et al.
2011; Campbell et al. 2017). The negative relationship observed
between morphological salt response and grain morphology sug-
gests that lines that harbor alleles for high grain morphology
(e.g., large, round grains) tend to also harbor alleles for a tolerant
growth response to salt stress. However, no studies have yet re-
ported an association between alleles for grain morphology and
morphological salt response. Therefore, it remains to be addressed
whether this relationship is due to LD or pleitropy.

Genetic correlations observed between other latent variables may
suggest a pleiotropic effect among loci. For instance, a negative relation-
ship was observed between morphological salt response and ionic
components of salt stress, indicating that accessions harboring alleles
associated with superior morphological salt response also tend to harbor
alleles for reduced ion content under salt stress (Figure 3). The relation-
ship between salt tolerance, measured in terms of growth or yield, and
Na' and Na™:K" has been a documented for decades (reviewed by
Munns and Tester (2008)). Moreover, natural variation for Na™
transporters has been utilized to improve growth and yield under
saline conditions in rice and other cereals (Ren et al. 2005; Byrt et al.
2007; Horie et al. 2009; Munns et al. 2012; Campbell et al. 2017).
Therefore, the negative genetic relationships observed between
morphological salt response and ion content may be due to the
pleiotropic effects of some loci.

The genomic relationships among latent variables including mor-
phology, vield, and grain morphology may have resulted from the
selection of alleles associated with good agronomic characteristics. A
positive relationship was observed between yield and grain morphology,
suggesting that alleles that positively contribute to productive panicles
also may contribute to large, round grains. Furthermore, the negative
genomic correlation observed between morphology and yield indicates
that alleles negatively influencing total plant biomass also have a
positive contribution to traits for productive panicles. This genomic
relationship may reflect the genetics of harvest index, which is
defined as the ratio of grain yield to total biomass. Over the past
50 years, rice breeders have selected high harvest index, resulting in
plants with short compact morphology and many highly productive
panicles (Hay 1995; Peng et al. 2008).

Although BCFA may yield biologically meaningful results, a poten-
tial limitation of BCFA is that we assumed each phenotype does not
measure more than one latent variable. This assumption may not always
strictly concur with the observational data. Therefore, further studies are
required to allow each phenotype to potentially load onto multiple
factors in the BCFA framework. An alternative approach is to derive the
number of latent variables and determine which latent variables load
onto phenotypes directly from observed data, using exploratory FA. This
approach was not pursued here because accurate estimation of unknown
parameters in the exploratory FA requires a large sample size, which was
not the case herein (Brown 2014).

Bayesian network of latent variables

The BN is a probabilistic DAG, which represents the conditional de-
pendencies among phenotypes. The genomic correlation among latent
variables described in Figure 3 does not inform the flow of genetic
signals nor distinguish direct and indirect associations, whereas BN
displays directions between latent variables and separate direct and
indirect associations. Therefore, the BN describes the possibility that
other phenotypes will change if one phenotype is intervened (i.e., se-
lection). However, caution is required to interpret this network as a
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causal effect, as the causal BN requires more assumptions, which are
usually difficult to meet in observational data (Pearl 2009).

Four common edges or consensus subnetworks across the four BN
may be the most reliable substructure of latent variables and may
describe the dependence between agronomic traits (Figure 4). For ex-
ample, edges from grain morphology to yield and morphology to yield
can be interpreted as final grain productivity is dependant on specific
vegetative characteristics as well grain traits. This is because yield,
which represents the overall grain productivity of a plant, depends
on morphological characteristics such as the degree of tillering, an
architecture that allows the plant to efficiently capture light and carbon,
and a stature that is resistant to lodging, the degree of panicle branch-
ing, as well as specific grain characteristics such as seed volume and
shape. Moreover, there is a direct biological linkage between specific
vegetative architectural traits such as tillering and plant height, and
yield related traits such as panicle branching and number of seeds
per panicle. The degree of branching during both vegetative and re-
productive development is dependant on the development and initia-
tion of auxiliary meristems. Several genes have been identified in this
pathway and have shown to have pleiotropic effects on tillering and
panicle branching (reviewed by Liang et al. (2014)). For instance,
OsSPL14 has been shown to be an important regulator of auxiliary
branching in both vegetative and reproductive stages in rice (Jiao
et al. 2010; Miura et al. 2010). Moreover, other genes such as OsGhd8
have been reported to regulate other morphological traits such as plant
height and yield through increase panicle branching (Yan et al. 2011).
The biological importance of these dependencies can also be illustrated
by viewing them in the context of genetic improvement, as selection for
specific architectural traits (represented by the latent variable morphol-
ogy) and grain characteristics have traditionally been used as traits to
improve rice productivity in many conventional breeding programs
(Redona and Mackill 1998; Huang et al. 2013).

While the above example provides a plausible network structure
between latent variables, edges from ionic components of salt stress to
flowering time and to grain morphology are an example of instances
where caution should be used to infer causation. As mentioned above,
there is an inherent difference in salt tolerance and grain morphological
traits between the indica and japonica subspecies. The edges observed for
these two latent variables (ionic components of salt stress and grain
morphology) in BN may be driven by LD between alleles associated with
grain morphology and alleles for salt tolerance rather than pleitropy.
Thus, given the current data set, genetic effects for grain morphology
may still be conditionally dependant on ionic components of salt stress
and the BN may be true, even if there is no direct overlap in the genetic
mechanisms for the two traits.

We found that there are some uncertain edges among BN in Figure 4.
For instance, direction from morphological salt response to grain mor-
phology is supported by 65% (Tabu), 58% (Max-Min Hill Climbing),
and 58% (General 2-Phase Restricted Maximization) bootstrap sam-
pling, whereas the opposite direction is supported by 56% bootstrap
sampling (Hill Climbing). An analogous uncertainty was also observed
between morphology and flowering time, i.e., the path from morphol-
ogy to flowering time was supported 60% (Hill Climbing), 51% (Tabu),
and 52% (General 2-Phase Restricted Maximization), while the reverse
direction was supported 51% (Max-Min Hill Climbing) upon boot-
strapping. In addition, the two score-based algorithms captured edges
between morphological salt response and flowering time with 70% and
76% bootstrapping evidence. However, this connection was not de-
tected in the two hybrid algorithms. In general, inferring the direction
of edges was harder than inferring the presence or absence of undi-
rected edges. Finally, the whole structures of BN were evaluated in
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terms of the BIC score and BGe. Ranking of the networks was consis-
tent across BIC and BGe and the two score-based algorithms produced
networks with greater goodness-of-fit than the two hybrid algo-
rithms. The optimal network was produced by the Tabu algorithm.
This is consistent with the previous study reporting that the score-
based algorithm produced a better fit of networks in data on maize
(Topner et al. 2017).

In conclusion, the present results show the utility of CFA and
network analysis to characterize various phenotypes in rice. We showed
that the joint use of BCFA and BN can be applied to predict the potential
influence of external interventions or selection associated with target
traits such as yield in the high-dimensional interrelated complex traits
system. We contend that the approaches used herein provide greater
insights than pairwise-association measures of multiple phenotypes and
can be used to analyze the massive amount of diverse image-based
phenomics dataset being generated by the automated plant phenomics
platforms (e.g., Furbank and Tester 2011). With a large volume of
complex traits being collected through phenomics, numerous op-
portunities to forge new research directions are generated by using
network analysis for the growing number of phenotypes.
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